This lab has **six (6)** checkpoints.

Learning Outcomes

Upon completing this lab, students should be able to

• Work with sets, set operators, set relations, and power sets.

Introduction

Use these definitions while answering the following questions.

 $= \{x | x \in \text{the English alphabet}\}$ Α $2\mathbb{Z}$ $= \{x \in \mathbb{Z} \ni 2 \mid x\}$ \mathbb{Z}_7 $= \{0, 1, 2, 3, 4, 5, 6\}$ \mathbb{Z}_5 $= \{0, 1, 2, 3, 4\}$ V $= \{a, e, i, o, u\}$ $11\mathbb{Z}$ $= \{y \in \mathbb{Z} \ni 11 \mid y\}$ $= \{red, orange, yellow, green, blue, indigo, violet\}$ R $CYMK = \{cyan, yellow, magenta, black\}$ C $= \{\clubsuit, \heartsuit, \diamondsuit\}$

1. Answer the following:

- (a) Which sets above are *infinite*?
- (b) A V = ?
- (c) $\mathbb{Z}_7 \cap \{z \in \mathbb{Z}^+ \ni even(z)\} = ?$
- (d) $CYMK \cup R = ?$
- (e) True or false: $\emptyset \in \mathbb{P}(R)$?
- (f) True or false: $R \subseteq \mathbb{P}(R)$?
- (g) V A = ?
- (h) $\mathbb{P}(C) = ?$
- (i) $|\mathbb{P}(A)| = ?$

2. Use the set builder notation to describe each of the following

- (a) $T = \{ all multiples of three \}$
- (b) $F = \{ all multiples of five \}$
- (c) $T \cap F$
- 3. Given two *non-empty*, *disjoint* sets, Y and B,
 - (a) What is the cardinality of $Y \cap B$?
 - (b) What is the cardinality of $Y \cup B$?
- 4. If there exists two *finite* sets, X and M, such that $M = \mathbb{P}(X)$, what do you know about |M|, |X|, and the relationship between them?
- 5. Remainders:

- (a) Write one line in Java using two int variables, remainder and value. Your line should assign the *remainer* left when value is divided by 7 to the variable remainder.
- (b) What is the set of possible values that remainder might be set to by your line?
- 6. Consider *A*.
 - (a) Explain how you know how many subsets of *A* have zero elements.
 - (b) Explain how you would determine how many subsets of *A* have exactly 25 elements.
 - (c) What is the *compliment* of $V = \{\text{English vowels}\}$ if A is the universe?
- 7. Consider an arbitrary set G and its relationship to $\mathbb{P}(G)$:
 - (a) When (if ever) is $G \in \mathbb{P}(G)$? Explain your answer, in particular explaining how you know you have all of the cases.
 - (b) When (if ever) is $G \subseteq \mathbb{P}(G)$? Explain your answer, in particular explaining how you know you have *all* of the cases.