Propositional Logic

Definition
Translating English

1.1.14 Let p, q, and r be the propositions

p: You get an A on the final exam.
q: You do every exercise in this book.
r: You get an A in this class.

Write these propositions using p, q, and r and logical connectives (including negations).

a. You get an A in this class, but you do not do every exercise in this book.

b. You get an A on the final, you do every exercise in this book, and you get an A in this class.

c. To get an A in this class, it is necessary for you to get an A on the final.
Propositional Logic

Translating English

1.1.14 (con’t) Let \(p, q, \) and \(r \) be the propositions
\(p : \) You get an A on the final exam.
\(q : \) You do every exercise in this book.
\(r : \) You get an A in this class.
Write these propositions using \(p, q, \) and \(r \) and logical connectives (including negations).

a. You get an A on the final, but you don't do every exercise in this book; nevertheless, you get an A in this class.

b. Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.

c. You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final.
Truth Tables

Construct a truth table for each of these compound propositions.

a \(p \rightarrow \neg p \)
b \(p \leftrightarrow \neg p \)
c \(p \oplus (p \lor q) \)
d \((p \land q) \rightarrow (p \lor q) \)
e \((q \rightarrow \neg p) \leftrightarrow (p \leftrightarrow q) \)
f \((p \leftrightarrow q) \oplus (p \leftrightarrow \neg q) \)