The Fundamentals: Algorithms
 Diagonalization \& Halting Problem

April 18, 2022

Outline

Diagonalization

Halting Problem

Languages

alphabet A finite set of symbols; e.g. the binary alphabet is $\{0,1\}$.
string A sequence of zero or more symbols from an alphabet; e.g. ε (the empty string), $01011100010,0,101$
Σ is used to represent the alphabet as a whole. ε (or λ) stand for the empty string.
language A set of strings; e.g. $\{w \mid w$ starts with 1$\},\{00,01,10,11\}$.
Σ^{*} The star (Kleene's star operator) means zero or more copies of the symbol before the star. This is short hand for the set of all the strings across the alphabet Σ.
Note: that means Σ^{*} is a set.

Cardinality of $\{0,1\}^{*}$

$\{0,1\}^{*}$ is infinite. Consider the set of just strings containing only ' 1 ' symbols. The lengths of different strings in this language range across non-negative integers. That is infinite.
Is Σ^{*} countable?
If so, how to prove it.

Cardinality of $\{0,1\}^{*}$

$\{0,1\}^{*}$ is infinite. Consider the set of just strings containing only ' 1 ' symbols. The lengths of different strings in this language range across non-negative integers.
That is infinite.
Is Σ^{*} countable?
If so, how to prove it. Find bijection $f: \Sigma^{*} \rightarrow \mathbb{Z}^{+}$.

Define the length-then-value ordering for binary strings: w_{1} comes before w_{2} if $\left|w_{1}\right|<\left|w_{2}\right|$ or $\left|w_{1}\right|=\left|w_{2}\right| \wedge$ the unsigned number represented by w_{1} is less than the number represented by w_{2}.
So, Σ^{*} can be put in order by the above ordering:

$$
\{\varepsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111, \ldots\}
$$

$\forall z \in \mathbb{Z}$ let $s=\left\lfloor\log _{2}(z)\right\rfloor$ and $p=2^{s}$. Then $f(z)=z-p$ written as a binary number s characters long.
$f:\{0,1\}^{*} \rightarrow \mathbb{Z}^{+}$
$\forall z \in \mathbb{Z}$ let $s=\left\lfloor\log _{2}(z)\right\rfloor$ and $p=2^{s}$. Then $f(z)=z-p$ written as a binary number s characters long.

z	s	$z-p$	$f(z)$
1	0	0	$" "=\varepsilon$
2	1	0	$" 0 "$
3	1	1	$" 1 "$
4	2	0	$" 00 "$
5	2	1	$" 01 "$
6	2	2	$" 10 "$
7	2	3	$" 11 "$
8	3	0	$" 000 "$
9	3	1	$" 001 "$
10	3	2	$" 010 "$
11	3	3	$" 011 "$

$\forall z \in \mathbb{Z}$ let $s=\left\lfloor\log _{2}(z)\right\rfloor$ and $p=2^{s}$. Then $f(z)=z-p$ written as a binary number s characters long.
$f(23)=$
$\forall z \in \mathbb{Z}$ let $s=\left\lfloor\log _{2}(z)\right\rfloor$ and $p=2^{s}$. Then $f(z)=z-p$ written as a binary number s characters long.
$f(23)=0111$
$f(32)=$
$\forall z \in \mathbb{Z}$ let $s=\left\lfloor\log _{2}(z)\right\rfloor$ and $p=2^{s}$. Then $f(z)=z-p$ written as a binary number s characters long.
$f(23)=0111$
$f(32)=00000$
$f^{-1}(\varepsilon)=$
$\forall z \in \mathbb{Z}$ let $s=\left\lfloor\log _{2}(z)\right\rfloor$ and $p=2^{s}$. Then $f(z)=z-p$ written as a binary number s characters long.
$f(23)=0111$
$f(32)=00000$
$f^{-1}(\varepsilon)=0$
$f^{-1}(1000)=$
$\forall z \in \mathbb{Z}$ let $s=\left\lfloor\log _{2}(z)\right\rfloor$ and $p=2^{s}$. Then $f(z)=z-p$ written as a binary number s characters long.

$$
\begin{aligned}
& f(23)=0111 \\
& f(32)=00000 \\
& f^{-1}(\varepsilon)=0 \\
& f^{-1}(1000)=24 \\
& f^{-1}(00010)=
\end{aligned}
$$

$\forall z \in \mathbb{Z}$ let $s=\left\lfloor\log _{2}(z)\right\rfloor$ and $p=2^{s}$. Then $f(z)=z-p$ written as a binary number s characters long.

$$
\begin{aligned}
& f(23)=0111 \\
& f(32)=00000 \\
& f^{-1}(\varepsilon)=0 \\
& f^{-1}(1000)=24 \\
& f^{-1}(00010)=34
\end{aligned}
$$

