The following test is closed book; you may neither give nor receive assistance during this exam. Do not discuss the content of this exam until it is turned back in class.
Read each question carefully and answer it in the space provided. If you require more room, continue on the back of the page after clearly labeling what question the answer goes with.

Name: $\qquad$
Set-builder notation: The definition of union, in set-builder notation would be: $A \cup B=\{x \mid x \in$ $A \vee x \in B\}$; it rewrites set operations into logic statements.

1. Describe, in simple English, what the set $\mathbb{Z} \times \mathbb{Z}$ is.
2. Is the set $\mathbb{Z}^{>7} \times \mathbb{Z}^{>7}$ countable? Justify your answer.
3. Give the set-builder notation defining $A \subset B$.
4. Using the set builder notation, prove DeMorgan's Law for taking the compliment of the union of two sets.
5. Consider $3 \mathbb{Z}=\{z \mid z$ is a multiple of 3. $\}$. Prove that $|3 \mathbb{Z}|=|\mathbb{Z}|$.
6. Give an example of two sets, $A$ and $B$, such that $|A|=|B|$ and $A$ is a proper subset of $B$.
7. Give an example of two sets, $A$ and $B$, such that $|A|<|B|$ and $A$ is a proper subset of $B$.
8. Give a function from $\mathbb{Z}^{+}$to $\operatorname{odd}\left(\mathbb{Z}^{+}\right)$that has exactly the given property or explain why no such function is possible.
(a) Only injective
(b) Only surjective
(c) bijective
9. Consider the predicate prime for integers.
(a) What is the domain of the function?
(b) What is the codomain of the function?
(c) What is the signature of prime?
(d) What is the range of the function? Justify your answer.
(e) Is this function injective, surjective, bijective, or none of these? Justify your answer.
10. Define an algorithm that returns true if the function, $f$, is onto from finite set $A$ to finite set $B$ and false otherwise. This is an algorithm so you can define your own notation for things like the cardinality of a set if you need to; make sure your notation's meaning is clear.
```
boolean isOnto(set A = al, a
```

set $\mathbf{B}=b_{1}, b_{2}, \ldots, b_{n}$,
B $f\left(\begin{array}{l}\text { A a) })\end{array}\right.$ \{
\}
11. Prove that the union of any two countable sets is countable.
12. Consider the set of ordered pairs of positive integers, $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$. Prove that $\mathbb{Z}^{+} \times \mathbb{Z}^{+}$is countable.
$\qquad$

