gReview

2023-12-05

Introduction

This group assignment includes review across the semester

Assignment Goals

Learning Outcomes After completing this group assignment, each student is expected to be able to

- Provide definitions for terms used in class.
- Do some proofs.

Procedure

Assign Roles. Students should take roles they have not held recently (or, perhaps, ever):

Manager Move discussion forward.
Recorder Writes the report that will be turned in.
Reflector Monitor that everyone gets heard and is caught up. (This is a group obligation, really.)
Speaker (Combine w/ Reflector if there are not four group members.) Asks the facilitator questions and communicates what the team has done.

Answer these questions.

- 1. Give a precise definition of
 - (a) the powerset of the set S, $\mathbb{P}(S)$
 - (b) the *countable* predicate
 - (c) $s \mid t$
 - (d) predicate
 - (e) proposition
- 2. There is a bin with 10 each of lemon, cinnamon, and rose flavored chocolates. How many chocolates must be drawn to assure that:
 - (a) At least two different flavors are picked?
 - (b) At least three of one flavor are picked?
 - (c) No flavor is missing from the chocolates picked?
- 3. List $\mathbb{P}(\{\heartsuit, \star, \odot\})$.
- 4. How can you prove that two sets have the same cardinality?

- 5. Use a *truth table* to prove that the *inverse* and *converse* of $p \Rightarrow q$ are logically equivalent. For full credit make sure to format it as we write proofs.
- 6. What is the *contrapositive* of $\forall n \in \mathbb{Z}^{\geq 0} \forall p \in \{\text{prime}\} \ p \mid n^2 \Rightarrow p \mid n$
- 7. Prove that $\sum_{i=1}^{n} (2i-1)$ is n^2 for all positive integers, n.
- 8. Use strong induction to show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers $2^0 = 1$, $2^2 = 2$, $2^2 = 4$, and so on. [Hint: For the inductive step, separately consider the case where k + 1 is even and where it is odd. When it is even, note that $\frac{k+1}{2}$ is an integer.]
- 9. Prove that for any sets A and B, $countable(A) \land countable(B) \Rightarrow countable(A \cup B)$.
- 10. Let $odd = \{z \in \mathbb{Z} | z \text{ is odd.}\}$. Prove that $|odd| = |\mathbb{Z}|$.
- 11. We have proved that for sets A and B, $A \subset B$ implies $|A| \leq |B|$. Explain **why** the relationship between the cardinalities must be \leq while the relationship between the two sets is \subset .
- 12. Write a short paragraph arguing that the number of *deciders* is **countable**. Include what a decider *is*, how we represent them in this class, and then give your argument.
- 13. Using our language shorthand, represent the set of *all* **decimal** strings.
- 14. Give a precise definition of
 - (a) Q
 - (b) alphabet, string, language
 - (c) countable
 - (d) the even predicate