
CIS 205 CS III
Spring 2025

WordCount 2025-01-30

pWordCount— Implementing wc in Java

This assignment’s repo name is p01-WordCount

Learning Outcomes
After completing this assignment, a student should be able to
• Implement an “instantiate-run” Java program.
• Separate concerns by using multiple java packages.
• Use the classpath for multiple packages.
• (Review) Process command-line arguments – checking the number, treating them as file names.
• (Review) Read a text file by line.
• (Review) Use a Scanner to parse a String.
• (Review) Document how to compile and run the program as well as how it was tested.

Overview
Linux (Unix) has a utility program called wc, word count, that counts the number of lines, words, and
characters in any number of files named on the command-line.

Students will implement a simplified version in Java: WordCount will
• Verify that there is exactly one (1) command-line argument; if there is a different number, program
should terminate with an appropriate error message and a return code of 1.

• Open the named file for input; if the file does not exist then the program should terminate with an
appropriate errormessage and a return code of 2. (Notice the error codes would permit the operating
system to tell the difference between different abnormal terminations.)

• Read the input file by line, processing each line to count the number of words and characters. The
program tracks the number of lines, words, and characters (remembering to count the end-of-line
characters).

• Print the name of the file along with the various counts. The following output is for the provided
LineReportInterface.java file. The results of wc on the same file are shown afterwards for com-
parison.
$ java <class path stuff> WordCount LineReportInterface.java
LineReportInterface.java:
lines: 22
words: 89
chars: 566

$ wc LineReportInterface.java
22 89 566 LineReportInterface.java

Define “word” as any collectionofwhitespace separatednon-whitespace characters. This is the same
definition used by Scanner.next() (how convenient).

Note: “terminate normally” means to end with the program returning the value 0 to the operating
system; this is what Java does whenever you run off of main or call System.exit(0). The other two
termination conditions described above are “abnormal”; that can be signaled to the operating system
by exiting with a non-zero return code. That requires using System.exit(<non-zero>).

WordCount 2025-01-30

Procedure
1. Read thewhole assignment. This is important for every assignment: it puts the task into your brain

so that it can begin working on answering the questions. Of particular interest when you read are
the SLO (first section above); gives you the links between the assignment to the big picture (learning
computer science).

2. Beforewriting any code: create a project root directory. Initializegit in the root, put in a.gitignore
file, and add a beginning README. Something like this is the first step of every program youwill turn
in during the semester.

3. Set up your packages. Abstraction is an important part of computer programming: the separation of
concerns into small, single-concern functions or classesmeans that while programming one element
you are protected from the details of any other part.
This separationof concerns extends beyond theclass, into apackageof related classes. For exam-
ple, a modern video game might have six thousand source files. To make navigating and debugging
so much code it is typically broken up into packages like sound, video, gameplay, networking, etc.
This assignment breaks up into two major areas of concern: file handling (checking number of file
names, opening file, reading file by line, all the errors) and line processing (counting words and
(much easier) characters).
In Java a package corresponds to a directory. Just as the class Snoopy must be in the file named
Snoopy.java, if that class’s full name ispeanuts.Snoopy, it belongs in thefilenamedpeanuts/Snoopy.java.
With two distinct areas of concern, this program will have two packages:
<project-root>
|-- application
`-- counter

Notice that the <project-root> is where ever you put your code in your directory structure. The
subdirectories should to be named exactly as shown.
As has been discussed in class, this project will be run from the project-root. This means using the
--class-path command-line argument for java/javac.
You will document this in your README file.

4. Sketch an instantiate-run (all our programs from this point forward will have this “shape”) solution
to theoverall problem fromthe top, down. Here, topmeansmain anddownmeansmoving to simpler
and simpler methods.
Remember to keep each method focused on exactly one responsibility. You can even use that re-
sponsibility to write the header comment for the method.
(a) Possible sketch of main:

The sketch shows where one possible error is handled. It is therefore possible to write just the
main function and test it before even implementing the word counting or line processing.

(b) Possible sketch of WordCount constructor:
// application.WordCount.WordCount
// responsibility: capture the filename, initialize counts
save file name into an object field
initialize the three counts in object fields

Page 2

WordCount 2025-01-30

// application.WordCount.main
// responsibility: verify number of command-line arguments
check number of command-line parameters
if ! exactly one parameter
print usage message
terminate with non-zero value

construct WordCount(file name)
call WordCount.run

This is a very simple function; run will open the file and handle any corresponding errors.
Separation of concerns makes functions simple.

(c) Possible sketch of WordCount.run:

// application.WordCount.run
// responsibility: open file or handle errors
try
open named file into a scanner

process the file wrapped in the scanner

print the results
catch FileNotFoundException
print appropriate error message
terminate with non-zero value

// application.WordCount.processFile
// responsibility: read file by line; process each line
while scanner has a next line
read line
LineReportInteface i = new LineReport(line)
update all three counts from i

5. Did you catch that? LineReport, implementing LineReportInterface is another class you need
to write.
Let’s look at the interface:
package counter;

/**
* Interface for reporting on a line's word and character counts.
*
* This interface does not require a toString method as this is an
* internal type constructed from a String (the line) and reporting

Page 3

WordCount 2025-01-30

* back the number of words and number of characters in the line.
*/
public interface LineReportInterface {
/**
* Get the number of (whitespace separated) words.
* @return number of words
*/
int getNumberOfWords();

/**
* Get number of characters.
* @return number of chacaters.
*/
int getNumberOfCharacters();

}

Your class LineReport needs two (three, if you count the constructor) methods: one to return the
number of characters (probably just the length of the string it was constructed with, right?) and the
number of words in the line. You will want to use a Scanner on the line to count them.

6. This assigment’s repo name is p01-WordCount
Commit your finished work (including README w/ all your documentation) to your local git repos-
itory. Then connect the local database to an on-line database on the Gitea server and push the
conents.
The departmental git server, running Gitea software (hence our referring to it as the “Gitea server”)
is at https://cs-devel.potsdam.edu. Log in to your account.
You created the F24-205-<CCID>1 organization in the first lab this semester. In it you will create a
new, private repository with the name p01-WordCount. Gitea will respond with a set of commands
to connect a local repo to the newly created one on the server. Use them to connect the repos and
push your program.
If, after you do this, you change your local repo contents, you will just need to rerun the push com-
mand to copy the changes up to the server. Dr. Ladd will retrieve your code from Gitea for grad-
ing. Remember that commits are timestamped; don’t commit things after they are due. Pushing the
database is separate from the commit operation; if it happens to be “late”, as long as the commit is
before the due time, all is well.
The Gitea repository name is specified (and has nothing to do with local directory names) so that
Dr. Ladd can automate harvesting all the repos for grading. Thanks for your consideration.

1CCID – Campus Computer ID; your campus e-mail address w/o potsdam.edu.

Page 4

https://cs-devel.potsdam.edu

