Basic Structures

Sequences and Series

February 29, 2016
Outline

1. Homework

2. Sequences
2.3 10 Which of the following functions from \([a, b, c, d]\) to itself are one-to-one. What does 1-to-1 mean?
2.3 10 Which of the following functions from \([a, b, c, d]\) to itself are one-to-one. What does 1-to-1 mean? Each element in the range has a single pre-image in the domain.

- a \(f(a) = b, f(b) = a, f(c) = c, f(d) = d\)
- b \(f(a) = b, f(b) = b, f(c) = d, f(d) = c\)
- c \(f(a) = d, f(b) = b, f(c) = c, f(d) = d\)

PS: Which are onto? What does onto mean?
2.3 10 Which of the following functions from \([a, b, c, d]\) to itself are one-to-one. What does 1-to-1 mean? Each element in the range has a single pre-image in the domain.

a \(f(a) = b, f(b) = a, f(c) = c, f(d) = d \)

b \(f(a) = b, f(b) = b, f(c) = d, f(d) = c \)

c \(f(a) = d, f(b) = b, f(c) = c, f(d) = d \)

PS: Which are onto? What does onto mean? Each element in the codomain is in the range (the codomain is the range).
Sequence

Motivation

A taxi charges $1.00 for the first mile and $0.50 for each additional mile.

So

<table>
<thead>
<tr>
<th>Miles</th>
<th>Cost($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>$1.00 + 0.50(n - 1)$</td>
</tr>
</tbody>
</table>
Sequence

Motivation

Example

A taxi charges $1.00 for the first mile and $0.50 for each additional mile.

So

<table>
<thead>
<tr>
<th>Miles</th>
<th>Cost($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>2.50</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>$1.00 + 0.50(n - 1)$</td>
</tr>
</tbody>
</table>

Another way to express this:

$C_1 = 1.00$, $C_2 = 1.50$, $C_3 = 2.00$, $C_4 = 2.50$, ...

This is an example of a sequence.
Sequence

Definition

A **sequence** is a function from a subset of the integers (usually \(\{0, 1, 2, \ldots\}\) or the set \(\{1, 2, 3, \ldots\}\)) to a set \(S\).

A sequence, say named \(S\), is denoted by the variable \(S\) or the set of terms, \(\{s_n\}\). The term \(s_n\) is the \(n^{th}\) value in the sequence. Note that \(S\) or \(\{s_n\}\) denotes the entire sequence.

Note in our example: \(C : \mathbb{Z}^+ \rightarrow \mathbb{R}\)
\[C(1) = C_1 = 1.00, \text{ etc.}\]
Sequence

Definition

Example

Let \(s = 2, 4, 6, \ldots \)
\[s_1 = 2, s_2 = 4, \ldots, s_n = 2n \]
Sequence

Definition

Example

Let $s = 2, 4, 6, ...$

$s_1 = 2, s_2 = 4, ..., s_n = 2n$

s is an example of an infinite sequence.

Example

$t = a, a, b, a, b$

$t_1 = a, t_2 = a, t_3 = b, t_4 = a, t_5 = b$
Sequence

Definition

Example

Let \(s = 2, 4, 6, \ldots \)
\(s_1 = 2, s_2 = 4, \ldots, s_n = 2n \)

\(s \) is an example of an infinite sequence.

Example

\(t = a, a, b, a, b \)
\(t_1 = a, t_2 = a, t_3 = b, t_4 = a, t_5 = b \)

\(t \) is an example of a finite sequence.
Sequence
Geometric Progression

Definition
A geometric progression is a sequence of the form

\[\{ g_n \}_{n=0}^\infty = a, ar, ar^2, ..., ar^n, ... \]

where \(a \) is the initial term and \(r \) is the common ratio, and \(a \) and \(r \) are real numbers and \(g_n = ar^n \).

Example
\[\{ b_n \}_{n=0}^\infty \quad b_n = (-1)^n \]
Sequences

Sequence

Geometric Progression

Definition

A geometric progression is a sequence of the form

$$\{g_n\}_{n=0}^{\infty} = a, ar, ar^2, \ldots, ar^n, \ldots$$

where a is the initial term and r is the common ratio, and a and r are real numbers and $g_n = ar^n$.

Example

$$\{b_n\}_{n=0}^{\infty} \quad b_n = (-1)^n$$

$b_0 = 1, b_1 = -1, b_2 = 1, \ldots$
Definition

A geometric progression is a sequence of the form

\[\{g_n\}_{n=0}^{\infty} = a, ar, ar^2, \ldots, ar^n, \ldots \]

where \(a\) is the initial term and \(r\) is the common ratio, and \(a\) and \(r\) are real numbers and \(g_n = ar^n\).

Example

\[\{b_n\}_{n=0}^{\infty} \quad b_n = (-1)^n \]

\(b_0 = 1, b_1 = -1, b_2 = 1, \ldots\)

Is a geometric progression. Initial term = ?, common ratio = ?
Sequence
Geometric Sequence Practice

Example

\[
\{c_n\}_{n=0}^{\infty} \quad c_n = 2 \cdot 5^n \\
c_0 = 2, \quad c_1 = 10, \quad c_2 = 50, \quad c_3 = 250, \quad c_4 = 1250, \ldots
\]

Initial term? Ratio?
Sequence

Geometric Sequence Practice

Example

\[
\{c_n\}_{n=0}^\infty = 2 \cdot 5^n \\
\]

\[
c_0 = 2, \ c_1 = 10, \ c_2 = 50, \ c_3 = 250, \ c_4 = 1250, \ldots \\
\]

Initial term? Ratio?

