Computer Scientist's View of Cantor's Diagonalization CIS 300 Fundamentals of Computer Science

Brian C. Ladd

Computer Science Department SUNY Potsdam Spring 2023

Sunday 23rd April, 2023

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 1/43

Deciders

3 The Halting Problem Encoding

< 注 → < 注 →

æ

Algorithms Definition

Definition

An algorithm is a *finite* series of *precise instructions* for performing a computation or solving a problem that terminates with the *correct* answer in a finite amount of time.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Algorithms Definition

Definition

An algorithm is a *finite* series of *precise instructions* for performing a computation or solving a problem that terminates with the *correct* answer in a finite amount of time. "*precise*" here will mean written in Java.

< 回 > < 三 > < 三 >

Algorithms Definition

Definition

An algorithm is a *finite* series of *precise instructions* for performing a computation or solving a problem that terminates with the *correct* answer in a finite amount of time. "*precise*" here will mean written in Java.

Example (Algorithm: Maximum element in finite sequence)

```
// @precondition: A is not empty
int maxValue(int A[]) {
    int max = A[0];
    for (int i = 1; i < A.length; i++)
    if (A[i] > max) max = A[i];
    // max is maximum valle on A[0-i] inclusive
    // i == A.length on exit; max on A[0-A.length - 1] inclusive
    return max;
}
```

・ロト ・ 同ト ・ ヨト ・ ヨト

Input An algorithm has input values from a specified set

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Input An algorithm has input values from a specified set Output From each set of input values, an algorithm produces output values, the solution, from a specified set

Input An algorithm has input values from a specified set Output From each set of input values, an algorithm produces output values, the solution, from a specified set Definiteness The steps of the algorithm are defined precisely

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Input An algorithm has input values from a specified set Output From each set of input values, an algorithm produces output values, the solution, from a specified set Definiteness The steps of the algorithm are defined precisely Correctness The algorithm should produce the *correct* output for each input value

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Input An algorithm has input values from a specified set

Output From each set of input values, an algorithm produces output values, the solution, from a specified set

Definiteness The steps of the algorithm are defined precisely

- Correctness The algorithm should produce the *correct* output for each input value
 - Finiteness The solution must be produced in a finite number of steps

< 口 > < 同 > < 回 > < 回 > < 回 > <

Input An algorithm has input values from a specified set

- Output From each set of input values, an algorithm produces output values, the solution, from a specified set
- Definiteness The steps of the algorithm are defined precisely
- Correctness The algorithm should produce the *correct* output for each input value
- Finiteness The solution must be produced in a finite number of steps
- Effectiveness It must be possible to perform each step in the algorithm precisely and in a finite amount of time

イロト イポト イヨト イヨト 二日

Input An algorithm has input values from a specified set

- Output From each set of input values, an algorithm produces output values, the solution, from a specified set
- Definiteness The steps of the algorithm are defined precisely
- Correctness The algorithm should produce the *correct* output for each input value
 - Finiteness The solution must be produced in a finite number of steps
- Effectiveness It must be possible to perform each step in the algorithm precisely and in a finite amount of time
 - Generality The procedure should apply to all problems of the given form, not just a single input value

Algorithms Linear Search

Example (Algorithm: Linear Search of Finite Sequence)

```
int indexOfMatch(int x, int A[]) {
    int match = -1; // no match yet found
    int i = 0;
    while ((match < 0) // no match yet
        && (i < A.length)) { // still list to check
    if (A[i] == x) match = i; // remember the match
        i++;
    }
    // return index of match or -1 if no match
    return match;
}</pre>
```

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 5/43

< 由 X 4 周 X 4 周 X 4 周 X 1 周

Algorithms Binary Search

Example (Algorithm: Binary Search of Sorted Finite Sequence)

```
// @precondition A is sorted and non-empty
int binaryMatch(int x, int A[]) {
int low = 0;
int high = A.length;
// search interval half-open: [low, high)
while (low < high - 1) { // while range > 1 element
int mid = (low + high)/2; // mid = \left(\frac{low+high}{2}\right) \right]
if (x > A[mid]) low = mid + 1;
else high = mid;
}
if (A[Low] == x) return low;
else return -1;
}
```

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

6/43

Algorithms

Binary Search

Theorem

binary always terminates

Proof.

