gReview

2023-12-05

Introduction

This group assignment includes review across the semester

Assignment Goals

Learning Outcomes After completing this group assignment, each student is expected to be able to

- Provide definitions for terms used in class.
- Do some proofs.

Procedure

Assign Roles. Students should take roles they have not held recently (or, perhaps, ever):
Manager Move discussion forward.
Recorder Writes the report that will be turned in.
Reflector Monitor that everyone gets heard and is caught up. (This is a group obligation, really.)
Speaker (Combine w/ Reflector if there are not four group members.) Asks the facilitator questions and communicates what the team has done.

Answer these questions.

1. Give a precise definition of
(a) the powerset of the set $S, \mathbb{P}(S)$
(b) the countable predicate
(c) $s \mid t$
(d) predicate
(e) proposition
2. There is a bin with 10 each of lemon, cinnamon, and rose flavored chocolates. How many chocolates must be drawn to assure that:
(a) At least two different flavors are picked?
(b) At least three of one flavor are picked?
(c) No flavor is missing from the chocolates picked?
3. List $\mathbb{P}(\{\bigcirc, \star, \odot\})$.
4. How can you prove that two sets have the same cardinality?
5. Use a truth table to prove that the inverse and converse of $p \Rightarrow q$ are logically equivalent. For full credit make sure to format it as we write proofs.
6. What is the contrapositive of $\forall n \in \mathbb{Z} \geq 0 \forall p \in\{$ prime $\} p\left|n^{2} \Rightarrow p\right| n$
7. Prove that $\sum_{i=1}^{n}(2 i-1)$ is n^{2} for all positive integers, n.
8. Use strong induction to show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers $2^{0}=1,2^{2}=2,2^{2}=4$, and so on. [Hint: For the inductive step, separately consider the case where $k+1$ is even and where it is odd. When it is even, note that $\frac{k+1}{2}$ is an integer.]
9. Prove that for any sets A and B, countable $(A) \wedge$ countable $(B) \Rightarrow \operatorname{countable}(A \cup B)$.
10. Let $o d d=\{z \in \mathbb{Z} \mid z$ is odd. $\}$. Prove that \mid odd $|=|\mathbb{Z}|$.
11. We have proved that for sets A and $B, A \subset B$ implies $|A| \leq|B|$. Explain why the relationship between the cardinalities must be \leq while the relationship between the two sets is \subset.
12. Write a short paragraph arguing that the number of deciders is countable. Include what a decider is, how we represent them in this class, and then give your argument.
13. Using our language shorthand, represent the set of all decimal strings.
14. Give a precise definition of
(a) \mathbb{Q}
(b) alphabet, string, language
(c) countable
(d) the even predicate
