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Algorithms

Algorithms
Definition

Definition
An algorithm is a finite series of precise instructions for performing a
computation or solving a problem that terminates with the correct answer
in a finite amount of time.

”precise” here will mean written in Java.

Example (Algorithm: Maximum element in finite sequence)

// @precondition: A is not empty
int maxValue(int A[]) {
int max = A[0];
for (int i = 1; i < A.length; i++)
if (A[i] > max) max = A[i];
// max is maximum vaule on A[0-i] inclusive

// i == A.length on exit; max on A[0-A.length − 1] inclusive
return max;

}
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Algorithms

Properties of an Algorithms

Input An algorithm has input values from a specified set

Output From each set of input values, an algorithm produces output
values, the solution, from a specified set

Definiteness The steps of the algorithm are defined precisely
Correctness The algorithm should produce the correct output for each

input value
Finiteness The solution must be produced in a finite number of steps

Effectiveness It must be possible to perform each step in the algorithm
precisely and in a finite amount of time

Generality The procedure should apply to all problems of the given
form, not just a single input value
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Algorithms

Algorithms
Linear Search

Example (Algorithm: Linear Search of Finite Sequence)

int indexOfMatch(int x, int A[]) {
int match = -1; // no match yet found
int i = 0;
while ((match < 0) // no match yet

&& (i < A.length)) { // still list to check
if (A[i] == x) match = i; // remember the match
i++;

}
// return index of match or -1 if no match
return match;

}
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Algorithms

Algorithms
Binary Search

Example (Algorithm: Binary Search of Sorted Finite Sequence)

// @precondition A is sorted and non-empty
int binaryMatch(int x, int A[]) {
int low = 0;
int high = A.length;
// search interval half-open: [low, high)

while (low < high - 1) { // while range > 1 element

int mid = (low + high)/2; // mid = ⌊ (low+high)
2

⌋
if (x > A[mid]) low = mid + 1;
else high = mid;

}
if (A[low] == x) return low;
else return -1;

}
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Algorithms

Algorithms
Binary Search

Theorem
binary always terminates

Proof.
The only way it can not terminate is to be stuck in the while loop.
In the loop, low ≤ mid ≤ high − 1
high - low is the size of the range to be searched
(half-open so no extra + 1)

high ′ - low ′, the value after the loop, is smaller:
If x > A[mid], low ′ > low
Otherwise, high ′ < high because
low ̸= high; high ′ = ⌊ average ⌋ < high
Range to be searched is smaller on each iteration of loop; range initially
finite so value must cross 1 terminating the while loop.
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Algorithms

Algorithms
Making Change

Example (Problem)
Given: Amount of change to make, n ∈ Z+

Sequence of r coins: coins[0] > coins[1] < . . . < coins[r-1]

Describe an algorithm to solve this problem.

Brian C. Ladd ( Computer Science Department SUNY Potsdam Spring 2023 )Computer Scientist’s View of Cantor’s DiagonalizationSunday 23rd April, 2023 8 / 43



Algorithms

Algorithms
Making Change

Example (Algorithm: Greedy Algorithm for Making Change)

// @precondition coins in decreasing order
// @precondition n >= 0
// @precondition any value n >= 0 can be made with coins
public static List<Integer> makeChange(int n, int coins[]) {
List<Integer> change=new ArrayList<Integer>();
for (int i = 0; i < coins.length; i++) {
while (n >= coins[i]) {
change.add(coins[i]);
n -= coins[i];

}
// n < coins[i]: no more coins[i] can be part of change

}
return change;
}
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Algorithms

Algorithms
Change Making Correctness

Lemma
∀ n ∈ Z≥0, n¢ using the fewest American coins possible can contain at
most one 50¢ piece, one quarter, two dimes, one nickel, and four pennies.
Further, it cannot contain two dimes and a nickel.
The amount of change, excluding dollar coins, cannot exceed
99¢ = (50 + 25 + 10 + 10 + 1 + 1 + 1 + 1)¢
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Algorithms

Algorithms
Change Making Correctness

Theorem
The greedy algorithm produces correct change in the fewest number of
coins using American coins.
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Deciders