The only way it can **not** terminate is to be stuck in the while loop. In the loop, $low \le mid \le high - 1$ high - low is the size of the range to be searched (half-open so no extra + 1)

Algorithms

Binary Search

Theorem

binary always terminates

Proof.

The only way it can **not** terminate is to be stuck in the while loop. In the loop, $low \le mid \le high - 1$ *high* - *low* is the size of the range to be searched (half-open so no extra + 1) *high'* - *low'*, the value after the loop, is smaller:

Algorithms

Binary Search

Theorem

binary always terminates

Proof.

```
The only way it can not terminate is to be stuck in the while loop.
In the loop, low \leq mid \leq high - 1
high - low is the size of the range to be searched
(half-open so no extra +1)
high' - low', the value after the loop, is smaller:
If x > A[mid], low' > low
Otherwise, high' < high because
low \neq high; high' = | average | < high
Range to be searched is smaller on each iteration of loop; range initially
finite so value must cross 1 terminating the while loop.
```

Algorithms Making Change

Example (Problem)

Given: Amount of change to make, $n \in \mathbb{Z}^+$ Sequence of *r* coins: coins[0] > coins[1] < ... < coins[r-1]

Describe an *algorithm* to solve this problem.

Algorithms Making Change

Example (Algorithm: Greedy Algorithm for Making Change)

```
// @precondition coins in decreasing order
// @precondition n >= 0
// @precondition any value n >= 0 can be made with coins
public static List<Integer> makeChange(int n, int coins[]) {
 List<Integer> change=new ArrayList<Integer>();
 for (int i = 0; i < coins.length; i++) {
 while (n >= coins[i]) {
 change.add(coins[i]);
 n -= coins[i];
 }
 // n < coins[i]: no more coins[i] can be part of change
 }
 return change;
 }
```

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 9/43

イロト イポト イヨト イヨト

Algorithms Change Making Correctness

Lemma

 $\forall n \in \mathbb{Z}^{\geq 0}$, $n \notin$ using the **fewest** American coins possible can contain at most one 50¢ piece, one quarter, two dimes, one nickel, and four pennies. Further, it cannot contain two dimes **and** a nickel. The amount of change, excluding dollar coins, cannot exceed $99 \notin = (50 + 25 + 10 + 10 + 1 + 1 + 1) \notin$

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 10/43

(1) 首下 (1) 首下

Algorithms Change Making Correctness

Theorem

The greedy algorithm produces correct change in the fewest number of coins using American coins.

< □ > < □ > < □ > < □ > < □ > < □ >

Deciders as Functions

A language is a set of strings across some alhpabet:

- string a sequence of zero or more symbols
- *alphabet* a *set* of symbols

A B F A B F

Deciders as Functions

A language, L_d is a set of strings across some alphabet, Σ . A decider is a predicate function, $d: \Sigma^* \to \{0, 1\}$ (if it is a predicate, how are we interpreting the result bits?) d(s) ::= 1 if and only if $s \in L_d$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Deciders as Algorithms

A decider can also be thought of as an *algorithm*:

Input Σ^* Output $\{0,1\}$

Correctness Returns 1 \iff input $\in L_d$.

