gPascal - Playing with the Triangle

2024-03-26

Introduction

This group assignment continues our class work with the Pascal's Triangle project. You will work, in your group, on some of the properties.

Assignment Goals

Learning Outcomes After completing this group assignment, each student is expected to be able to

- Write a recursive function for $T_{r, c}$ in the triangle.
- Do some induction proofs

Procedure

Assign Roles. Students should take roles they have not held recently (or, perhaps, ever):
Manager Move discussion forward.
Recorder Writes the report that will be turned in.
Reflector Monitor that everyone gets heard and is caught up. (This is a group obligation, really.)
Speaker (Combine w/ Reflector if there are not four group members.) Asks the facilitator questions and communicates what the team has done.

Answer these questions.

1. Draw the upper-left portion of Pascal's triangle, for rows 0 through 5 (and the same columns).
(a) Label the rows and columns.
(b) Put the generator, 1 , in $T_{0,0}$.
(c) Use the rules of filling the triangle to fill the rest of the squares.
(d) What is the value in $T_{5,5}$?
(e) What are the vaules of base $_{4}$? In what order did you list them? (Give the triangle coordinates of the elements in the order you wrote them.)
(f) List the reciprocal pairs in base $_{4}$
2. Pascal's Seventh Consequence is In every arithmetical triangle the sum of the cells of each base is double that of the preceding base. Prove this by induction (use modern notation).
3. You know how to fill a given cell, $T_{r, c}$, in the triangle in terms of cells that have lower row or column coordinates. Turn this knowledge into a recursive Java function. The only base case you can use is that $T_{0,0}$ contains 1 (the generator).
