Learning Outcomes

Upon completing this homework, students should be able to

- Set-up direct, contradiction, contrapositive, and both kinds of inductive proofs.
- Write a two-colunm direct and contradiction proofs.
- Prove theorems given type of proof to use.
- Prove theorems after choosing proof type.

Assignment

A proof of a proposition is a convincing argument that the proposition is true.

1. Translate the following into English: $\forall n \in \mathbb{Z}^{+} \forall k \in\{\omega: \omega \mid n\} k \nmid n+1$
2. Set up a direct proof that 19 is prime.
(a) State the definition of prime (k).
(b) Give the first line of the direct proof.
(c) Give the last line of this direct proof.
3. Set up a proof by contradiction that $\sqrt{19}$ is irrational:
(a) State the definition of irrational(k).
(b) Give the first line of the proof.
(c) State the assumption made for sake of contradiction.
(d) Give the last line of this proof.
4. If you are asked to prove that "The sum of any two rational numbers is rational"
(a) What type of proof will you use? Justify your answer in a sentence.
(b) Translate the statement into logic and state the first line of the proof.
5. If you are asked to prove that "The sum of any rational number and an irrational number is irrational"
(a) What type of proof will you use? Justify your answer in a sentence.
(b) Translate the statement into logic and state the first line of the proof.
6. If you are asked to prove that "For all non-negative integers, $h, 19 \mid h^{19}-h$ "
(a) What type of proof will you use? Justify your answer in a sentence.
(b) Translate the statement into logic and state the first line of the proof.
7. Prove, using weak induction, $\forall b \in \mathbb{Z}^{+} 3 \mid b^{3}+6 b^{2}+5 b-12$.
8. Prove that $\forall n \in \mathbb{Z}^{\geq 0} \operatorname{odd}\left(n^{2}\right) \Rightarrow \operatorname{odd}(n)$.
9. Prove by contradiction that $\sqrt{19}$ is irrational. You may assume $\forall z 19\left|z^{2} \Rightarrow 19\right| z$.
10. Prove that the following closed-form for the summation holds for all $n \in \mathbb{Z}^{+}$:

$$
\sum_{i=1}^{n} i^{2}-1=\frac{n(n+1)(2 n+1)-6 n}{6}
$$

Submit your answers electronically, in a commonly readable format (e.g. .pdf, .t×t, .docx), through BrightSpace.