Example

\[
\{d_n\}_{n=0}^\infty = 6 \cdot (1/3)^n \\
\]

\[
d_0 = 6, \ d_1 = 2, \ d_2 = \frac{2}{3}, \ d_3 = \frac{2}{9}, \ d_4 = \frac{2}{27}, \ldots \\
\]

Initial term? Ratio?
Sequence
Arithmetic Sequence

Definition
An arithmetic progression is a sequence of the form

\[\{s_n\}_{n=0}^\infty = a, a+d, a+2d, a+3d, ..., a+nd, ... \]

where \(a \) is the initial term and \(d \) is the common difference, and \(a \) and \(d \)
are real numbers and \(s_n = a + nd \).
Sequences

Sequence

Arithmetic Sequence

Example

\(\{ s_n \}_{n=0}^{\infty} = -1 + 4n \)

\(s_0 = -1, s_1 = 3, s_2 = 7, s_3 = 11, \ldots \)

Is an arithmetic progression with ???
Sequence

Arithmetic Sequence

Example

\[\{s_n\}_{n=0}^{\infty} = -1 + 4n \]
\[s_0 = -1, s_1 = 3, s_2 = 7, s_3 = 11, \ldots \]
Is an arithmetic progression with ???

Example

\[\{t_n\}_{n=0}^{\infty} = 7 - 3n \]
\[t_0 = 7, t_1 = 4, t_2 = 1, t_3 = -2, \ldots \] Is an arithmetic progression with ???
Example

Find a formula for the following sequence:

\[1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \]
Sequence

Practice

Example
Find a formula for the following sequence:

$$1, 1/2, 1/4, 1/8, 1/16, ...$$

Example
Find a formula for the following sequence:

$$1, 3, 5, 7, 9, ...$$
Sequence

Practice

Example
Find a formula for the following sequence:

1, 1/2, 1/4, 1/8, 1/16, ...

Example
Find a formula for the following sequence:

1, 3, 5, 7, 9, ...

Example
Find a formula for the following sequence:

1, −1, 1, −1, ...
Sequence

Practice

Example

Find a formula for the following sequence:

5, 11, 17, 23, 29, 35, 41, ...
Sequence

Practice

Example
Find a formula for the following sequence:

\[5, 11, 17, 23, 29, 35, 41, \ldots \]

Example
Find a formula for the following sequence:

\[1, 7, 25, 79, 241, 727, 2185, 6559, \ldots \]
Example

Find a formula for the following sequence:

5, 11, 17, 23, 29, 35, 41, ...

Example

Find a formula for the following sequence:

1, 7, 25, 79, 241, 727, 2185, 6559, ...

Example

Find a formula for the following sequence:

\[\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots \]
Sequence

Harmonic Sequence

Example

Consider the sequence \(\{ a_n \}_{n=1}^{\infty} = \frac{1}{n} \).

\[a_1 = 1, \quad a_2 = \frac{1}{2}, \quad a_3 = \frac{1}{3}, \quad a_4 = \frac{1}{4}, \ldots \]

This is known as a **harmonic sequence**.
Definition

A series or summation is the sum of the elements of a sequence.

\[\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \ldots + a_n \]

The variable \(i \) is called the index of summation with inclusive lower limit \(m \) and upper limit \(n \).
Example

Express the sum of the first 100 terms of the sequence \(\{a_n\} \) where \(a_n = 1/n \) for \(n = 1, 2, 3, \ldots \).
Example

Express the sum of the first 100 terms of the sequence \(\{a_n\} \) where
\[a_n = \frac{1}{n} \quad \text{for} \quad n = 1, 2, 3, \ldots. \]

Example

What is the value of
\[\sum_{j=1}^{5} j^2. \]
Example

Suppose we have the sum $\sum_{i=1}^{5} i^2$. Change the index of summation to be 0 to 4 instead of 1 to 5.
Series

Geometric Series Closed Form

Theorem

If a and r are real numbers and $r \neq 0$, then

$$\sum_{i=0}^{n} ar^i = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1 \\ (n+1)a & \text{if } r = 1 \end{cases}$$
Series

Useful Closed Forms

Example

<table>
<thead>
<tr>
<th>Sum</th>
<th>Closed Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{i=0}^{n} ar^i \quad (r \neq 0)$</td>
<td>$\frac{ar^{n+1} - a}{r - 1}, \quad r \neq 1$</td>
</tr>
<tr>
<td>$\sum_{i=1}^{n} i$</td>
<td>$\frac{n(n+1)}{2}$</td>
</tr>
<tr>
<td>$\sum_{i=1}^{n} i^2$</td>
<td>$\frac{2n(n+1)(2n+1)}{6}$</td>
</tr>
</tbody>
</table>
Series

Useful Closed Forms

Example

<table>
<thead>
<tr>
<th>Sum</th>
<th>Closed Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{i=0}^{n} ar^i (r \neq 0)$</td>
<td>$\frac{ar^{n+1} - a}{r-1}, r \neq 1$</td>
</tr>
<tr>
<td>$\sum_{i=1}^{n} i$</td>
<td>$\frac{n(n+1)}{2}$</td>
</tr>
<tr>
<td>$\sum_{i=1}^{n} i^2$</td>
<td>$\frac{n(n+1)(2n+1)}{6}$</td>
</tr>
</tbody>
</table>

Example

Find

$$\sum_{k=50}^{100} k^2$$