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Example
Convert English to Logic

Example
If Jimmy moves to Anchorage, then he will freeze in winter; but if he moves to
Augusta, then he will burn up in summer. Either he will move to Anchorage or
Augusta. Therefore, he will either freeze this winter or burn up next summer.
Propositions

a - Jimmy moves to Anchorage.
g - Jimmy moves to Augusta.
f - Jimmy freezes next winter.
b - Jimmy burns up next summer.
Given:
a⇒ f
g⇒ b
a ∨ g
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Example
Convert English to Logic

Example
Propositions
a - Jimmy moves to Anchorage.
g - Jimmy moves to Augusta.
f - Jimmy freezes next winter.
b - Jimmy burns up next summer.
Given:
a⇒ f
g⇒ b
a ∨ g
Prove:
f ∨ b
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Example
Proof w/o Quantifiers

To be proven: (a⇒ f) ∧ (g⇒ b) ∧ (a ∨ g)⇒(f ∨ b)

Proof.
a⇒ f Premise 1
g⇒ b Premise 2
a ∨ g Premise 3

¬a⇒ g Material implication, 3 4
¬a⇒ b Hypothetical Syllogism 2, 4 5
¬b⇒ a Contrapositive and Double Negative 5 6
¬b⇒ f HS 1,6 7
b ∨ f MI, DN 7 8

∴ f ∨ b Commutation of ∨ 8
∴ (a⇒ f) ∧ (g⇒ b) ∧ (a ∨ g)⇒(f ∨ b)
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Fallacies
Affirming the Conclusion

If you are a font geek, then you are disappointed with the subtitles in Avatar. You
are disappointed with the subtitles in Avatar.
Therefore, you are a font geek.

g - you are a font geek
d - you are disappointed with the subtitles
Is this a tautology?

((g⇒ d) ∧ d)⇒ g

No, not true for ¬g and d. Exactly the case that the “proof” is wrong.
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Fallacies
Denying the Hypothesis

If you are a font geek, then you are disappointed with the subtitles in Avatar. You
are not a font geek.
Therefore, you are happy with the subtitles.

g - you are a font geek
d - you are disappointed with the subtitles
Is this a tautology?

((g⇒ d) ∧ ¬g)⇒¬d

No, not true for ¬g and d. Exactly the case that the “proof” is wrong.
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Example: Superman
Superman [1.6 35]

Is the following argument valid?

Example
If Superman were able and willing to prevent evil, he would do so. If Superman
were unable to prevent evil, he would be impotent; if he were unwilling to prevent
evil, he would be malevolent. Superman does not prevent evil. If Superman exists,
he is neither impotent nor malevolent. Therefore, Superman does not exist.
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Example: Superman
Extracting the Propositions

Example
If Supermanwere (a)ble and (w)illing to prevent (e)vil, hewould do so. If Superman
were unable to prevent evil (¬a), he would be (i)mpotent; if he were unwilling to
prevent evil (¬w), he would be (m)alevolent. Superman does not prevent evil (¬e).
If Superman e(x)ists, he is neither impotent nor malevolent (¬i ∧ ¬m). Therefore,
Superman does not exist (¬x).

9/36



Example: Superman
Extracting the Propositions

Example
a - Superman is able to prevent evil
w - Superman is willing to prevent evil
e - Superman prevents evil
i - Superman is impotent
m - Superman is malevolent
x - Superman exists
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Example: Superman
To Be Proven

Example
a - Superman is able to prevent evil
w - Superman is willing to prevent evil
e - Superman prevents evil
i - Superman is impotent
m - Superman is malevolent
x - Superman exists
To be proven:

(a ∧ w)⇒ e 1 Premise
¬a⇒ i 2 Premise
¬w⇒m 3 Premise
¬e 4 Premise
x⇒(¬i ∧ ¬m) 5 Premise
¬x 11/36



Example: Superman
Proof

Example
(a ∧ w)⇒ e 1 Premise
¬a⇒ i 2 Premise
¬w⇒m 3 Premise
¬e 4 Premise
x⇒(¬i ∧ ¬m) 5 Premise
¬e⇒(¬a ∨ ¬w) 6 Contrapositive 1
¬a ∨ ¬w 7 Modus Ponens 4, 6
a ∨ i 8 Material Implication 2
w ∨ m 9 MI 3
¬a ∨ m 10 Resolution 7, 9
i ∨ m 11 Resolution 8, 10
¬¬(i ∨ m) 12 Double Negative 11
¬(¬i ∧ ¬m) 13 DeMorgan’s 12

∴ ¬x 14 Modus Tolens 5, 13
12/36



Example: Superman
Conclusion

Example
(a ∧ w)⇒ e ∧
¬a⇒ i ∧
¬w⇒m ∧
¬e ∧
x⇒(¬i ∧ ¬m)

∴ ¬x
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Inference with Quantifiers

Example
John is a lawyer. All lawyers are rich. Every person has a house. If a person is rich
and they have a house, the house is big. If a person lives in a big house, they have
a mortgage. Everyone with a mortgage has to work. ∴ John has to work.
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Inference with Quantifiers