The other properties must be held so that d works for every string in Σ^* , finishes in finite time, is expressed in a finite number of steps, and so on.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Deciders as Algorithms

For ease of writing, a decider is a single boolean Java function. So, to decide $L_{\text{even length}}$ across $\{0,1\}^*$, the following would work:

```
boolean decide(String bin) {
  return (bin.length() % 2) == 0;
}
```

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

```
{}
{0,1}*
{\omega : an even number of 1s }
{\omega : as a binary number, is divisible by 4}
```

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

```
{}
boolean decide(String bin) {
  return false;
}
{0,1}*
{\omega : an even number of 1s }
{\omega : as a binary number, is divisible by 4}
```

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 17/43

A B F A B F

```
{}^{\{\}}_{\{0,1\}^*}
```

```
boolean decide(String bin) {
   return true;
}
```

```
 \{ \omega : \text{an even number of 1s } \} \\ \{ \omega : \text{as a binary number, is divisible by 4} \}
```

(4) (3) (4) (3) (4)

```
\{0,1\}^*
\{\omega : \text{an even number of 1s} \}
boolean decide(String bin) {
  int ones = 0;
  for (int c = 0; c < bin.length(); c++)
    if (bin.charAt(c) == '1') ones++;
  return (ones % 2) == 0;
}
\{\omega : \text{as a binary number, is divisible by 4}\}
```

A B M A B M

```
{}
{0,1}*
{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\verline{\verline{\verline{\verline{\ove
```

・ 何 ト ・ ヨ ト ・ ヨ ト

The General Halting Problem

Is it possible to write an **algorithm** that when run on a *program*, *input* pair, determines if that *program* halts after a finite amount of time when run on that *input*.

How can we express the Halting Problem in terms of a binary language?

Encoding

An encoding is a way of representing some set of objects as bit strings. For example, the integer range [0-255] (inclusive) could be encoded into a bit string of length 8 (a byte) with the sequence of bits interpreted as a *base 2 number*.

A set of printable and control characters might similarly be encoded into a bit string of length 8, each pattern mapped to a specific character.

ヘロト ヘヨト ヘヨト

Encoding

Encoding a Java Program

A Java program is encoded (before compiling) as a string of characters from some character set. That character set, in turn, can encode each character as a string of 8 bits (or 16 or 32 bits, depending on the size of the character set).

Apply both encodings in turn and a Java program can be encoded into a bit string.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Deciding Java Programs

 $L_{Java} = \{\omega : \omega \in \{0, 1\}^* \land \omega \text{ encodes a valid Java program}\}$ The *Java decider* then looks like this:

```
boolean decide(String bin) {
  return validCharString(bin)
    && validJava(decodeCharString(bin));
```

}

医静脉 医黄疸 医黄疸 医

Encoding

Halting Problem As a Language

Definition

Let < P, I > be the encoding (into binary) of a program, P and input for that program I. The split between them must also be encoded. Let $L = \{ \langle P, I \rangle \}$ be the set of all binary strings that encode a program followed by input for that program.

Then let $L_H = \{ \langle P, I \rangle : P(I) \text{ only runs for a finite amount of time} \}$ L_H is the collection of binary strings representing programs that do **not** loop forever on a given input.

Deciding this language is the same as solving the general Halting Problem.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Halting Problem

Definition

Let $\langle P, I \rangle$ be the encoding (into binary) of a program, P and input for that program I. The split between them must also be encoded. Let $L = \{\langle P, I \rangle\}$ be the set of all binary strings that encode a program followed by input for that program.

Then let $L_H = \{ < P, I >: P(I) \text{ only runs for a finite amount of time} \}$ L_H is the collection of binary strings representing programs that do **not** loop forever on a given input.

Deciding this language is the same as solving the general Halting Problem. The Halting Problem is the problem of constructing a program, H, that takes two parameters: P, another computer program and I, input for P. H should report "halts" or "loops forever" depending on whether or not P halts on input I.

26/43

$$\frac{H(P,I)}{F(P,I)} = \int_{0}^{\infty} \frac{d^{1}}{dt} =$$

Programs as Data

A program is encoded in some way (Fortran, pseudo-code, Java,

bytecode). An encoding can be expressed as a sequence of symbols across some alphabet.

Any alphabet can be re-encoded using strings of bits.

