CIS 205 CSIII WordCount 2025-01-12
Spring 2025

pwordCount — Implementing wc in Java

This assignment’s repo name is po1-WordCount

Learning Outcomes

After completing this assignment, a student should be able to

« Implement an “instantiate-run” Java program.

* Separate concerns by using multiple java packages.

« Use the classpath for multiple packages.

* (Review) Process command-line arguments - checking the number, treating them as file names.
+ (Review) Read a text file by line.

+ (Review) Document how to compile and run the program as well as how it was tested.

Overview

Linux (Unix) has a utility program called wc, word count, that counts the number of lines, words, and
characters in any number of files named on the command-line.
Students will implement a simplified version in Java: WordCount will

« Verify that there is exactly one (1) command-line argument; if there is a different number, program
should terminate with an appropriate error message and a return code of 1.

* Open the named file for input; if the file does not exist then the program should terminate with an
appropriate error message and a return code of 2. (Notice the error codes would permit the operating
system to tell the difference between different abnormal terminations.)

* Read the input file by line, processing each line to count the number of words and characters. The
program tracks the number of lines, words, and characters (remembering to count the end-of-line
characters).

« Print the name of the file along with the various counts. The following output is for the provided
LineReportInterface.java file. The results of wc on the same file are shown afterwards for com-
parison.

$ java <class path stuff> WordCount LineReportInterface.java
LineReportInterface.java:
lines: 22
words: 89
chars: 566
$ wc LineReportInterface.java
22 89 566 LineReportInterface.java

WordFrequency: a program that expects exactly one (1) file name on the command-line, opens that
text file, reading it word-by-word, keeping a count of how many times each unique word appears in the
text and then prints out words and counts in text-file order.

To simplify implementation the program will define “word” as any collection of whitespace sepa-
rated non-whitespace characters. Further, no attempt will be made to clean the input by normalizing
capitalization or stripping punctuation. That means the “That” at the beginning of this sentence would
count separately from this that.



WordCount 2025-01-12

More detail: WordFrequency, when run, checks that there is exactly one (1) command-line argument,
terminating with a usage message and an error if not. With a single file name, WwordFrequency attempts
to open the named file for input; if the file cannot be opened, the program terminates with an appropriate
message and an error. Terminating with an error is to terminate abnormally.

After the file is opened, the program reads each word and processes it. Processing a word means
checking if the word is already in the word count list. If it is not already in the list, append it to the list
with a count of 1 (it has been seen once); if it is already in the list, increment the count associated with
it.

When the file is finished, print out all the words in the list along with their count. Then terminate
normally.

Note “terminate normally” means to end with the program returning the value 0 to the operating
system. This is what Java does when you run off of main or call System.exit(0). The other two ter-
mination conditions described above are “abnormal”; that can be signaled to the operating system by
exiting with a non-zero return code. That requires using System.exit(<non-zero>).

Procedure

1. Read the whole assignment. This is important for every assignment: it puts the task into your brain
so that it can begin working on answering the questions. Of particular interest when you read are
the SLO (first section above); gives you the links between the assignment to the big picture (learning
computer science).

2. Before writing any code: create a project root directory. Initialize git intheroot, putina .gitignore
file, and add a beginning README. Something like this is the first step of every program you will turn
in during the semester.

3. Setup your packages. Abstraction is an important part of computer programming: the separation of
concerns into small, single-concern functions or classes means that while programming one element
you are protected from the details of any other part.

This separation of concerns extends beyond the class, into a package of related classes. For exam-
ple, a modern video game might have six thousand source files. To make navigating and debugging
so much code it is typically broken up into packages like sound, video, gameplay, networking, etc.

This assignment breaks up into three major areas of concern: keeping track of the count of one word;
keeping track of a list of all of the words; and an application that handles counting command-line
arguments, opening files, and dealing with the top-level errors that could occur.

In Java a package corresponds to a directory. Just as the class Snoopy must be in the file named

Shoopy . java, ifthat class’s full name is peanuts. Snoopy, it belongs in the file named peanuts /Snoopy . java.
With three distinct areas of concern, this program will have three packages:

<project-root>

| -- application

| -- list

“-- count

Notice that the <project-root> is where ever you put your code in your directory structure. The
three subdirectories are to be named exactly as shown.

As has been discussed in class, this project will be run from the project-root. As discussed below, this
means using the -class-path command-line argument for java/javac.

Page 2



WordCount 2025-01-12

You will document this in your README file.

4, Sketch a solution to the overall problem from the top down:

(a) Possible sketch of main:

// application.WordFrequency.main
check number of command-line parameters
if ! exactly one parameter

print usage message

terminate with non-zero value

create a WordFrequency object with the command-line file name
call WordFrequency.run

The sketch shows where one possible error is handled. It is therefore possible to write just the
main function and test it before even implementing the word count object or the linked list.

(b) Possible sketch of WordFrequency constructor:

// application.WordFrequency.WordFrequency
save file name into an object field

This is a very simple function; run will open the file and handle any corresponding errors.
Separation of concerns makes functions simple.