Cardinality of $\mathbb{P}\left(\Sigma^{*}\right)$

Review of Terms

- $\Sigma=\{0,1\}=$ the binary alphabet
- $\Sigma^{*}=$

Cardinality of $\mathbb{P}\left(\Sigma^{*}\right)$

Review of Terms

- $\Sigma=\{0,1\}=$ the binary alphabet
- $\Sigma^{*}=\{$ all binary strings $\}$ $\{\varepsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111, \ldots\}$
- $\mathbb{P}\left(\Sigma^{*}\right)=$ Set of all subsets of Σ^{*}

Cardinality of $\mathbb{P}\left(\Sigma^{*}\right)$

Review of Terms

- $\Sigma=\{0,1\}=$ the binary alphabet
- $\Sigma^{*}=\{$ all binary strings $\}$ $\{\varepsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111, \ldots\}$
- $\mathbb{P}\left(\Sigma^{*}\right)=$ Set of all subsets of Σ^{*} \{ all binary languages $\}$

Cardinality of $\mathbb{P}\left(\Sigma^{*}\right)$

$\mathbb{P}\left(\Sigma^{*}\right)$ is uncountable.
$\left|\mathbb{P}\left(\Sigma^{*}\right)\right|>\left|\mathbb{Z}^{+}\right|$
$\left|\mathbb{P}\left(\Sigma^{*}\right)\right|>\aleph_{0}$

$\mathbb{P}\left(\Sigma^{*}\right)$ is Infinite

TBP: $\mathbb{P}\left(\Sigma^{*}\right)$ is infinite.
Let $S=\left\{L\left|L \in \mathbb{P}\left(\{0,1\}^{*}\right) \wedge\right| L \mid=1\right\} S$ is the set of all singleton languages. Since there is one element in S for each element in $\{0,1\}^{*},|S|=\left|\{0,1\}^{*}\right|$.
S is (countably) infinite.
$S \subset \mathbb{P}\left(\{0,1\}^{*}\right) \Rightarrow|S| \leq\left|\mathbb{P}\left(\{0,1\}^{*}\right)\right|$
$\therefore \mathbb{P}\left(\{0,1\}^{*}\right)$ is infinite.

$\mathbb{P}\left(\Sigma^{*}\right)$ is Uncountable

TBP: $\mathbb{P}\left(\Sigma^{*}\right)$ is uncountable.
TBP: $\left|\mathbb{P}\left(\Sigma^{*}\right)\right| \neq\left|\mathbb{Z}^{+}\right|$
FSOC: $\left|\mathbb{P}\left(\Sigma^{*}\right)\right|=\left|\mathbb{Z}^{+}\right|$

1. bijection $\exists f: \mathbb{Z}^{+} \rightarrow \mathbb{P}\left(\Sigma^{*}\right)$
2. f can be represented as a table

Countably Infinite
Same cardinality

Looking at f

	ω	0	-	\circ	$\bar{\circ}$	$ㅇ$	\mp	\circ	$\bar{\circ}$	$\bar{\circ}$
\ldots	\ldots									
1	0	1	0	1	0	1	0	1	0	\ldots
2	0	1	0	1	1	1	0	0	0	\ldots
3	0	0	1	0	0	0	0	0	0	\ldots
4	1	0	1	0	1	0	0	0	1	\ldots

Each row represents a subset of Σ^{*} or an element of $\mathbb{P}\left(\Sigma^{*}\right)$. A sequence of Boolean values whether the string atop the column is/is not in the language in that row.

Looking at f

	ω	0	-	8	$\overline{5}$	으	\mp	\circ	$\bar{\circ}$	$\overline{8}$
	\ldots									
1	0	1	0	1	0	1	0	1	0	\ldots
2	0	1	0	1	1	1	0	0	0	\ldots
3	0	0	1	0	0	0	0	0	0	\ldots
4	1	0	1	0	1	0	0	0	1	\ldots
\vdots										
Let $f(i)$	$=b_{i 1} b_{i 2} b_{i 3} b_{i 4} b_{i 5} \ldots$									

Looking at f

Looking at f

	ω	0	-	\circ	$\bar{\circ}$	\circ	\mp	\mp	\circ	$\bar{\circ}$
	\ldots									
1	0	1	0	1	0	1	0	1	0	\ldots
2	0	1	0	1	1	1	0	0	0	\ldots
3	0	0	1	0	0	0	0	0	0	\ldots
4	1	0	1	0	1	0	0	0	1	\ldots

Let $f(i)=b_{i 1} b_{i 2} b_{i 3} b_{i 4} b_{i 5} \ldots$
Let d, the diagonal language, be $b_{11} b_{22} b_{33} b_{44} \ldots=0110 \ldots$
Let \bar{d}, the anti-diagonal language, be $b_{11} b_{22} b_{33} b_{44} \ldots=1001 \ldots$

Looking at f

	ω	0	-	\circ	$\bar{\circ}$	\circ	\mp	\mp	\circ	$\bar{\circ}$

Let $f(i)=b_{i 1} b_{i 2} b_{i 3} b_{i 4} b_{i 5} \ldots$
Let d, the diagonal language, be $b_{11} b_{22} b_{33} b_{44} \ldots=0110 \ldots$
Let \bar{d}, the anti-diagonal language, be $b_{11} b_{22} b_{33} b_{44} \ldots=1001 \ldots$
$\bar{d} \notin \operatorname{range}(f)$.

