
CIS 205
Fall 2023

pPizza - Polymorphic, Decorated Pizza Simulation 2023-10-12

Learning Outcomes
Upon completing this assignment, students should be able to

• Create a binary search tree container class with add, find, and toString
• Store objects in a collection that behave polymorphicly.
• Use git to commit each “chunk” of working code. (Make proper use of git/version control.)

Introduction
Students will write a OrderedShapes program that reads a file full of Shape objects (class hierarchy below) and
inserts them into a binary search tree according to their area. Then the user can enter commands to search for a
shape with a given area, print out the whole collection in increasing order by area, print out the whole collection
in decreasing order by area, or quit the program.

Note: Your use of git is part of the rubric for this program. You are expected to build your features one at a
time, adding the new/changedworking code to your git repository as you go along. There should be a fair number
of commits in this repo, each with a commit message stating what was completed (this can go in the first line of
the message; no need to write a novel).

Second note: the right way to do testing is to write tests for each feature as you go. This would be a good
chance to practice this but you are not obligated to do this.

You can associate your local repo with your repo for turn-in on Gitea at any point. When you push the repo,
the whole history of the project (all commits along with the date/time, commit message, and user who made the
commit) is pushed. If you have problems pushing changed code, let Dr. Ladd know and he can help interpret git
error messages.

Method

Getting Started

Start by creating a new directory for your solution to F23-205-<ccid>-p005 (you will name the repo on Gitea
with that format; call the directory whatever you want).

Initialize the directory with Gradle. Name the project tree and have the source package be main. Modify the
created project so that the main class is called main.TreeClientProgram and so that gradle run passes the
keyboard in to the running program.

Compile and run the hello world created by Gradle so you feel like your code works.

menu.Menu

Note: This is to use your simple, text-based Menu class. This is not to use JavaFX, Swing, or any other Java GUI. If
you need assistance with menu.Menu, talk to the instructor.

Add menu.Menu (from the first assignment in this class) to the project. There is only one menu for this pro-
gram:

find - find a shape by area
dec - list all shapes in decreasing order by area
inc - list all shapes in increasing order by area
quit - quit the program

Add this menu to main.TreeClientProgram while modifying it to use our standard create-and-run struc-
ture. For now, the runmethod should loop, calling match on the menu until the user quits. There is nothing else
to do right now.



pPizza - Polymorphic, Decorated Pizza Simulation 2023-10-12

Class Hierarchy

You will create a new package, shapes and put three classes in it. The classes are related as shown in the diagram
below:

Shape The ultimate parent of the hierarchy. Keeps track of the name of the shape (an identifier) and has an area
method that returns zero.
Circle Keeps a radius and overrides area to return the area of the circle.
Rectangle Keeps width and height, overrides area to return the area of the rectangle.

These are very short classes. They should have toStringmethods that returns the type of the shape, its name,
and any specific information for the given type.

Input/Output

Modify your program to take a shape file name on the command-line. Your program must handle the no-file-
named-on-the-command-line error before calling the TreeClientProgram constructor.

The constructor should take and save the data file name.
Modify run to load data from the file of shapes. Right now you do not have anywhere to store them. The load

method opens the file and handles the file-not-found error.
The data file has the following format:

Shape
unspecified-shape-1
Circle
small-circle
1.5
Rectangle
square-B
12 12
Circle
big-circle
22.8

Notice that each shape begins with the name of the class on a line by itself. The next line is the name of the
shape. A Circle then has a line with a radius on it and a Rectangle has a line with the width and height.

At this point, you can read the file and test your constructors. Next you will build a tree to hold the Shapes
you read.

Page 2



pPizza - Polymorphic, Decorated Pizza Simulation 2023-10-12

Binary Search Tree

Add a new package, tree. Put the class BST in the package. The class interface (the public functions it should
have) is:

class BST {
public BST();
public void add(Shape newbie);
public Shape find(double areaToSearchFor);
public String shapesInDecreasingOrder();
public String shapesInIncreasingOrder();

Feel free to have private helper methods.
Use the toStringmethods you put in the Shape classes to assemble the in-some-order strings.
Modify TreeClientProgram.run to put the shapes in a new tree and the menu handler to call the right

methods on the tree.

Design Considerations

The tree must be kept ordered as stated above.
There are six (6) Java files across four (4) packages. No one of them is very long (and menu.Menu is already

written). Work a little bit at a time, checking that it compiles and runs as you go.

Documentation

README

Must document how you tested. How do you know that it is right?
Must include instructions on how to compile and how to run the program as submitted.

Deliverables

Submission medium: git to Gitea at cs-devel.potsdam.edu.

Page 3


