The Fundamentals: Algorithms

Diagonalization & Halting Problem

April 18, 2022

The Fundamentals: Algorithms

Outline

Diagonalization

Halting Problem

The Fundamentals: Algorithms

Languages

- alphabet A finite set of **symbols**; *e.g.* the *binary alphabet* is $\{0, 1\}$.
 - string A sequence of zero or more symbols from an alphabet; *e.g.* ε (the empty string), 01011100010, 0, 101
 - Σ is used to represent the alphabet as a whole. ε (or λ) stand for the empty string.
- language A set of strings; e.g. $\{w | w \text{ starts with } 1\}$, $\{00, 01, 10, 11\}$.
 - Σ* The star (Kleene's star operator) means zero or more copies of the symbol before the star. This is short hand for the set of **all** the strings across the alphabet Σ.
 Note: that means Σ* is a *set*.

Cardinality of $\{0, 1\}^*$

 $\{0,1\}^*$ is infinite. Consider the set of just strings containing only '1' symbols. The lengths of different strings in this language range across non-negative integers. That is infinite. Is Σ^* countable?

If so, how to prove it.

Cardinality of $\{0, 1\}^*$

 $\{0,1\}^*$ is infinite. Consider the set of just strings containing only '1' symbols. The lengths of different strings in this language range across non-negative integers. That is infinite.

Is Σ^* countable?

If so, how to prove it. Find bijection $f: \Sigma^* \to \mathbb{Z}^+$.

$$f: \{0,1\}^*
ightarrow \mathbb{Z}^+$$

Define the *length-then-value* ordering for binary strings: w_1 comes before w_2 if $|w_1| < |w_2|$ or $|w_1| = |w_2| \land$ the unsigned number represented by w_1 is less than the number represented by w_2 .

So, Σ^* can be put in order by the above ordering:

 $\{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ...\}$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number *s* characters long.

$\overline{[f:\{0,1\}^*} ightarrow \mathbb{Z}^+$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number *s* characters long.

Ζ	S	z - p	f(z)
1	0	0	"" = ε
2	1	0	"0"
3	1	1	"1"
4	2	0	"00"
5	2	1	"01"
6	2	2	"10"
7	2	3	"11"
8	3	0	"000"
9	3	1	"001"
10	3	2	"010"
11	3	3	"011"

$$f: \{0,1\}^*
ightarrow \mathbb{Z}^+$$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number *s* characters long. f(23) =

$$f: \{0,1\}^*
ightarrow \mathbb{Z}^+$$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number *s* characters long. f(23) = 0111f(32) =

$$f: \{0,1\}^*
ightarrow \mathbb{Z}^+$$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long. f(23) = 0111 f(32) = 00000 $f^{-1}(\varepsilon) =$

$$f: \{\mathbf{0},\mathbf{1}\}^*
ightarrow \mathbb{Z}^+$$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long. f(23) = 01111 f(32) = 000000 $f^{-1}(\varepsilon) = 0$ $f^{-1}(1000) =$

$$f: \{\mathbf{0},\mathbf{1}\}^*
ightarrow \mathbb{Z}^+$$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long. f(23) = 0111 f(32) = 00000 $f^{-1}(\varepsilon) = 0$ $f^{-1}(1000) = 24$ $f^{-1}(00010) =$

$$f: \{\mathbf{0},\mathbf{1}\}^*
ightarrow \mathbb{Z}^+$$

 $\forall z \in \mathbb{Z} \text{ let } s = \lfloor \log_2(z) \rfloor$ and $p = 2^s$. Then f(z) = z - p written as a binary number s characters long. f(23) = 0111 f(32) = 00000 $f^{-1}(\varepsilon) = 0$ $f^{-1}(1000) = 24$ $f^{-1}(00010) = 34$

Cardinality of $\mathbb{P}(\Sigma^*)$

Review of Terms

The Fundamentals: Algorithms

Cardinality of $\mathbb{P}(\Sigma^*)$

Review of Terms

- $\Sigma = \{0, 1\} =$ the *binary* alphabet
- $\Sigma^* = \{ \text{ all binary strings} \}$ $\{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ... \}$
- P(Σ*) = Set of all subsets of Σ*

Cardinality of $\mathbb{P}(\Sigma^*)$

Review of Terms

- $\Sigma = \{0, 1\} =$ the *binary* alphabet
- $\Sigma^* = \{ \text{ all binary strings} \}$ $\{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ... \}$
- P(Σ*) = Set of all subsets of Σ*
 { all binary languages }

Cardinality of $\mathbb{P}(\Sigma^*)$

$\mathbb{P}(\Sigma^*)$ is uncountable. $|\mathbb{P}(\Sigma^*)| > |\mathbb{Z}^+|$ $|\mathbb{P}(\Sigma^*)| > \aleph_0$

The Fundamentals: Algorithms

$\mathbb{P}(\Sigma^*)$ is Infinite

TBP: $\mathbb{P}(\Sigma^*)$ is *infinite*.

