1. Prove or disprove:

$$
\forall p \in\{\text { prime }\}, s, t \in \mathbb{Z}^{+}(p \mid s t) \Rightarrow(p \mid s) \vee(p \mid t)
$$

(Hint: Not inductive. Rewrite the implication to something logically equivalent.)
2. Some questions about $g c d$ and divisibility. For $x, y \in \mathbb{Z}^{+}$:
(a) If $2 \mid x$ and $2 \mid y$ what, if anything, do you know about $\operatorname{gcd}(x, y)$? Why?
(b) If $51 \mid x$ and $51 \mid y$ what, if anything, do you know about $\operatorname{gcd}(x, y)$? Why?
(c) If $2 \mid x$ and $17 \mid y$ what, if anything, do you know about $\operatorname{gcd}(x, y)$? Why?
(d) If $2|x, 17| x, 2 \mid y$, and $17 \mid y$ what, if anything, do you know about $\operatorname{gcd}(x, y)$? Why?
3. Prove that for all non-negative integers $k, 6 \mid k^{3}+3 k^{2}+2 k$.
4. For the Fibonacci sequence: the sum of the first a odd elements is $F_{2 a}$.

$$
\forall a \in \mathbb{Z}^{+} \sum_{j=1}^{a} F_{2 j-1}=F_{2 a}
$$

(Hint: Check the sums for some small values of a and look for patterns.)
5. Consider the $\sum_{i=0}^{n} 2 \cdot 3^{i}$.
(a) Write a recursive Java method, int someSum (int n) that calculates the sum. Do not use the answer to the following part of the question to calculate the answer.
(b) Prove $\forall n \in \mathbb{Z} \geq 0 \sum_{i=0}^{n} 2 \cdot 3^{i}=3^{n+1}-1$.

