Introduction

Students will work in groups using propositional logic, truth tables, and logic operations.

Learning Outcomes

When completing this assignment, students should be able to

- Use named rules of inference.
- Set-up different types of proof.
- Prove theorems with different methods of proof.

Get out paper.

Copy each question before the answer.

nAssign Roles. Students should take roles they have not held recently (or, perhaps, ever).

Answer these questions.

A proof of a proposition is a convincing argument that the proposition is true.

- 1. Given $P_1 \land P_2 \land P_3 \Rightarrow Q$ What is the contrapositive?
- 2. What is a binary language?
- 3. **State** the Halting Problem: What is the *decider* in question, what is the *input* to the decider, and *what* do you know about the decider in question?
- 4. Given the set $C = \{ \blacklozenge, \heartsuit, \diamondsuit, \diamondsuit \}$, describe how you could **prove** |C| = 4.
- 5. How could you represent the *subsets* of C as bit strings? How many bits would you need per subset? How would you assign meaning to the *order* of the bits because C is unordered?
- 6. **Prove** $|\mathbb{P}(C)| = |\mathbb{Z}_{16}|$ using a *T*-table to express the function.
- 7. **Explain**, in English, what it means to say that some piece of code, with input size j, is $O(j^2)$? Include what happens if the input size is *doubled* or *tripled*.
- 8. Consider proving the following summation is equivalent to the given *closed-form* for all $g \ge 0$:

$$\sum_{i=0}^{g} i^3 = \tfrac{g^4 + 2g^3 + g^2}{4}$$

(a) Before working on proving the above, prove that the closed-form is always an integer by **proving** that $\forall g \in \mathbb{Z}^{\geq 0} \quad 4 \mid g^4 + 2g^3 + g^2$

Note: this can be done by induction or by algebra, your choice.

- (b) Define a predicate, R(g), such that the proof of the above equivalence is the same as the proof of ∀g ∈ Z^{≥0} R(g).
- (c) **Prove** that R(k) is true for all $k \in \{0, 1, 2\}$.
- (d) State and **prove** the *basis* of proving R(g) for all non-negative integers.
- (e) **State** the *inductive hypothesis* without using your predicate.
- (f) State and **prove** the *inductive hypothesis* for the original equivalence; you may use your predicate if you wish. Stop after the *inductive hypothesis* is proved.
- (g) Write the final *therefore* for proving that the original equivalence holds for all non-negative numbers.
- (h) Explain, in English, your own words, what the final *therefore* statement actually means.
- 9. Dr. Ladd has written a piece of code that, for an input of size g, executes $\sum_{i=0}^{g} i^{3}$ instructions. The running time of the code is O(f(g)) for some function f. What is the smallest f(g) you can give?