
Diagonalization
Halting Problem

The Fundamentals: Algorithms
Diagonalization & Halting Problem

April 18, 2022

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Outline

Diagonalization

Halting Problem

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Languages

alphabet A finite set of symbols; e.g. the binary alphabet is {0, 1}.
string A sequence of zero or more symbols from an alphabet; e.g. ε (the

empty string), 01011100010, 0, 101
Σ is used to represent the alphabet as a whole. ε (or λ) stand for the
empty string.

language A set of strings; e.g. {w |w starts with 1}, {00, 01, 10, 11}.
Σ∗ The star (Kleene’s star operator) means zero or more copies of the

symbol before the star. This is short hand for the set of all the strings
across the alphabet Σ.
Note: that means Σ∗ is a set.

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Cardinality of {0, 1}∗

{0, 1}∗ is infinite. Consider the set of just strings containing only ’1’ symbols. The
lengths of different strings in this language range across non-negative integers.
That is infinite.
Is Σ∗ countable?
If so, how to prove it.

Find bijection f : Σ∗ → Z+.

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Cardinality of {0, 1}∗

{0, 1}∗ is infinite. Consider the set of just strings containing only ’1’ symbols. The
lengths of different strings in this language range across non-negative integers.
That is infinite.
Is Σ∗ countable?
If so, how to prove it.
Find bijection f : Σ∗ → Z+.

The Fundamentals: Algorithms

Diagonalization
Halting Problem

f : {0, 1}∗ → Z+

Define the length-then-value ordering for binary strings: w1 comes before w2 if
|w1| < |w2| or |w1| = |w2| ∧ the unsigned number represented by w1 is less than
the number represented by w2.
So, Σ∗ can be put in order by the above ordering:

{ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ...}

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s . Then f (z) = z − p written as a binary number
s characters long.

The Fundamentals: Algorithms

Diagonalization
Halting Problem

f : {0, 1}∗ → Z+

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s . Then f (z) = z − p written as a binary number
s characters long.

z s z − p f (z)
1 0 0 "" = ε
2 1 0 "0"
3 1 1 "1"
4 2 0 "00"
5 2 1 "01"
6 2 2 "10"
7 2 3 "11"
8 3 0 "000"
9 3 1 "001"

10 3 2 "010"
11 3 3 "011"

The Fundamentals: Algorithms

Diagonalization
Halting Problem

f : {0, 1}∗ → Z+

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s . Then f (z) = z − p written as a binary number
s characters long.
f (23) =

0111
f (32) =00000
f −1(ε) =0
f −1(1000) =24
f −1(00010) =34

The Fundamentals: Algorithms

Diagonalization
Halting Problem

f : {0, 1}∗ → Z+

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s . Then f (z) = z − p written as a binary number
s characters long.
f (23) =0111
f (32) =

00000
f −1(ε) =0
f −1(1000) =24
f −1(00010) =34

The Fundamentals: Algorithms

Diagonalization
Halting Problem

f : {0, 1}∗ → Z+

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s . Then f (z) = z − p written as a binary number
s characters long.
f (23) =0111
f (32) =00000
f −1(ε) =

0
f −1(1000) =24
f −1(00010) =34

The Fundamentals: Algorithms

Diagonalization
Halting Problem

f : {0, 1}∗ → Z+

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s . Then f (z) = z − p written as a binary number
s characters long.
f (23) =0111
f (32) =00000
f −1(ε) =0
f −1(1000) =

24
f −1(00010) =34

The Fundamentals: Algorithms

Diagonalization
Halting Problem

f : {0, 1}∗ → Z+

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s . Then f (z) = z − p written as a binary number
s characters long.
f (23) =0111
f (32) =00000
f −1(ε) =0
f −1(1000) =24
f −1(00010) =

34

The Fundamentals: Algorithms

Diagonalization
Halting Problem

f : {0, 1}∗ → Z+

∀z ∈ Z let s = ⌊log2(z)⌋ and p = 2s . Then f (z) = z − p written as a binary number
s characters long.
f (23) =0111
f (32) =00000
f −1(ε) =0
f −1(1000) =24
f −1(00010) =34

