Mapping
1 Implied. Part of every programming project.
2 ooP Part of every multi-class programming project.
3 oorP Pizza or similar.
4 (0]0) Review - recursive linked-list, BST, heap.
5 ooP BST<T>.
6 | Data Structures
7 Implied. Heapsort, Quicksort as recursive methods.
8 | Data Structures BST runtimes. Structure overhead.
9 Implied. Or part of Data Structures.
10 ooP Higher-level of abstraction. Programmed.
11 ooP
12 0ooP Included in Theory, too.
13 | Data Structures Overhead. Reading structured files.
14 Tools Teach Junit, diff, etc.
15 Tools Teach git, gradle
16

Student Learning Outcomes

Computer Science III deepens and broadens students knowledge and skills through hands-on development of increasingly
complex computer programs. Upon finishing this course, students should be able to:

1. OOP. Implement computer programs to solve increasingly complex problems, using object-oriented programming techniques,
i.e. polymorphism/inheritance/interfaces, encapsulation, and data abstraction. (Synthesize)

2. Data Structures. Use sequential, singly-linked, and multiply-linked data structures, along with appropriate iterative and
recursive methods to implement efficient programmed solutions. (Synthesize)

3. Tools. Use modern software engineering tools/techniques, i.e. build tools, version control, iterative development, and
automated testing, to improve their own programming efficacy. (Use)

4. Theory. Apply algorithm analysis and logic tools to discuss the correctness and resource usage of computer programs. (Use)

Note: It would be a very good idea to review this section of the syllabus before exams (especially the final). You can also use it
when filling out course evaluations to review what the class taught and what it was expected to teach.

The Parts

1. Implement classes [OOP, Data Structures]
a) Stand-alone classes.

b) Implement classes against an interface (implements).
c¢) Implement a hierarchy of classes (extends).
d) Implement containers (lists, trees) of user-defined classes.
e) Implement generic containers (MyList<SomeType>).
2. Read/write structured text files. [Data Structures]

3. Trace and apply recursion. [0OP, Theory]
a) Trace recursive code like fibonacci.

b) Trace A/B recursion like isEven/is0dd.
¢) Implement a fully recursive linked-list
d) Implement binary search tree and heap.
e) Implement/trace quicksort and heapsort.
4. Apply higher levels of abstraction to coding and data structures. [OOP, Data Structures]
a) Identify/apply simple design patterns: factory, decorator.
b) Define and apply abstract data types:
Polymorphism
Stack - including calling stack



5. Understand and diagram internal data representation [Data Structures, Theory]
a) Describe what a bit and byte are.

b) Describe how char and char[] are stored.

¢) Explain (and diagram) how an array, a linked-list, and a binary search tree containing the same type differ. Calculate the
memory overhead.

d) Explain the differences in running time for arrays, linked-lists, and BST containing the same data.

6. Document every computer program turned in. [OOP, Tools]
a) In-line documentation: header comments, in-line comments.

b) README: Testing Plan, problem statement.
7. Use git, gradle, Junit. [Tools]

Computer Science Program Student Learning Objectives

The Computer Science department has adopted five program learning objectives for students completing any undergraduate
major in the department [See the Departmental website for the complete list.]

Computer Science III addresses PSLO #2 and #3.
Students graduating from the Computer Science department at SUNY Potsdam are expected to be able to

2. Solve problems through analysis and implementation of tested programs that use data structures and algorithms.

OOP and Data Structures are focused on problem solving through program implementation. Tools is about sup-
porting the programmer in doing this.

3. Program the multiple layers (e.g., compiler, operating system, network, assembly language) between a high-level program-
ming language and the underlying hardware.

OOP is all about layers of abstraction and Theory includes bit-level logic and encoding.


http://cs.potsdam.edu

