Introduction

Students will work in groups using propositional logic, truth tables, and logic operations.

Assignment Goals

- Prerequisite Knowledge
 - Know what a proposition and a predicate are.
 - Knowledge of truth tables
- Learning Outcomes
 - Show logical equivalence by showing two columns of a truth table are the same.
 - Prove deMorgan's Law and distributive rule for logic operations.

Procedure

Get out paper. The group will turn in *one* document. Place all the names of group members attending atop the page. **Copy each question before the answer.** This makes the answer sheet a worthwhile study guide w/o the worksheet. The answers written down should be *discussed* by the group and represent the *consensus* of the group. Sometimes a *picture*, a *graph*, or something similar is the most appropriate way to answer a question. **Assign Roles.** Students should take roles they have not held recently (or, perhaps, ever):

Manager Move discussion forward.

Reflector Monitor that everyone gets heard and is caught up. (This is a **group** obligation, really.) **Recorder** Writes the report.

Answer these questions.

A proof of a proposition is a convincing argument that the proposition is true.

- 1. **Translate** the following into English: $\forall n \in \mathbb{Z}^+ \ \forall k \in \{\omega : \omega \mid n\} \ k \not| n+1$
- 2. For the numbers $h \in \mathbb{Z}_{13}$, calculate $h^2 \mod 4$. What pattern do you see in the results?

Possibly useful notation: \equiv_n means that the expressions on either side are "equivalent modulo n" 69 $\equiv_4 13$ because 69 mod 4 = 1 and 13 mod 4 = 1. Note that $a \mid b$ is the same as $b \equiv_a 0$.

- 3. How would you prove that 7 is prime? Define the predicate *prime* and describe your approach in English. *Then* prove that 7 is prime.
- 4. **Prove** that the sum of two *rational* numbers is, itself, rational. Begin by rewritting the theorem in mathematical logic terms and use the definition of \mathbb{Q} .
- 5. **Prove** that $\forall b \in \mathbb{Z} \ odd(b) \Leftrightarrow odd(b^2)$. Note: How many proofs does this entail?
- 6. One of the following statements is true, the other false. Decide which is which and prove the true one and disprove the false one:
 - (a) If rational(x y) and rational(x) then rational(y).
 - (b) If rational(xy) and rational(x) then rational(y).