Learning Outcomes

Upon completing this homework, students should be able to

- Manipulate modern logic notation.
- Draw truth tables for different numbers of basic propositions.
- Simplify componund propositions.

Assignment

- 1. What is the difference between a *preposition* and a *predicate*?
- 2. Which of the following are or are *not* propositions? Explain why or why not.
 - (a) even(5).
 - (b) $y \le 0$
 - (c) odd(z).
 - (d) One of the suits in a deck of cards is green.
 - (e) $15 \ge 90$
- 3. Draw the truth table for each of the following logical expressions (you may make one *wide* table if you like):
 - (a) $\mathbf{p} \wedge \mathbf{q}$
 - (b) $p \lor q$
 - (c) ¬ p
 - (d) $p \Rightarrow q$
 - (e) $p \oplus q$
- 4. Given *compound* propositions J and K, **define** $J \equiv K$ (J is logically equivalent to K).
- 5. Given the statement "If you drive over 100kmh, then you will get a speeding ticket.", we can define two *propositions* to translate it into a logic statement.
 - Let S ::= "You drive over 100kmh" and T ::= "You get a speeding ticket."
 - (a) Express the implication in terms of the variables, \neg , and \Rightarrow .
 - (b) Let U ::= "You do **not** get a speeding ticket". Write the original mplication in terms of S and U (without using T). Use only \Rightarrow and \neg as above.
- 6. Given the statement: Dr. Ladd bakes bread whenever there is flour in the house.
 - (a) Define two simple propsitions that can be combined to make this implication.
 - (b) Use your propositions to express the statement as an implication
 - (c) Write and label the *inverse*, *converse*, and *contrapositive* for the implication.
 - (d) Translate each related implication in the problem above back into English.

- 7. Rewrite $y \Rightarrow z$ as a *disjunction* or explain why it is impossible. (Remember **Deduction Through the Ages.**)
- 8. Rewrite $y \Rightarrow z$ as a *conjunction* or explain why it is impossible. (Remember **Deduction Through the Ages**.)
- 9. Simplify the logical expression $\neg((e \Rightarrow h) \land (\neg(n \lor r) \land v))$
- 10. How many rows would there be in a truth table for the expression in question 9?
- 11. Prove, using truth tables, that $((r \Rightarrow s) \land (s \Rightarrow t)) \Rightarrow (r \Rightarrow t)$ is a tautology.
- 12. List the members of \mathbb{Z}_8 .
- 13. What does $\neg(3|n)$
 - (a) Mean in English?

Submit your answers electronically, in a commonly readable format (*e.g.*.pdf, .txt, .docx), through BrightSpace. If you photograph hand-written answers please make sure there is enough contrast that I can read them and *please* put all the pages in a single file (Adobe Scan is available on Android and iOS).