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Cardinality of P(Σ∗)
Review of Terms

• Σ = {0, 1} = the binary alphabet
• Σ∗ =

{ all binary strings}
{ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ...}
• P(Σ∗) = Set of all subsets of Σ∗

{ all binary languages}

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Cardinality of P(Σ∗)
Review of Terms

• Σ = {0, 1} = the binary alphabet
• Σ∗ = { all binary strings}
{ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ...}
• P(Σ∗) = Set of all subsets of Σ∗

{ all binary languages}

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Cardinality of P(Σ∗)
Review of Terms

• Σ = {0, 1} = the binary alphabet
• Σ∗ = { all binary strings}
{ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ...}
• P(Σ∗) = Set of all subsets of Σ∗

{ all binary languages}

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Cardinality of P(Σ∗)

P(Σ∗) is uncountable.
|P(Σ∗)| > |Z+|
|P(Σ∗)| > ℵ0

The Fundamentals: Algorithms

Diagonalization
Halting Problem

P(Σ∗) is Infinite

TBP: P(Σ∗) is infinite.
Let S = {L|L ∈ P({0, 1}∗) ∧ |L| = 1} S is the set of all singleton languages. Since
there is one element in S for each element in {0, 1}∗, |S| = |{0, 1}∗|.
S is (countably) infinite.
S ⊂ P({0, 1}∗) ⇒ |S| ≤ |P({0, 1}∗)|
∴ P({0, 1}∗) is infinite.

The Fundamentals: Algorithms

Diagonalization
Halting Problem

P(Σ∗) is Uncountable

TBP: P(Σ∗) is uncountable.
TBP: |P(Σ∗)| ̸= |Z+| Countably Infinite

FSOC: |P(Σ∗)| = |Z+|
1. bijection ∃ f : Z+ → P(Σ∗) Same cardinality
2. f can be represented as a table

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Looking at f
ε 0 1 00 01 10 11 00

0

00
1

…
1 0 1 0 1 0 1 0 1 0 …
2 0 1 0 1 1 1 0 0 0 …
3 0 0 1 0 0 0 0 0 0 …
4 1 0 1 0 1 0 0 0 1 …
...

Each row represents a subset of Σ∗ or an element of P(Σ∗).
A sequence of Boolean values whether the string atop the
column is/is not in the language in that row.

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Looking at f
ε 0 1 00 01 10 11 00

0

00
1

…
1 0 1 0 1 0 1 0 1 0 …
2 0 1 0 1 1 1 0 0 0 …
3 0 0 1 0 0 0 0 0 0 …
4 1 0 1 0 1 0 0 0 1 …
...

Let f (i) = bi1bi2bi3bi4bi5 . . .

Let d , the diagonal language, be b11b22b33b44 . . . = 0110…
Let d , the anti-diagonal language, be b11b22b33b44 . . . = 1001…
d ̸∈ range(f).

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Looking at f
ε 0 1 00 01 10 11 00

0

00
1

…
1 0 1 0 1 0 1 0 1 0 …
2 0 1 0 1 1 1 0 0 0 …
3 0 0 1 0 0 0 0 0 0 …
4 1 0 1 0 1 0 0 0 1 …
...

Let f (i) = bi1bi2bi3bi4bi5 . . .
Let d , the diagonal language, be b11b22b33b44 . . . = 0110…

Let d , the anti-diagonal language, be b11b22b33b44 . . . = 1001…
d ̸∈ range(f).

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Looking at f
ε 0 1 00 01 10 11 00

0

00
1

…
1 0 1 0 1 0 1 0 1 0 …
2 0 1 0 1 1 1 0 0 0 …
3 0 0 1 0 0 0 0 0 0 …
4 1 0 1 0 1 0 0 0 1 …
...