(c) Possible sketch of WordFrequency.run:

// application.WordFrequency.run
try

open named file

initialize WordList, w

while file has a next word
count word into w

for every WordCount object in w
println the pair
catch FileNotFoundException
print appropriate error message
terminate with non-zero value

Did you catch that? Two new classes introduced, bringing the total to three:
application.WordFrequency The class containing main and run. It is in its own package.
count.WordCount Associate word (String) paired with its count (int). It will implement the
WordCountInterface (which is provided in the src folder; you will need to put it in the
correct package):
You may, of course, write any other private functions you wish in WordCount. Except when
calling the constructor you must use the interface in all other classes.

Page 3



WordCount

2025-01-12

Look carefully at WordCountInterface: there are no set* methods. Think, for a minute,
about why they are not needed (or wanted).

Since aWCI (WordCountInterface) object represents a <word, count> pair, it seems ob-
vious that after creation there is no reason to change the word. What would it even mean
to count the number of times snake appears in some sequence of words and then change
the word to chicken?

Similarly, changing the count by setting it to a smaller number or incrementing it by more
than one does not seem to fit the software model we are building of the contents of the file.
So the interface permits incrementing an existing WCI (when we see another instance of the
word), checking if the WCI contains a given word, and to return a String representation
of the wCI.

The two get* methods are there for testing/debugging. They are used in the provided
WordCountTestHarness. java program; they are not needed in any other programs or
classes.

list.WordList A list of WCI objects. Limiting access to the interface means that the list is im-

plementation agnostic (it uses no knowledge about the implementation outside of the con-
structor call). Changing to a different implementation of the interface would not require
more than a new import and recompiling the list with a call to the different constructor.

Page 4



WordCount 2025-01-12

The interface expects list-like behavior but does not specify how the list is to be implemented.
This assignment requires that WordList be implemented as a linked-list where the data
in each node is the WCI object for some word.

(d) Assume the given interfaces are correctly implemented. Use WordListInterface to expand
the sketch of WordFrequency.run. Once you read a word, how do you use the list object to
determine whether to add it to the end or increment the existing entry.

What does the list printing code look like?

5. Incremental development (also sometimes referred to as spiral development) is the practice of building a
program one small feature at a time. Figure out what the next feature should do and how you would
verify that it works. Compile and test until it works and check the feature into version control (git).
Lather, rinse, and repeat.

One path to solving this assignment would be:

« application.WordFrequency.main empty and compiling.

« main checks number of arguments.

+ WordFrequency constructor that takes a String (file name).

* run exists.

« main completed with construction and call to run.

* run opens the file or reports error.

* GetWordCount working. Before you even get WordList working, WordCountTestHarnes can run
unit tests® on WordCount.

Seven steps in and the code does almost nothing. But, the foundation for the program is laid. Now
it is time to write the linked-list and its functions. You can decide on the order of implementation
for them.

¢ Get WordList working. Can be initially tested with WordListTestHarness.

« Hook processing each word to adding it to a WordListInterface object. Add the printing.

« Test the finished program. Make sure you see all the errors that come from the command-line in
your testing (and only when you expect them).
Make sure to document your testing with what you expected, what you did, and what the results
were. That goes in the README.

6. Testing is important. The data directory in this assignment has several files that you can run the
program on. An example run (with the first few lines of output) is:

java WordFrequency data/oneFish.txt
One : 1

fish, : 7

Two : 1

Red : 1

Blue : 2

Black : 1

oud : 1

! A unit test is a test run on a “unit” of a program, the very smallest testable part of the code. Here it is a class and the public
methods it exposes. Unit testing will be a major part of your programming this semester.

’The execution line is stripped down to just show the name of the Java object with main in it. Assume that the correct
classpath was specified.

Page 5



WordCount 2025-01-12

New : 1
fish. : 1
This : 2
ohe : 4
has : 3
a: 6
little : 2

Take a look at the data file and see if you believe that of the 207 words in oneFish. txt, there are
only 117 distinct wordsH Also note that the order of the list is the order in the file of the distinct
words.

You may want to think about what the output should look like before you program because if you
cannot describe the correct output, it is unlikely that you understand the problem well enough to
program the correct output.

You may want to develop some even shorter test data for quick feedback.

7. This assigment’s repo name is p@1-WordCount

Commit your finished work (including README w/ all your documentation) to your local git repos-
itory. Then connect the local database to an on-line database on the Gitea server and push the
conents.

The departmental git server, running Gitea software (hence our referring to it as the “Gitea server”)
isat https://cs-devel.potsdam.edu. Log in to your account.

You created the F24-205-<CCID>H organization in the first lab this semester. In it you will create a
new, private repository with the name pe1-wordCount. Gitea will respond with a set of commands
to connect a local repo to the newly created one on the server. Use them to connect the repos and
push your program.

If, after you do this, you change your local repo contents, you will just need to rerun the push com-
mand to copy the changes up to the server. Dr. Ladd will retrieve your code from Gitea for grad-
ing. Remember that commits are timestamped; don’t commit things after they are due. Pushing the
database is separate from the commit operation; if it happens to be “late”, as long as the commit is
before the due time, all is well.

The Gitea repository name is specified (and has nothing to do with local directory names) so that
Dr. Ladd can automate harvesting all the repos for grading. Thanks for your consideration.

*How to figure those two numbers: Linux has a utility called wc (for word count). It give the number of lines, words, and
characters in a file provided on the command line. That is where the 207 came from. The other comes from the number of
lines that the sample solution produces when run.

“CCID - Campus Computer ID; your campus e-mail address w/o potsdam.edu.

Page 6


https://cs-devel.potsdam.edu