Example
L(p) - person p is a lawyer
R(p) - person p is rich
H(p, h) - person p owns house h
B(h) - house h is big
M(p) - person p has a mortgage
W(p) - person p must work
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Inference with Quantifiers

Definition (Universal Instantiation)
∀xP(x)

∴ P(c) (for any particular c)

Proof.
∀p(L(p)⇒ R(p)) Premise

∴ L(J)⇒ R(J) Universal Instantiation

L(J) Premise
∴ R(J) Modus Ponens with conclusion
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Inference with Quantifiers

Definition (Existential Instantiation)
∃xP(x)

∴ P(c) (for some element c)

Proof.
∀p∃hH(p, h) Premise
∃hH(J, h) UI
H(J,Q) Existential Instantiation

∀p∀i(R(p) ∧ H(p, i)⇒ B(i))
R(J) ∧ H(J,Q)⇒ B(Q) 2× UI

∴ B(Q)

18/36
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Inference with Quantifiers

Proof.
L(J) 1
∀p(L(p)⇒ R(p)) 2
∀p∃hH(p, h) 3
∀p∀i(R(p) ∧ H(p, i)⇒ B(i)) 4
∀p∀j(H(p, j) ∧ B(j))⇒M(p) 5
∀p(M(p)⇒W(p)) 6

L(J)⇒ R(J) 7 Univ Instan 2
R(J) 8 MP 1, 7
H(J,Q) 9 Exist Instan 3
B(Q) 10 UI + MP 8, 9 and 4
M(J) 11 UI + MP 9, 10, and 5

∴ W(J) UI + MP 11, 6
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Inference with Quantifiers
Table
Rule of Inference Name

∀xP(x)
∴ P(c) (for any c) Universal Instantiation

P(c) for an arbitrary c
∴ ∀xP(x) Universal Generalization

∃xP(x)
∴ P(c) (for some element c) Existential Instantiation

P(c) for some c
∴ ∃xP(x) Existential Generalization
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Transitivity of Implication
Poof

Justify the rule of universal transitivity, which states that if ∀x(P(x)⇒Q(x)) and
∀x(Q(x)⇒ R(x)) are true, then ∀x(P(x)⇒ R(x)) is true, where the domains of all
quantifiers are the same.

To be proven: (∀x(P(x)⇒Q(x)) ∧ ∀(Q(x)⇒ R(x)))⇒∀x(P(x)⇒ R(x))
∀x(P(x)⇒Q(x)) 1 Premise
P(c)⇒Q(c) for arbitrary c 2 UI 1
∀x(Q(x)⇒ R(x)) 3 Premise
Q(c)⇒ R(c) for same c 4 UI 3
P(c)⇒ R(c) 5 HS 2, 4

∴ ∀x(P(x)⇒ R(x)) 6 U Gen 5
∴ (∀x(P(x)⇒Q(x)) ∧ ∀(Q(x)⇒ R(x)))⇒∀x(P(x)⇒ R(x))
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Proofs
Terminology

Definitions
A theorem

is a statement that can be proved to be true. Synonyms: proposition,
fact, result

A premise

is a proposition given as true as part of the statement of a theorem.
Synonyms: given

A proof

is a valid argument that establishes the truth of a theorem.

An axiom

is a statement that is assumed to be true; used for definitional conditions
of mathematics. Synonyms: postulate

A lemma

is a less important proof useful in proving other results (typically not
interesting on its own).
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Proofs
More Terminology

Definitions
A corollary

is a theorem that can be established directly from the theorem just
proved.

A conjecture

is a statement that is proposed to be true but which lacks a valid
proof.
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Formatting
How Proofs are Stated

Remember: All proofs begin with a statement of what is being proved and end by
concluding that that thing has been proved:

Proof.
To be proved: ∀x ∈ D∀y ∈ D P1(x) ∧ P2(x) . . . Pn(x)⇒Q(x)
<Proof of statement goes here>
∴ ∀x ∈ D∀y ∈ D P1(x) ∧ P2(x) . . . Pn(x)⇒Q(x)
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Formatting
How Proofs are Stated

Example
If x > y, where x and y are positive real numbers, then x2 > y2.

What does this really mean?

For all positive real numbers x and y, if x > y, then x2 > y2.
Or, in logical notation

∀x∀y x, y ∈ R+(x > y)⇒(x2 > y2)
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Definition

Definition (Direct Proof)
A proof of p⇒ qwhere p is given to be true and a sequence of logical steps leads to
q being equivalently true.

