Diagonalization
Halting Problem

April 18, 2022

Diagonalization
Halting Problem

Diagonalization

Halting Problem

Diagonalization
Halting Problem

alphabet A finite set of symbols; e.g. the binary alphabetis {0,1}.
string A sequence of zero or more symbols from an alphabet; e.g. ¢ (the
empty string), 01011100010, 0, 101
¥ is used to represent the alphabet as a whole. ¢ (or \) stand for the
empty string.

language A set of strings; e.g. {w|w starts with 1}, {00,01,10,11}.
> The star (Kleene’s star operator) means zero or more copies of the
symbol before the star. This is short hand for the set of all the strings
across the alphabet %.
Note: that means X* is a set.

Diagonalization
Halting Problem

{0,1}* is infinite. Consider the set of just strings containing only '1’ symbols. The
lengths of different strings in this language range across non-negative integers.

That is infinite.
Is ¥* countable?
If so, how to prove it.

Diagonalization
Halting Problem

{0,1}* is infinite. Consider the set of just strings containing only '1’ symbols. The
lengths of different strings in this language range across non-negative integers.

That is infinite.

Is ©* countable?

If so, how to prove it.

Find bijection f : &¥* — Z*.

Diagonalization
Halting Problem

Define the length-then-value ordering for binary strings: wy; comes before ws if
|wq| < |wa| or |wq| = |wa| A the unsigned number represented by w; is less than

the number represented by ws.
So, ©* can be put in order by the above ordering:

{e,0,1,00,01,10,11,000,001,010,011,100,101,110,111, ...}

Vz € Zlet s = |logy(2)| and p = 2°. Then f(z) = z — p written as a binary number
s characters long.

Diagonalization
Halting Problem

Vz € Z let s = |logs(z)| and p = 25. Then f(z) = z — p written as a binary number

s characters long.

z|s z—p f(2)
110 0 ™=¢
2|1 0 "0"
31 1 "1"
412 0 "00"
5|2 1 "01"
6|2 2 "10"
7|2 3 "1"
813 0 "000"
913 1 "001"
10 | 3 2 "010"
11 |3 3 "011"

Diagonalization
Halting Problem

Vz € Zlet s = |logs(z)| and p = 25. Then f(z) = z — p written as a binary number

s characters long.
HER

Diagonalization
Halting Problem

Vz € Zlet s = |logs(z)| and p = 25. Then f(z) = z — p written as a binary number

s characters long.
f(23) =0111
f(32) =

Diagonalization
Halting Problem

Vz € Zlet s = |logs(z)| and p = 25. Then f(z) = z — p written as a binary number

s characters long.
f(23) =0111
f(32) =00000
() =

Diagonalization
Halting Problem

Vz € Zlet s = |logs(z)| and p = 25. Then f(z) = z — p written as a binary number

s characters long.
f(23) =0111
f(32) =00000
f~1(e) =0
f~1(1000) =

Diagonalization
Halting Problem

Vz € Zlet s = |logs(z)| and p = 25. Then f(z) = z — p written as a binary number

s characters long.
f(23) =0111
f(32) =00000
f~1(e) =0
f~1(1000) =24
f~1(00010) =

Diagonalization
Halting Problem

Vz € Zlet s = |logs(z)| and p = 25. Then f(z) = z — p written as a binary number

s characters long.
f(23) =0111
f(32) =00000
f~1(e) =0
f~1(1000) =24
f~1(00010) =34

Diagonalization
Halting Problem

¢ ¥ ={0,1} = the binary alphabet
o Y* =

Diagonalization
Halting Problem

¢ ¥ ={0,1} = the binary alphabet

e Y* ={ all binary strings}
{e,0,1,00,01,10,11,000,001,010,011,100,101,110, 111, ...}

* P(X*) = Set of all subsets of ©*

Diagonalization
Halting Problem

¢ ¥ ={0,1} = the binary alphabet

e Y* ={ all binary strings}
{e,0,1,00,01,10,11,000,001,010,011,100,101,110, 111, ...}

* P(X*) = Set of all subsets of ©*
{ all binary languages}

Diagonalization
Halting Problem

P(X*) is uncountable.
[P(")| > |27
[P(X7)| > Ro

Diagonalization
Halting Problem

TBP: P(X*) is infinite.

Let S = {L|L € P({0,1}*) A|L| = 1} Sis the set of all singleton languages. Since
there is one element in S for each element in {0,1}*, |S| = [{0,1}*|.

S is (countably) infinite.
S c P({0,1}*) = |S| < [P({0, 1}")]
.. P({0, 1}*) is infinite.

Diagonalization
Halting Problem

TBP: P(X*) is uncountable.