Deciders as Functions

A language is a set of strings across some alhpabet:
string a sequence of zero or more symbols
alphabet a set of symbols
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Deciders

Deciders as Functions

A language, Ld is a set of strings across some alphabet, Σ.
A decider is a predicate function, d : Σ∗ → {0, 1} (if it is a predicate, how
are we interpreting the result bits?)
d(s) ::= 1 if and only if s ∈ Ld.
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Deciders

Deciders as Algorithms

A decider can also be thought of as an algorithm:
Input Σ∗

Output {0, 1}
Correctness Returns 1 ⇐⇒ input ∈ Ld.

The other properties must be held so that d works for every string in Σ∗,
finishes in finite time, is expressed in a finite number of steps, and so on.
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Deciders

Deciders as Algorithms

For ease of writing, a decider is a single boolean Java function.
So, to decide Leven length across {0, 1}∗, the following would work:

boolean decide(String bin) {
return (bin.length() % 2) == 0;

}
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Deciders

Deciding other Binary Languages

{}
{0, 1}∗
{ω : an even number of 1s }
{ω : as a binary number, is divisible by 4}
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Deciders

Deciding other Binary Languages

{}

boolean decide(String bin) {
return false;

}

{0, 1}∗
{ω : an even number of 1s }
{ω : as a binary number, is divisible by 4}
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Deciders

Deciding other Binary Languages

{}
{0, 1}∗

boolean decide(String bin) {
return true;

}

{ω : an even number of 1s }
{ω : as a binary number, is divisible by 4}
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Deciders

Deciding other Binary Languages

{}
{0, 1}∗
{ω : an even number of 1s }

boolean decide(String bin) {
int ones = 0;
for (int c = 0; c < bin.length(); c++)
if (bin.charAt(c) == '1') ones++;

return (ones % 2) == 0;
}

{ω : as a binary number, is divisible by 4}
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Deciders

Deciding other Binary Languages

{}
{0, 1}∗
{ω : an even number of 1s }
{ω : as a binary number, is divisible by 4}
boolean decide(String bin) {
return bin.endsWith("00");

}
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The Halting Problem

The General Halting Problem

Is it possible to write an algorithm that when run on a program, input
pair, determines if that program halts after a finite amount of time when
run on that input.
How can we express the Halting Problem in terms of a binary language?
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The Halting Problem Encoding

Encoding

An encoding is a way of representing some set of objects as bit strings.
For example, the integer range [0-255] (inclusive) could be encoded into a
bit string of length 8 (a byte) with the sequence of bits interpreted as a
base 2 number.
A set of printable and control characters might similarly be encoded into a
bit string of length 8, each pattern mapped to a specific character.
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The Halting Problem Encoding

Encoding a Java Program

A Java program is encoded (before compiling) as a string of characters
from some character set. That character set, in turn, can encode each
character as a string of 8 bits (or 16 or 32 bits, depending on the size of
the character set).
Apply both encodings in turn and a Java program can be encoded into a
bit string.
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The Halting Problem Encoding

Deciding Java Programs

LJava = {ω : ω ∈ {0, 1}∗ ∧ ω encodes a valid Java program}
The Java decider then looks like this:
boolean decide(String bin) {
return validCharString(bin)

&& validJava(decodeCharString(bin));
}
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The Halting Problem Encoding

Halting Problem
As a Language

Definition
Let < P, I > be the encoding (into binary) of a program, P and input for
that program I. The split between them must also be encoded.
Let L = {< P, I >} be the set of all binary strings that encode a program
followed by input for that program.
Then let LH = {< P, I >: P(I)only runs for a finite amount of time}
LH is the collection of binary strings representing programs that do not
loop forever on a given input.
Deciding this language is the same as solving the general Halting Problem.
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The Halting Problem Encoding

Halting Problem
As a Language

Definition
Let < P, I > be the encoding (into binary) of a program, P and input for
that program I. The split between them must also be encoded.
Let L = {< P, I >} be the set of all binary strings that encode a program
followed by input for that program.
Then let LH = {< P, I >: P(I)only runs for a finite amount of time}
LH is the collection of binary strings representing programs that do not
loop forever on a given input.
Deciding this language is the same as solving the general Halting Problem.
The Halting Problem is the problem of constructing a program, H, that
takes two parameters: P, another computer program and I, input for P. H
should report “halts” or “loops forever” depending on whether or not P
halts on input I.

