Old [Exam 1]

(5)

(5)

The following test is *closed book*; you may neither give nor receive assistance during this exam. Do not discuss the content of this exam until it is turned back in class. Read each question *carefully* and answer it in the space provided. If you require more room, continue on the back of the page after clearly labeling what question the answer goes with.

Name:

Set-builder notation: The definition of *union*, in set-builder notation would be: $A \cup B = \{x | x \in A \lor x \in B\}$; it rewrites set operations into logic statements.

- 1. Describe, in simple English, what the set $\mathbb{Z} \times \mathbb{Z}$ is.(5)
- 2. Is the set $\mathbb{Z}^{>7}\times\mathbb{Z}^{>7}$ countable? Justify your answer.
- 3. Give the set-builder notation defining $A \subset B$.
- 4. Using the *set builder notation*, prove DeMorgan's Law for taking the compliment of the union of two sets. (10)

5. Consider $3\mathbb{Z} = \{z | z \text{ is a multiple of } 3.\}$. Prove that $|3\mathbb{Z}| = |\mathbb{Z}|$. (5)

- 6. Give an example of two sets, A and B, such that |A| = |B| and A is a proper subset of B. (5)
- 7. Give an example of two sets, A and B, such that |A| < |B| and A is a proper subset of B. (5)
- 8. Give a function from \mathbb{Z}^+ to $odd(\mathbb{Z}^+)$ that has **exactly** the given property *or* explain why no such function is possible.

(a) (Only injective	(3)
(b) (Only surjective	(3)
(c) ł	bijective	(4)

(3)

(12)

9. Consider the *predicate prime* for integers.

(a)	What is the <i>domain</i> of the function?	(3)

- (b) What is the codomain of the function?(3)(c) What is the signature of prime?(3)
- (d) What is the *range* of the function? Justify your answer. (3)
- (e) Is this function *injective*, *surjective*, *bijective*, or none of these? Justify your answer.
- Define an algorithm that returns true if the function, f, is onto from finite set A to finite set B (10) and false otherwise. This is an algorithm so you can define your own notation for things like the cardinality of a set if you need to; make sure your notation's meaning is clear.

boolean isOnto(set $A = a_1, a_2, ..., a_m$, set $B = b_1, b_2, ..., b_n$, B f(A a)) {

}

11. Prove that the union of any two *countable* sets is *countable*.

12. Consider the set of ordered pairs of positive integers, $\mathbb{Z}^+ \times \mathbb{Z}^+$. Prove that $\mathbb{Z}^+ \times \mathbb{Z}^+$ is *countable*. (13)