Let $S = \{L | L \in \mathbb{P}(\{0,1\}^*) \land |L| = 1\}$ *S* is the set of all *singleton* languages. Since there is one element in *S* for each element in $\{0,1\}^*$, $|S| = |\{0,1\}^*|$. *S* is (countably) infinite. $S \subset \mathbb{P}(\{0,1\}^*) \Rightarrow |S| \leq |\mathbb{P}(\{0,1\}^*)|$ $\therefore \mathbb{P}(\{0,1\}^*)$ is infinite.

$\mathbb{P}(\Sigma^*)$ is Uncountable

TBP: $\mathbb{P}(\Sigma^*)$ is *uncountable*.

- TBP: $|\mathbb{P}(\Sigma^*)| \neq |\mathbb{Z}^+|$
- $\mathsf{FSOC:} \quad |\mathbb{P}(\Sigma^*)| = |\mathbb{Z}^+|$
 - 1. bijection $\exists f : \mathbb{Z}^+ \to \mathbb{P}(\Sigma^*)$
 - 2. *f* can be represented as a table

Countably Infinite

Same cardinality

Looking at f

Each row represents a *subset* of Σ^* or an element of $\mathbb{P}(\Sigma^*)$. A sequence of Boolean values whether the string atop the column is/is not in the language in that row.

Looking at f

The Fundamentals: Algorithms

Looking at f

Looking at f

Looking at f

Looking at f

TBP: $\overline{d} \notin range(f)$.FSOC: $\overline{d} \in range(f)$.1. $\exists z \in \mathbb{Z} + \ni f(z) = \overline{d}$ 2. $f(z)_z = b$ 3. $\overline{d}_z = \overline{b}$ $\rightarrow \leftarrow f(z)$ cannot equal \overline{d} 2. and 3. $\therefore \ \overline{d} \notin range(f)$ f is not an onto function.

$\mathbb{P}(\Sigma^*)$ is Uncountable

 $\therefore \mathbb{P}(\Sigma^*)$ is **uncountably** infinite

Halting Problem

Definition

The Halting Problem is the problem of constructing a program, H, that takes two parameters: P, another computer program and I, input for P. H should report "halts" or "loops forever" depending on whether or not P halts on input I.

 $H(P, I) = \begin{cases} \text{"halts"} & \text{if } P(I) \text{ halts} \\ \text{"loops forever"} & \text{if } P(I) \text{ does not halt} \end{cases}$

Programs as Data

A program is encoded in some way (Fortran, pseudo-code, Java, bytecode). An encoding can be expressed as a sequence of symbols across some alphabet. Any alphabet can be re-encoded using strings of bits. Any program can be expressed as a sequence of bits. A program, encoded as a sequence of bits, can be given as input to a program. The receiving program may or may not respect the "right" interpretation.

Programs as Data

A program is encoded in some way (Fortran, pseudo-code, Java, bytecode). An encoding can be expressed as a sequence of symbols across some alphabet. Any alphabet can be re-encoded using strings of bits. Any program can be expressed as a sequence of bits. A program, encoded as a sequence of bits, can be given as input to a program. The receiving program may or may not respect the "right" interpretation. Any program that takes a single input parameter can be passed itself (or rather, its own encoding) as its input.

Halting Problem

Definition

$$H(P, I) = \begin{cases} \text{"halt"} & \text{if } P(I) \text{ halts} \\ \text{"loop"} & \text{if } P(I) \text{ does not halt} \end{cases}$$

The Fundamentals: Algorithms

Halting Problem

Definition

$$H(P, I) = \begin{cases} \text{"halt"} & \text{if } P(I) \text{ halts} \\ \text{"loop"} & \text{if } P(I) \text{ does not halt} \end{cases}$$

Definition

FSOC Assume *H* exists. Construct *D*

$$D(P) = \begin{cases} \text{loop forever} & \text{if } H(D, P) \text{ halts} \\ \text{return} & \text{if } H(D, P) \text{ does not halt} \end{cases}$$

Halting Problem

Definition

$$H(P, I) = \begin{cases} \text{"halt"} & \text{if } P(I) \text{ halts} \\ \text{"loop"} & \text{if } P(I) \text{ does not halt} \end{cases}$$

Definition

FSOC Assume *H* exists. Construct *D*

$$D(P) = \begin{cases} \text{loop forever} & \text{if } H(D, P) \text{ halts} \\ \text{return} & \text{if } H(D, P) \text{ does not halt} \end{cases}$$

What does H(D, D) return?