H(P, I) =
{

”halts” if P(I) halts
”loops forever” if P(I) does not haltBrian C. Ladd ( Computer Science Department SUNY Potsdam Spring 2023 )Computer Scientist’s View of Cantor’s DiagonalizationSunday 23rd April, 2023 26 / 43



The Halting Problem Encoding

Programs as Data

A program is encoded in some way (Fortran, pseudo-code, Java,
bytecode). An encoding can be expressed as a sequence of symbols across
some alphabet.
Any alphabet can be re-encoded using strings of bits.
Any program can be expressed as a sequence of bits.
A program, encoded as a sequence of bits, can be given as input to a
program. The receiving program may or may not respect the “right”
interpretation.

Any program that takes a single input parameter can be passed itself (or
rather, its own encoding) as its input.
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The Halting Problem Encoding

Halting Problem

Definition

H(P, I) =
{

”halt” if P(I) halts
”loop” if P(I) does not halt

Definition
FSOC Assume H exists. Construct D

D(P) =
{

loop forever if H(D,P) halts
return if H(D,P) does not halt

What does H(D,D) return?
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Diagonalization

Languages

alphabet A finite set of symbols; e.g. the binary alphabet is {0, 1}.
string A sequence of zero or more symbols from an alphabet; e.g. λ

(the empty string), 01011100010, 0, 101
Σ is used to represent the alphabet as a whole. λ or ε stand
for the empty string.

language A set of strings; e.g. {w|w starts with 1}, {00, 01, 10, 11}.
Σ∗ The star (Kleene’s star operator) means zero or more copies

of the symbol before the star. This is short hand for the set
of all the strings across the alphabet Σ.
Note: that means Σ∗ is a set.
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Diagonalization

Cardinality of {0, 1}∗

{0, 1}∗ is infinite. Consider the set of just strings containing only ’1’
symbols. The lengths of different strings in this language range across
non-negative integers. That is infinite.
Is Σ∗ countable?
If so, how to prove it.

Find bijection f : Σ∗ → Z+.
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Diagonalization

f : Z+ → {0, 1}∗

Define the length-then-value ordering for binary strings: w1 comes before
w2 if |w1| < |w2| or |w1| = |w2| ∧ the unsigned number represented by w1

is less than the number represented by w2.
So, Σ∗ can be put in order by the above ordering:

{λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ...}

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s. Then f(z) = z− p written as a binary
number s characters long.
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Diagonalization

f : Z+ → {0, 1}∗

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s. Then f(z) = z− p written as a binary
number s characters long.

z s z − p f(z)
1 0 0 ”” = λ
2 1 0 ”0”
3 1 1 ”1”
4 2 0 ”00”
5 2 1 ”01”
6 2 2 ”10”
7 2 3 ”11”
8 3 0 ”000”
9 3 1 ”001”

10 3 2 ”010”
11 3 3 ”011”
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Diagonalization

f : Z+ → {0, 1}∗

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s. Then f(z) = z− p written as a binary
number s characters long.
f(23) =

0111
f(32) =00000
f−1(λ) =0
f−1(1000) =24
f−1(00010) =34
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Diagonalization

Counting Deciders

A decider is an algorithm.
An algorithm can be expressed in Java (or another programming
language).
Any Java program can be encoded as a sequence of characters that
are, in turn, encoded as sequences (strings) of bits.
Any Java program can be represented by a bit string.
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Diagonalization

Counting Deciders

{deciders} ⊂ {Java programs} ⊂ {0, 1}∗
Remember: A ⊂ B → |A| ≤ |B|. This will be important.
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Diagonalization

An Uncountable Infinity
A Mathematician’s View

Z in countably infinite. (Z is often used as the canonical countably
infinite set.)
|R| > |Z| There are more real numbers than there are integers.
Proof: By contradiction. Assume they are the same size; show that
the resulting bijective function between them cannot map onto R.
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Diagonalization

An Uncountable Infinity
A Computer Scientist’s View

{0, 1}∗ in countably infinite. (The language of all binary strings is
countably infinite.)
|P({0, 1}∗)| > |{0, 1}∗| There are more binary languages than there
are binary strings.
Proof: By contradiction. Assume they are the same size; show that
the resulting bijective function between them cannot map onto
P({0, 1}∗).