Any program can be expressed as a sequence of bits.

A program, encoded as a sequence of bits, can be given as input to a program. The receiving program may or may not respect the "right" interpretation.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Programs as Data

A program is encoded in some way (Fortran, pseudo-code, Java,

bytecode). An encoding can be expressed as a sequence of symbols across some alphabet.

Any alphabet can be re-encoded using strings of bits.

Any program can be expressed as a sequence of bits.

A program, encoded as a sequence of bits, can be given as input to a program. The receiving program may or may not respect the "right" interpretation.

Any program that takes a single input parameter can be passed itself (or rather, its own encoding) as its input.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト … ヨ …

Encoding

Halting Problem

Definition

$$H(P, I) = \begin{cases} \text{"halt"} & \text{if } P(I) \text{ halts} \\ \text{"loop"} & \text{if } P(I) \text{ does not halt} \end{cases}$$

Sunday 23rd April, 2023 Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor 28/43

Halting Problem

Definition

$$H(P, I) = \begin{cases} \text{"halt"} & \text{if } P(I) \text{ halts} \\ \text{"loop"} & \text{if } P(I) \text{ does not halt} \end{cases}$$

Definition

FSOC Assume H exists. Construct D

 $D(P) = \begin{cases} \text{loop forever} & \text{if } H(D, P) \text{ halts} \\ \text{return} & \text{if } H(D, P) \text{ does not halt} \end{cases}$

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 28 / 43

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Encoding

Halting Problem

Definition

$$H(P, I) = \begin{cases} \text{"halt"} & \text{if } P(I) \text{ halts} \\ \text{"loop"} & \text{if } P(I) \text{ does not halt} \end{cases}$$

Definition

FSOC Assume H exists. Construct D

$$D(P) = \begin{cases} \text{loop forever} & \text{if } H(D, P) \text{ halts} \\ \text{return} & \text{if } H(D, P) \text{ does not halt} \end{cases}$$

What does H(D, D) return?

イロト イヨト イヨト イヨト

Languages

- alphabet A finite set of **symbols**; *e.g.* the *binary alphabet* is $\{0, 1\}$.
 - string A sequence of zero or more symbols from an alphabet; e.g. λ (the empty string), 01011100010, 0, 101 Σ is used to represent the alphabet as a whole. λ or ε stand
 - for the empty string.
- language A set of strings; e.g. $\{w | w \text{ starts with } 1\}$, $\{00, 01, 10, 11\}$.
 - Σ^* The star (Kleene's star operator) means zero or more copies of the symbol before the star. This is short hand for the set of **all** the strings across the alphabet Σ . **Note:** that means Σ^* is a *set*.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Cardinality of $\{0,1\}^*$

 $\{0,1\}^*$ is infinite. Consider the set of just strings containing only '1' symbols. The lengths of different strings in this language range across non-negative integers. That is infinite.

Is Σ^* countable?

If so, how to prove it.

ヘロト 不得 トイヨト イヨト 二日

Cardinality of $\{0,1\}^*$

 $\{0,1\}^*$ is infinite. Consider the set of just strings containing only '1' symbols. The lengths of different strings in this language range across non-negative integers. That is infinite.

Is Σ^* countable?

If so, how to prove it. Find bijection $f: \Sigma^* \to \mathbb{Z}^+$.

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ト … ヨ

Define the *length-then-value* ordering for binary strings: w_1 comes before w_2 if $|w_1| < |w_2|$ or $|w_1| = |w_2| \land$ the unsigned number represented by w_1 is less than the number represented by w_2 . So, Σ^* can be put in order by the above ordering:

 $\{\lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \ldots\}$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long.

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long.

