1. You have see a great number of symbols in lecture already. Two of them are \in and \ni. Which of these symbols is to be read "such that"?

Solution:

\in - reads as "in" or "is a member of" with a set: $7 \in \mathbb{Z}$
\ni - reads as "such that": even (x) means there exists $y \in \mathbb{Z} \ni 2 y=x$
2. Expand each of the following by writing out all of the terms with appropriate operators between them.
(a) $\sum_{i=1}^{4} 10 \times i$
(e) $\sum_{q=0}^{3} 2^{q}$

Solution:

$10 \times 1+10 \times 2+10 \times 3+10 \times 4$
$10+20+30+40=100$
(b) $\sum_{j=3}^{5} j^{2}$

$$
\begin{aligned}
& \text { Solution: } \\
& 3^{2}+4^{2}+5^{2} \\
& 9+16+25=50
\end{aligned}
$$

(c) $\sum_{k=100}^{104} k \bmod 3$

Solution:
$(100 \bmod 3)+(101 \bmod 3)+$
$(102 \bmod 3)+(103 \bmod 3)+$
$(104 \bmod 3)$
$1+2+0+1+2=6$
(g) $\prod_{s=1}^{6} 10^{s}$

Solution:

$$
\begin{aligned}
& (1+1) \times(2+1) \times(3+1) \times(4+1) \\
& 2 \times 3 \times 4 \times 5=120
\end{aligned}
$$

(f) $\prod_{r=1}^{4} r+1$

Solution:

$$
\begin{aligned}
& 2^{0}+2^{1}+2^{2}+2^{3} \\
& 1+2+4+8=15
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& 10^{1} \times 10^{2} \times 10^{3} \times 10^{4} \times 10^{5} \times 10^{6} \\
& 10^{\sum_{i=1}^{6} i}=10^{21}
\end{aligned}
$$

(d) $\sum_{p=4}^{4} 2^{p}$
(h) $\prod_{t=1}^{3} t \cdot 2$

Solution:

2^{4}
16

Solution:

$$
(2 \cdot 1) \times(2 \cdot 2) \times(2 \cdot 3)
$$

$$
2 \times 4 \times 6=48
$$

3. Calculate the result for each of the sums and products in the previous question.

Solution:

See above.
4. What is the difference between 1.(e) and 1.(d)?

Solution:

$$
2^{4}-\left(2^{0}+2^{1}+2^{2}+2^{3}\right)=1
$$

5. Given what you know about the symbol \in, calculate the following value: $1+\prod_{p \in\{2,3,5,7\}} p$

Solution:

$1+(2 \times 3 \times 5 \times 7)=211$
6. Why does the product in the previous question not need an "upper" bound?

Solution:

The "sequence" of multiplicands comes from the listed elements of the set. It is not counting but rather taking on each value between the curly braces.
7. Is the answer to 5 . above divisible by any of the primes in the set used for the product?

Solution:

No. Each leaves a remainder of 1.
8. Evaluate each of the following expressions. Pay careful attention to the type of each of your answers.
(a) $17 \mid 51$
(b) $144 \bmod 41$

Solution:
Boolean: true
(\mid is "divides")

Solution: Integer: 21
$(3 \times 41=123+21=144)$
(c) The greatest common divisor of 288 and 84

Solution:

Integer: 12
(d) $v^{5} \cdot v^{8}$

Solution:
Same as $v: v^{13}$
(e) 18×88 (What do you think it means?)

Solution:

Boolean: $\operatorname{not}(18 \mid 88)=$ not $(f a l s e)=$ true
(f) $\frac{w^{71}}{w^{75}}$

Solution:
Same as $w: \frac{1}{w^{4}}$
9. What is the definition of the divides predicate? That is: Define $a \mid b$. (Either definition presented in class is acceptable.)

Solution:

$a \mid b::=b \bmod a=0$-or-
$a \mid b::=$ there exists an integer, k, such that $a k=b$