Looking at f

TBP: $\bar{d} \notin$ range (f).
FSOC: $\bar{d} \in \operatorname{range}(f)$.

1. $\exists z \in \mathbb{Z}+\ni f(z)=\bar{d} \quad$ Definition of range
2. $f(z)_{z}=b \quad f(z)$ is a sequence of bits
3. $\bar{d}_{z}=\bar{b} \quad$ by construction
$\rightarrow \leftarrow \quad f(z)$ cannot equal $\bar{d} \quad$ 2. and 3 .
$\therefore \bar{d} \notin \operatorname{range}(f)$
f is not an onto function.

$\mathbb{P}\left(\Sigma^{*}\right)$ is Uncountable

TBP: $\mathbb{P}\left(\Sigma^{*}\right)$ is uncountable.
TBP: $\left|\mathbb{P}\left(\Sigma^{*}\right)\right| \neq\left|\mathbb{Z}^{+}\right|$
Countably Infinite
FSOC: $\left|\mathbb{P}\left(\Sigma^{*}\right)\right|=\left|\mathbb{Z}^{+}\right|$

1. bijection $\exists f: \mathbb{Z}^{+} \rightarrow \mathbb{P}\left(\Sigma^{*}\right)$
2. f can be represented as a table

Same cardinality
3. The f in the table is not onto.
$\rightarrow \leftarrow \quad f$ both is and is not onto
$\therefore\left|\mathbb{P}\left(\Sigma^{*}\right)\right| \neq\left|\mathbb{Z}^{+}\right|$
$\therefore \mathbb{P}\left(\Sigma^{*}\right)$ is uncountably infinite

Halting Problem

Definition

The Halting Problem is the problem of constructing a program, H, that takes two parameters: P, another computer program and I, input for P. H should report "halts" or "loops forever" depending on whether or not P halts on input I.

$$
H(P, I)= \begin{cases}\text { "halts" } & \text { if } P(I) \text { halts } \\ \text { "loops forever" } & \text { if } P(I) \text { does not halt }\end{cases}
$$

Programs as Data

A program is encoded in some way (Fortran, pseudo-code, Java, bytecode). An encoding can be expressed as a sequence of symbols across some alphabet. Any alphabet can be re-encoded using strings of bits. Any program can be expressed as a sequence of bits.
A program, encoded as a sequence of bits, can be given as input to a program. The receiving program may or may not respect the "right" interpretation.

Programs as Data

A program is encoded in some way (Fortran, pseudo-code, Java, bytecode). An encoding can be expressed as a sequence of symbols across some alphabet. Any alphabet can be re-encoded using strings of bits. Any program can be expressed as a sequence of bits.
A program, encoded as a sequence of bits, can be given as input to a program. The receiving program may or may not respect the "right" interpretation. Any program that takes a single input parameter can be passed itself (or rather, its own encoding) as its input.

Halting Problem

Definition

$$
H(P, I)= \begin{cases}\text { "halt" } & \text { if } P(I) \text { halts } \\ \text { "loop" } & \text { if } P(I) \text { does not halt }\end{cases}
$$

Halting Problem

Definition

$$
H(P, I)= \begin{cases}\text { "halt" } & \text { if } P(I) \text { halts } \\ \text { "loop" } & \text { if } P(I) \text { does not halt }\end{cases}
$$

Definition

FSOC Assume H exists. Construct D

$$
D(P)= \begin{cases}\text { loop forever } & \text { if } H(D, P) \text { halts } \\ \text { return } & \text { if } H(D, P) \text { does not halt }\end{cases}
$$

Halting Problem

Definition

$$
H(P, I)= \begin{cases}\text { "halt" } & \text { if } P(I) \text { halts } \\ \text { "loop" } & \text { if } P(I) \text { does not halt }\end{cases}
$$

Definition

FSOC Assume H exists. Construct D

$$
D(P)= \begin{cases}\text { loop forever } & \text { if } H(D, P) \text { halts } \\ \text { return } & \text { if } H(D, P) \text { does not halt }\end{cases}
$$

What does $H(D, D)$ return?