Ζ	5	z - p	f(z)
1	0	0	"" = λ
2	1	0	"0"
3	1	1	"1"
4	2	0	"00"
5	2	1	"01"
6	2	2	"10"
7	2	3	"11"
8	3	0	"000"
9	3	1	"001"
10	3	2	"010"
11	3	3	"011"

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long. f(23) =

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long. f(23) = 0111f(32) =

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long. f(23) = 0111 f(32) = 00000 $f^{-1}(\lambda) =$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long. f(23) = 0111 f(32) = 00000 $f^{-1}(\lambda) = 0$ $f^{-1}(1000) =$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long. f(23) = 0111 f(32) = 00000 $f^{-1}(\lambda) = 0$ $f^{-1}(1000) = 24$ $f^{-1}(00010) =$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long. f(23) = 0111 f(32) = 00000 $f^{-1}(\lambda) = 0$ $f^{-1}(1000) = 24$ $f^{-1}(00010) = 34$

Counting Deciders

- A decider is an algorithm.
- An *algorithm* can be expressed in Java (or another programming language).
- Any Java program can be encoded as a sequence of *characters* that are, in turn, encoded as sequences (strings) of bits.
- Any Java program can be represented by a bit string.

A (B) > A (B) > A (B) >

Counting Deciders

 $\begin{aligned} \{\mathsf{deciders}\} \subset \{\mathsf{Java programs}\} \subset \{0,1\}^* \\ \mathsf{Remember:} \ A \subset B \to |A| \leq |B|. \ \mathsf{This will be important.} \end{aligned}$

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 35/43

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

An Uncountable Infinity

A Mathematician's View

- $\mathbb Z$ in *countably* infinite. ($\mathbb Z$ is often used as the canonical countably infinite set.)
- $|\mathbb{R}| > |\mathbb{Z}|$ There are **more** real numbers than there are integers.
- Proof: By contradiction. Assume they are the same size; show that the resulting *bijective* function between them cannot map *onto* \mathbb{R} .

A D A A B A A B A A B A B B

An Uncountable Infinity

A Computer Scientist's View

- $\{0,1\}^*$ in *countably* infinite. (The language of all *binary strings* is countably infinite.)
- |ℙ({0,1}*)| > |{0,1}*| There are **more** binary languages than there are binary strings.
- Proof: By contradiction. Assume they are the same size; show that the resulting *bijective* function between them cannot map *onto* $\mathbb{P}(\{0,1\}^*)$.

There is more!

 $|\{\mathsf{deciders}\}| \leq |\{\mathsf{Java \ programs}\}| \leq |\{0,1\}^*|$

There are **more** binary languages than there are *deciders* for languages: there **must be** undecidable languages.

Cardinality of $\mathbb{P}(()\Sigma^*)$ Review of Terms

•
$$\Sigma = \{0, 1\} =$$
 the *binary* alphabet
• $\Sigma^* =$

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 38/43

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cardinality of $\mathbb{P}(()\Sigma^*)$ Review of Terms

- $\Sigma = \{0,1\} =$ the *binary* alphabet
- $\Sigma^* = \{ \text{ all binary strings} \}$ $\{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ... \}$
- $\mathbb{P}((\Sigma^*) = \text{Set of all subsets of } \Sigma^*$

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

Cardinality of $\mathbb{P}(()\Sigma^*)$ Review of Terms

- $\Sigma = \{0, 1\} =$ the *binary* alphabet
- $\Sigma^* = \{ \text{ all binary strings} \}$ $\{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ... \}$
- P(()Σ*) = Set of all subsets of Σ*
 { all binary languages}

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

Cardinality of $\mathbb{P}(()\Sigma^*)$

$\mathbb{P}(()\Sigma^*) \text{ is uncountable.} \\ |\mathbb{P}(()\Sigma^*)| > |\mathbb{Z}^+| \\ |\mathbb{P}(()\Sigma^*)| > \aleph_0$

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 39/43

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

$\mathbb{P}(()\Sigma^* \text{ is Uncountable}$

TBP: $\mathbb{P}(()\Sigma^*)$ is uncountable.