Let f (i) = bi1bi2bi3bi4bi5 . . .
Let d , the diagonal language, be b11b22b33b44 . . . = 0110…
Let d , the anti-diagonal language, be b11b22b33b44 . . . = 1001…

d ̸∈ range(f).

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Looking at f
ε 0 1 00 01 10 11 00

0

00
1

…
1 0 1 0 1 0 1 0 1 0 …
2 0 1 0 1 1 1 0 0 0 …
3 0 0 1 0 0 0 0 0 0 …
4 1 0 1 0 1 0 0 0 1 …
...

Let f (i) = bi1bi2bi3bi4bi5 . . .
Let d , the diagonal language, be b11b22b33b44 . . . = 0110…
Let d , the anti-diagonal language, be b11b22b33b44 . . . = 1001…
d ̸∈ range(f).

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Looking at f

TBP: d ̸∈ range(f).
FSOC: d ∈ range(f).

1. ∃z ∈ Z+ ∋ f (z) = d Definition of range
2. f (z)z = b f (z) is a sequence of bits
3. d z = b by construction

→← f (z) cannot equal d 2. and 3.
∴ d ̸∈ range(f)

f is not an onto function.

The Fundamentals: Algorithms

Diagonalization
Halting Problem

P(Σ∗) is Uncountable

TBP: P(Σ∗) is uncountable.
TBP: |P(Σ∗)| ̸= |Z+| Countably Infinite

FSOC: |P(Σ∗)| = |Z+|
1. bijection ∃ f : Z+ → P(Σ∗) Same cardinality
2. f can be represented as a table
3. The f in the table is not onto.

→← f both is and is not onto 1. and 3.
∴ |P(Σ∗)| ̸= |Z+|
∴ P(Σ∗) is uncountably infinite

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Halting Problem

Definition
The Halting Problem is the problem of constructing a program, H , that takes two
parameters: P , another computer program and I , input for P . H should report
“halts” or “loops forever” depending on whether or not P halts on input I .

H(P , I) =
{

"halts" if P(I) halts
"loops forever" if P(I) does not halt

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Programs as Data

A program is encoded in some way (Fortran, pseudo-code, Java, bytecode). An
encoding can be expressed as a sequence of symbols across some alphabet.
Any alphabet can be re-encoded using strings of bits.
Any program can be expressed as a sequence of bits.
A program, encoded as a sequence of bits, can be given as input to a program.
The receiving program may or may not respect the “right” interpretation.

Any program that takes a single input parameter can be passed itself (or rather, its
own encoding) as its input.

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Programs as Data

A program is encoded in some way (Fortran, pseudo-code, Java, bytecode). An
encoding can be expressed as a sequence of symbols across some alphabet.
Any alphabet can be re-encoded using strings of bits.
Any program can be expressed as a sequence of bits.
A program, encoded as a sequence of bits, can be given as input to a program.
The receiving program may or may not respect the “right” interpretation.
Any program that takes a single input parameter can be passed itself (or rather, its
own encoding) as its input.

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Halting Problem

Definition

H(P , I) =
{

"halt" if P(I) halts
"loop" if P(I) does not halt

Definition
FSOC Assume H exists. Construct D

D(P) =

{
loop forever if H(D,P) halts
return if H(D,P) does not halt

What does H(D,D) return?

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Halting Problem

Definition

H(P , I) =
{

"halt" if P(I) halts
"loop" if P(I) does not halt

Definition
FSOC Assume H exists. Construct D

D(P) =

{
loop forever if H(D,P) halts
return if H(D,P) does not halt

What does H(D,D) return?

The Fundamentals: Algorithms

Diagonalization
Halting Problem

Halting Problem

Definition

H(P , I) =
{

"halt" if P(I) halts
"loop" if P(I) does not halt

Definition
FSOC Assume H exists. Construct D

D(P) =

{
loop forever if H(D,P) halts
return if H(D,P) does not halt

What does H(D,D) return?

The Fundamentals: Algorithms

	Diagonalization
	Halting Problem