TBP: |P(X*)| # |ZT| Countably Infinite
FSOC: [P(Z*)| = |Z*| -
1. bijection 3 f: ZT — P(X*) Same cardinality

2. fcan be represented as a table

Diagonalization
Halting Problem

BOwWN =

—~ ooole

oo ==
- = o o|1

oo = =00
- o = o| 01
oo = =10
o o o ol 11
o o o =000
- o © o|001

Each row represents a subsetof ¥* or an element of P(X*).
A sequence of Boolean values whether the string atop the
column is/is not in the language in that row.

$5 100 o © © —
3¢
£ 000 |~ o o ©
8=

e= Il lo o oo

Ol +~o0c o :

)

0o+~ o~ 9

o)

Q

I

lloo ~ +~ Q

o)

01100 Il

.\)

3l0o 0o+ =

S—

-—

~aN®mST O

1

Diagonalization
Halting Problem

() —

O ~ O ~ O O

vw O - O O -~ «— O O

1 i 01 01 0 1 O
210 o 11 1 0 0 O
3/0 0 0O 0 0 0O 0 O
411 0 1 1 0 0 0 1

Let f(l) = b,'1 b,'gb,'3b,'4b,'5 c.
Let d, the diagonal language, be =0110...

Diagonalization
Halting Problem

. hOWODND =

- O O Ol¢
oo = =
- = o ol1
o o = =[00
~ o = o| 01
oo = =10
oo ool
© © © =(000
~ © © o| 001

Let f(l) = b,'1 b,'gb,'3b,'4b,'5 c.
Let d, the diagonal language, be b11b22b33b44 ... = 0110...
Let d, the anti-diagonal language, be bi1boobz3bss ... = 1001...

Diagonalization
Halting Problem

. hOWODND =

- O O Ol¢
oo = =
- = o ol1
o o = =[00
~ o = o| 01
oo = =10
oo ool
© © © =(000
~ © © o| 001

Let f(l) = b,'1 b,'gb,'3b,'4b,'5 c.

Let d, the diagonal language, be by1boob3zbys ... = 0110...

Let d, the anti-diagonal language, be bi1bosbazbas ... = 1001...
d ¢ range(f).

Diagonalization
Halting Problem

TBP: d ¢ range(f).
FSOC: d € range(f).
1. EIzeZ+9f(z):
2. f(z2),=
3. d;=b

—+« f(2) cannot equal d

d ¢ range(f)
fis not an onto function.

Definition of range

f(z) is a sequence of bits
by construction

2. and 3.

Diagonalization
Halting Problem

TBP: P(X*) is uncountable.

TBP:
FSOC:
1.

2.

3.

¢

|P(Z*)| # |ZT Countably Infinite

[P(Z*)] = |Z*]

bijection 3 f : ZT — P(X*) Same cardinality

f can be represented as a table .
The f in the table is not onto.

f both is and is not onto 1. and 3.

[P(=*)] # 12|

P(X*) is uncountably infinite

Diagonalization
Halting Problem

Definition

The is the problem of constructing a program, H, that takes two
parameters: P, another computer program and /, input for P. H should report
“halts” or “loops forever” depending on whether or not P halts on input /.

"halts" if P(/) halts
"loops forever" if P(/) does not halt

H(P, 1) = {

Diagonalization
Halting Problem

A program is encoded in some way (Fortran, pseudo-code, Java, bytecode). An
encoding can be expressed as a sequence of symbols across some alphabet.
Any alphabet can be re-encoded using strings of bits.

Any program can be expressed as a sequence of bits.

A program, encoded as a sequence of bits, can be given as input to a program.
The receiving program may or may not respect the “right” interpretation.

Diagonalization
Halting Problem

A program is encoded in some way (Fortran, pseudo-code, Java, bytecode). An
encoding can be expressed as a sequence of symbols across some alphabet.
Any alphabet can be re-encoded using strings of bits.

Any program can be expressed as a sequence of bits.

A program, encoded as a sequence of bits, can be given as input to a program.
The receiving program may or may not respect the “right” interpretation.

Any program that takes a single input parameter can be passed itself (or rather, its

own encoding) as its input.

Diagonalization
Halting Problem

Definition

["halt" if P(/) halts
H(P,I) = { "loop" if P(/) does not halt

Diagonalization
Halting Problem

Definition

["halt" if P(/) halts
H(P,I) = { "loop" if P(/) does not halt

Definition
FSOC Assume H exists. Construct D

D(P) — loop forever if H(D, P) halts
(P)= return if H(D, P) does not halt

Diagonalization
Halting Problem

Definition

["halt" if P(/) halts
H(P,I) = { "loop" if P(/) does not halt

Definition
FSOC Assume H exists. Construct D
D(P) = loop forever if H(D, P) halts
~ | return if H(D, P) does not halt

What does H(D, D) return?

	Diagonalization
	Halting Problem