- TBP: $|\mathbb{P}(()\Sigma^*)| \neq |\mathbb{Z}^+|$
- $\mathsf{FSOC:} \quad |\mathbb{P}(()\Sigma^*)| = |\mathbb{Z}^+|$
 - 1. bijection $\exists f : \mathbb{Z}^+ \to \mathbb{P}(()\Sigma^*)$
 - 2. *f* can be represented as a table

Countably Infinite

Same cardinality

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 40/43

	ę	0	H	00	01	10	11	000	001	
1	0	1	0	1	0	1	0	1	0	
2	0	1	0	1	1	1	0	0	0	
3	0	0	1	0	0	0	0	0	0	
4	1	0	1	0	1	0	0	0	1	
5	1	0	0	0	1	0	0	0	1	
÷										

Each row represents a subset of Σ^* or an element of $\mathbb{P}(()\Sigma^*).$ A sequence of Boolean values whether the string atop the column is/is not in the language in that row.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor Sunday 23rd April, 2023 42/43

(日)

001 01 11 0 1 1 1 0 ... 0 1 0 0 0 0 0 ... 0 1 0 1 0 0 0 1 Let $f(i) = f(i)_1 f(i)_2 f(i)_3 f(i)_4 f(i)_5 \dots$ Let d, the diagonal language, be $f(1)_1 f(2)_2 f(3)_3 f(4)_4 f(5)_5 \ldots = 01101 \ldots$

A B A A B A

1 00 01 110 111 000 001 ... 1 0 1 0 1 0 1 0 1 0 ... 2 0 1 0 1 1 1 0 0 0 ... $0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ 3 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1$ 4 0 1 5 0 0 0 0 1 0 1 Let $f(i) = f(i)_1 f(i)_2 f(i)_3 f(i)_4 f(i)_5 \dots$ Let d, the diagonal language, be $f(1)_1 f(2)_2 f(3)_3 f(4)_4 f(5)_5 \ldots = 01101 \ldots$ Let \overline{d} , the *compliment* of the diagonal language be $f(1)_1 f(2)_2 f(3)_3 f(4)_4 f(5)_5 \ldots = 10010 \ldots$

★ ∃ ► < ∃ ►</p>

1 00 01 110 111 000 001 ... 1 0 1 0 1 0 1 0 1 0 ... 2 0 1 0 1 1 1 0 0 0 ... 0 0 1 0 0 0 0 0 3 0 $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1$ 4 0 1 5 0 0 0 0 1 0 1 Let $f(i) = f(i)_1 f(i)_2 f(i)_3 f(i)_4 f(i)_5 \dots$ Let d, the diagonal language, be $f(1)_1 f(2)_2 f(3)_3 f(4)_4 f(5)_5 \ldots = 01101 \ldots$ Let \overline{d} , the *compliment* of the diagonal language be $f(1)_1 f(2)_2 f(3)_3 f(4)_4 f(5)_5 \ldots = 10010 \ldots$ $\overline{d} \notin range(f)$.

Brian C. Ladd (Computer Science DepartmeComputer Scientist's View of Cantor's Diagor S

A B A A B A

TBP: $\overline{d} \notin range(f)$.

FSOC: $\overline{d} \in range(f)$. 1. $\exists z \in \mathbb{Z}^+ \ni f(z) = \overline{d}$ Definition of range 2. $\overline{d}_z = f(z)_z = b$ \overline{d}_z from the table 3. $\overline{d}_z = \overline{f(z)_z} = \overline{b}$ by construction $\Rightarrow \Leftarrow \overline{d}_z = \overline{b} \land \overline{d}_z = b$ Combine 2, 3 $\therefore f(z) \neq \overline{d}$ $\therefore \overline{d} \notin range(f)$

f is **not** surjective; f is not bijective

A B M A B M

$\mathbb{P}(()\{0,1\}^*)$ is Uncountable

TBP: $\mathbb{P}(()\Sigma^*)$ is uncountable.

・ 何 ト ・ ラ ト ・ ラ ト ・ ラ