There is more!
|{deciders}| ≤ |{Java programs}| ≤ |{0, 1}∗|
There are more binary languages than there are deciders for languages:
there must be undecidable languages.
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Diagonalization

Cardinality of P(()Σ∗)
Review of Terms

Σ = {0, 1} = the binary alphabet
Σ∗ =

{ all binary strings}
{ϵ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ...}
P(()Σ∗) = Set of all subsets of Σ∗

{ all binary languages}
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Diagonalization

Cardinality of P(()Σ∗)

P(()Σ∗) is uncountable.
|P(()Σ∗)| > |Z+|
|P(()Σ∗)| > ℵ0

Brian C. Ladd ( Computer Science Department SUNY Potsdam Spring 2023 )Computer Scientist’s View of Cantor’s DiagonalizationSunday 23rd April, 2023 39 / 43



Diagonalization

P(()Σ∗ is Uncountable

TBP: P(()Σ∗) is uncountable.
TBP: |P(()Σ∗)| ̸= |Z+| Countably Infinite

FSOC: |P(()Σ∗)| = |Z+|
1. bijection ∃ f : Z+ → P(()Σ∗) Same cardinality
2. f can be represented as a table
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Diagonalization

Looking at f
ϵ 0 1 00 01 10 11 00

0

00
1

…
1 0 1 0 1 0 1 0 1 0 …
2 0 1 0 1 1 1 0 0 0 …
3 0 0 1 0 0 0 0 0 0 …
4 1 0 1 0 1 0 0 0 1 …
5 1 0 0 0 1 0 0 0 1 …
...

Each row represents a subset of Σ∗ or an element of
P(()Σ∗). A sequence of Boolean values whether the
string atop the column is/is not in the language in
that row.
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Diagonalization

Looking at f
ϵ 0 1 00 01 1
0

11 00
0

00
1

…
1 0 1 0 1 0 1 0 1 0 …
2 0 1 0 1 1 1 0 0 0 …
3 0 0 1 0 0 0 0 0 0 …
4 1 0 1 0 1 0 0 0 1 …
5 1 0 0 0 1 0 0 0 1 …
...

Let f(i) = f(i)1f(i)2f(i)3f(i)4f(i)5 . . .

Let d, the diagonal language, be f(1)1f(2)2f(3)3f(4)4f(5)5 . . . = 01101…
Let d, the compliment of the diagonal language be
f(1)1 f(2)2 f(3)3 f(4)4 f(5)5 . . . = 10010…
d ̸∈ range(f).
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Diagonalization

Looking at f

TBP: d ̸∈ range(f).
FSOC: d ∈ range(f).

1. ∃z ∈ Z+ ∋ f(z) = d Definition of range
2. dz = f(z)z = b dz from the table
3. dz = f(z)z = b by construction

⇒⇐ dz = b ∧ dz = b Combine 2, 3
∴ f(z) ̸= d
∴ d ̸∈ range(f)

f is not surjective; f is not bijective
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Diagonalization

P((){0, 1}∗) is Uncountable

TBP: P(()Σ∗) is uncountable.
TBP: |P(()Σ∗)| ̸= |Z+| Countably Infinite

FSOC: |P(()Σ∗)| = |Z+|
1. bijection ∃ f : Z+ → P(()Σ∗) Same cardinality
2. f can be represented as a table
3. The f in the table is not onto.

⇒⇐ f both is and is not onto 1. and 3.
∴ |P(()Σ∗)| ̸= |Z+|
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