Introduction

Students will work in groups using propositional logic, truth tables, and logic operations.

Learning Outcomes

When completing this assignment, students should be able to

- Use named rules of inference.
- Set-up different types of proof.
- Prove theorems with different methods of proof. Get out paper.
Copy each question before the answer. nAssign Roles. Students should take roles they have not held recently (or, perhaps, ever).
Answer these questions.
A proof of a proposition is a convincing argument that the proposition is true.

1. Given $P_{1} \wedge P_{2} \wedge P_{3} \Rightarrow Q$ What is the contrapositive?
2. What is a binary language?
3. State the Halting Problem: What is the decider in question, what is the input to the decider, and what do you know about the decider in question?
4. Given the set $C=\{\boldsymbol{\phi}, \diamond, \boldsymbol{\varphi}, \diamond\}$, describe how you could prove $|C|=4$.
5. How could you represent the subsets of C as bit strings? How many bits would you need per subset? How would you assign meaning to the order of the bits because C is unordered?
6. Prove $|\mathbb{P}(C)|=\left|\mathbb{Z}_{16}\right|$ using a T-table to express the function.
7. Explain, in English, what it means to say that some piece of code, with input size j, is $O\left(j^{2}\right)$? Include what happens if the input size is doubled or tripled.
8. Consider proving the following summation is equivalent to the given closed-form for all $g \geq 0$:
$\sum_{i=0}^{g} i^{3}=\frac{g^{4}+2 g^{3}+g^{2}}{4}$
(a) Before working on proving the above, prove that the closed-form is always an integer by proving that $\forall g \in \mathbb{Z}^{\geq 0} \quad 4 \mid g^{4}+2 g^{3}+g^{2}$
Note: this can be done by induction or by algebra, your choice.
(b) Define a predicate, $R(g)$, such that the proof of the above equivalence is the same as the proof of $\forall g \in \mathbb{Z} \geq 0 \quad R(g)$.
(c) Prove that $R(k)$ is true for all $k \in\{0,1,2\}$.
(d) State and prove the basis of proving $R(g)$ for all non-negative integers.
(e) State the inductive hypothesis without using your predicate.
(f) State and prove the inductive hypothesis for the original equivalence; you may use your predicate if you wish. Stop after the inductive hypothesis is proved.
(g) Write the final therefore for proving that the original equivalence holds for all non-negative numbers.
(h) Explain, in English, your own words, what the final therefore statement actually means.
9. Dr. Ladd has written a piece of code that, for an input of size g, executes $\sum_{i=0}^{g} i^{3}$ instructions. The running time of the code is $O(f(g))$ for some function f. What is the smallest $f(g)$ you can give?
