Basic Structures
Cardinality

March 14, 2016
Outline

1. Cardinality
Definition
Sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. Written $|A| = |B|$. If there is a one-to-one function from A to B, $|A| \leq |B|$; when $|A| \leq |B|$ and A and B have different cardinality, $|A| < |B|$.
Cardinality of a Set

Example (Finite Sets)

\[\{ \text{A, E, I, O, U} \} \]

\[\{ 0, 1, 2, 3, 4 \} \]
Cardinality of a Set

Example (Finite Sets)

\[
\{ \text{A, E, I, O, U} \} \\
\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \\
\{ 0, 1, 2, 3, 4 \}
\]
Cardinality of a Set

Example (Infinite Sets)

\[
\begin{align*}
\{ & 1 & 2 & 3 & 4 & 5 & \ldots \} & \mathbb{Z}^+ \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \\
\{ & 1 & 3 & 5 & 7 & 9 & \ldots \} & \text{odd}(\mathbb{Z}^+)
\end{align*}
\]
Countable

Definition
A set that is either finite or has the same cardinality as \(\mathbb{Z}^+ \) is said to be countable. A set that is not countable is said to be uncountable.

An infinite countable set, \(S \), has cardinality of \(\aleph_0 \) (Hebrew letter aleph). \(|S| = \aleph_0 \) read “\(S \) has cardinality aleph naught (or aleph null).”
Hilbert’s Grand Hotel

Consider a Grand Hotel with \aleph_0 rooms. (What is another way to say this?)
Consider a Grand Hotel with \aleph_0 rooms. (What is another way to say this?) The rooms in the Grand Hotel can be numbered 1, 2, 3, ... (Why?)
Hilbert’s Grand Hotel

Consider a Grand Hotel with \aleph_0 rooms. (What is another way to say this?) The rooms in the Grand Hotel can be numbered 1, 2, 3, ... (Why?) Assume all rooms are occupied and a weary traveler arrives. Hilbert claims the Grand Hotel always has room for one more. How?
Countably Infinite Sets

Example
Show that \mathbb{Z} is countably infinite.
Countably Infinite Sets

Example
Show that \mathbb{Z} is countably infinite.

Example
Show that \mathbb{Q}^+ is countably infinite.
An Uncountable Infinity

Theorem

Show that \mathbb{R} is uncountable.

Example

How could you approach this problem?
An Uncountable Infinity

Theorem

Show that \(\mathbb{R} \) is uncountable.

Example

How could you approach this problem?
How would you approach a problem to show something is irrational?
Results

Theorem

If A and B *are countable sets, then* $A \cup B$ *is also countable.*
Results

Theorem

If A and B are countable sets, then $A \cup B$ is also countable.

Proof.

Given A and B, countable sets. WLOG, A and B are disjoint. Also WLOG, if exactly one set is finite, set B is finite.

Cases:

i. A and B finite: $A \cup B$ is finite (thus countable).

ii. Only A infinite: List B followed by A and you can match every entry in $A \cup B$ with a positive integer.

iii. Both infinite: Alternate elements from A and B. This sequence can be paired with \mathbb{Z}^+ and is countable.

By showing $A \cup B$ is countable in every possible case, proves that if A and B are countable, $A \cup B$ is countable.
Schröder-Bernstein Theorem

Theorem

If A and B are sets with $|A| \leq |B|$ and $|B| \leq |A|$, then $|A| = |B|$.

If there is a one-to-one function $f : A \to B$ and a one-to-one function $g : B \to A$, then there is a one-to-one correspondence between A and B.
Computable

Definition
A function is *computable* if there is a computer program in some programming language that finds the values of the function. If a function is not computable, it is *uncomputable*.