
#+STARTUP: showeverything
#+TITLE: Rubric: pMenu
#+SUBTITLE: CIS 205 Computer Science III
#+DATE: Fall 2023
#+AUTHOR: Brian C. Ladd
#+EMAIL: laddbc@potsdam.edu

<student>
DUE: 2023-09-01T09:00:00-05:00
COMMITTED: <commit>
<late>

REASONS TO STOP GRADING
- Failure to compile.
- No =README=

- No ID block in =README=
- No instructions on compiling and running

- Source code file with no ID block
REASONS TO STOP GRADING

===
- Documentation /30
===
- Good type, function, and variable names

- Descriptive names
- Name length directly proportional to size of scope:

larger scope -_ longer name

- Appropriate level of in-line and header comments
- Comments *do not* replicate information better communicated by reading the

code.
- Header comments on files, classes, functions

- Document /intention/: what is the purpose of this *thing*
- Functions: what does it do; what are the parameters and their permitted

values?
- Class/Type: how and where is one constructed; why is one made; how long

should it live?
- In-line comments when necessary to explain/support the code
- Comments use *complete sentences*, *standard spelling*, and *proper Englis

h grammar*
- Style

- Indentation and Whitespace
- Use only SPACE characters for indent, not TAB
- Consistent indentation that improves readability

- Indent between curly braces to show nesting
- Good use of blank lines to break code into sections

- Curly-brace placement
- Opening curly-brace should NEVER start a line

- It ends the line with the if/while/for/else on it, doesn't start the nex
t line

- Closing curly-brace aligns with the BEGINNING of the if/while/for/else lin
e

- else if is on one line
- Starts with } (if necessary)
- else if (<boolean>) follows
- ends with { (if necessary)

- README
- One of the acceptable formats: =.txt=, =.md=, =.org=
- Problem Statement: Make the submission self-contained for future readers
- Compiling and Running Instructions

- Testing Criteria
- Indicates what testing was done

- *How* was the code tested?
- What "happy path" tests do you do to show things work?
- What error conditions does the code detect and how did you test that?

- *When* were the tests developed? (/Before/ or /after/ code was written.)
- *What* artifacts (files, input sequences, etc.) were used to test?

- Include artifacts in the repository.
- Explain how to test the project.

- *IF* the solution is incomplete
- What incorrect behavior do you see?
- What do you think is causing it?

===
- Design /20
===

- Good use of Java standard library classes
- Read as, "Uses the right implementation of =List= interface"

- Does not leak the MenuEntry class
- Menu has the correct public interface: ctor, match, help
- MenuItem properly hides its three fields

===
- Implementation /20
===

- Includes necessary files in =git=
- And *excludes* all the files that are not necessary (through =.gitignore=)

- Menu checks against the values in the entries for a match
- match does not return until there is a match
- match shows an appropriate error message on a missed match
- help output is formatted correctly

===
- Testing /20
===

- What I should type at each prompt is provided in docs
- Expected response is documented and is the output of the test
- Tests at least zero, one, and two entry menus.

===
- Aesthetics 5/10
===

- Starts at 5.
- Pros:
- Cons:

