This lab has six (6) checkpoints.

Learning Outcomes

Upon completing this lab, students should be able to

- Work with sets, set operators, set relations, and power sets.

Introduction

Use these definitions while answering the following questions.

```
\(A \quad=\quad\{x \mid x \in\) the English alphabet \(\}\)
\(2 \mathbb{Z} \quad=\quad\{x \in \mathbb{Z} \ni 2 \mid x\}\)
\(\mathbb{Z}_{7} \quad=\{0,1,2,3,4,5,6\}\)
\(\mathbb{Z}_{5} \quad=\{0,1,2,3,4\}\)
\(V=\{a, e, i, o, u\}\)
\(11 \mathbb{Z} \quad=\quad\{y \in \mathbb{Z} \ni 11 \mid y\}\)
\(R=\{\) red, orange, yellow, green, blue, indigo, violet \(\}\)
CYMK \(=\) \{cyan, yellow, magenta,black \(\}\)
\(C \quad=\{\boldsymbol{\omega}, \odot, \boldsymbol{\oplus}\}\)
```

1. Answer the following:
(a) Which sets above are infinite?
(b) $A-V=$?
(c) $\mathbb{Z}_{7} \cap\left\{z \in \mathbb{Z}^{+} \ni \operatorname{even}(z)\right\}=$?
(d) $C Y M K \cup R=$?
(e) True or false: $\emptyset \in \mathbb{P}(R)$?
(f) True or false: $R \subseteq \mathbb{P}(R)$?
(g) $V-A=$?
(h) $\mathbb{P}(C)=$?
(i) $|\mathbb{P}(A)|=$?
2. Use the set builder notation to describe each of the following
(a) $T=$ \{all multiples of three $\}$
(b) $F=$ \{all multiples of five $\}$
(c) $T \cap F$
3. Given two non-empty, disjoint sets, Y and B,
(a) What is the cardinality of $Y \cap B$?
(b) What is the cardinality of $Y \cup B$?
4. If there exists two finite sets, X and M, such that $M=\mathbb{P}(X)$, what do you know about $|M|,|X|$, and the relationship between them?
5. Remainders:
(a) Write one line in Java using two int variables, remainder and value. Your line should assign the remainer left when value is divided by 7 to the variable remainder.
(b) What is the set of possible values that remainder might be set to by your line?
6. Consider A.
(a) Explain how you know how many subsets of A have zero elements.
(b) Explain how you would determine how many subsets of A have exactly 25 elements.
(c) What is the compliment of $V=\{$ English vowels $\}$ if A is the universe?
7. Consider an arbitrary set G and its relationship to $\mathbb{P}(G)$:
(a) When (if ever) is $G \in \mathbb{P}(G)$? Explain your answer, in particular explaining how you know you have all of the cases.
(b) When (if ever) is $G \subseteq \mathbb{P}(G)$? Explain your answer, in particular explaining how you know you have all of the cases.