Theorem
Every odd integer is the difference of two squares.
Which means:

∀n ∈ Z odd(n)⇒∃a ∈ Z ∃b ∈ Z ∋ n = a2 − b2
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Difference of Squares
Two-column Proof

Theorem
Every odd integer is the difference of two squares.
∀n ∈ Z odd(n)⇒∃a ∈ Z ∃b ∈ Z ∋ n = a2 − b2

Proof.
To be proven: ∀n ∈ Z odd(n)⇒∃a ∈ Z ∃b ∈ Z ∋ n = a2 − b2

∀n odd(n) 1 Premise

odd(x) 2 UI
∃y ∈ Z ∋ x = (2y+ 1) 3 Definition of odd
x = (2y+ 1) 3 Existential Inst.
y2 = y2 4 Definition of =
y2 + x = y2 + 2y+ 1 5 Sub equality 4 - 3
y2 + x = (y+ 1)2 6 Factoring

∴ x = (y+ 1)2 − y2 7 Subtract equality
∴ ∀n odd(n)⇒∃a ∈ Z ∃b ∈ Z ∋ n = a2 − b2 8 Generalization
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Defining
Proof by Contraposition

Definition (Proof by Contrapositive)
Assume the negation of the conclusion as given; prove, “directly,” that the nega-
tion of the hypothesis follows.

Theorem
If n = ab, where a and b are positive integers, then a ≤

√
n ∨ b ≤

√
n

Which means:
∀a∀b a, b ∈ Z+ let n = ab a ≤

√
n ∨ b ≤

√
n
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Working Out the Contrapositive
Getting “To be proved”

Theorem
For any two positive integers, at least one of them is less than or equal to the square
root of their product. ∀a∀b a, b ∈ Z+ let n = ab a ≤

√
n ∨ b ≤

√
n

Contrapositive:

∀a∀b a, b ∈ Z+ if ¬(a ≤
√
n ∨ b ≤

√
n) then ¬(n = ab)

∀a∀b a, b ∈ Z+ if a >
√
n ∧ b >

√
n then n ̸= ab
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Factor above/below
√

product
Two-column Proof

Proof.
To be proven: ∀a∀b a, b ∈ Z+ let n = ab a ≤

√
n ∨ b ≤

√
n

Proof proceeds by contrapositive
Contrapositive: ∀a∀b a, b ∈ Z+ let n = ab (a >

√
n ∧ b >

√
n)⇒ n ̸= ab

a >
√
n 1 Premise and simplification

b >
√
n 2 Premise and simplification

ab > n 3 Positive Product of Inequality 1, 2
ab ̸= n 4 Defn. of =, 3

∴(a >
√
n ∧ b >

√
n)⇒ n ̸=

ab
∴ ∀a∀b a, b ∈ Z+ (a >

√
n ∧ b >

√
n)⇒ n ̸= ab

∴ ∀a∀b a, b ∈ Z+ let n = ab a ≤
√
n ∨ b ≤

√
n
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Defining
Proof by Contradiction

Definition (Proof by Contradiction)
Assume we want to prove q true. If ∃r such that r is a contradiction and we can
show ¬q⇒ r then it follows that ¬q must be falseWhy?

If ¬q is false, q is true and we have proved our statement.
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Diversion I: Definitions
Rational

Definition
A real number, q is rational if it can be written as a ratio (fraction) of two integers:
q ∈ Q if ∃n ∃d n, d ∈ Z d ̸= 0 q = n

d

A real number r is irrational if it is not rational: ¬(∃n ∃d n, d ∈ Z d ̸= 0 r = n
d )
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Diversion II: A Lemma
Even squares come from even numbers

Lemma
∀n ∈ Z 2|n2⇒ 2|n

Proof.
To be proven: ∀n ∈ Z 2|n2 ⇒ 2|n
Proof by contrapositive
Contrapositive: ∀n ∈ Z 2 ̸ | n⇒ 2 ̸ | n2

Equivalently: ∀n ∈ Z odd(n)⇒ odd(n2)
odd(n) 1 UI, Premise
∃k ∈ Z|n = 2k+ 1 2 Defn. odd
n2 = (2k+ 1)2 3 Substitution
n2 = 4k2 + 4k+ 1 = 2(2k2 + 2k) + 1 4 Algebra, 3
∃j ∈ Z|n2 = 2j+ 1 5 EG, 4

∴ odd(n2) 6 Defn odd
∴ ∀n ∈ Z odd(n)⇒ odd(n2)
∴ ∀n ∈ Z 2|n2 ⇒ 2|n
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Irrational Square Root
Starting the Proof

Theorem√
2 is irrational.

Proof.
To be proven:

√
2 is irrational.

Proof is by contradiction
For Sake of Contradiction: Assume ¬(

√
2 is irrational)

or
√
2 is rational
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Irrational Square Root
Two-column Proof

Proof.
To be proven:

√
2 is irrational.

Proof is by contradiction
FSOC:

√
2 is rational√
2 is rational 1 Assumption

√
2 = a

b 2 Defn rational
without loss of generality,
lowest( ab )

2 = a2
b2 and 2b2 = a2 3 Square both sides

even(a) 4 even(x2)⇒ even(x)
a = 2c thus 2b2 = 4c2 5 Defn even
b2 = 2c2; even(b) 6 Algebra and as (4)
2|a ∧ 2|b 7 Defn divisibility
¬lowest( ab ) 8 Defn lowest terms
¬(

√
2 is rational) 9 Contradiction 2,8

∴
√
2 is irrational
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Proof by Contradiction
Your Turn

Prove that if you pick three marbles from an urn containing only black and white
marbles, you must have a pair of white marbles or a pair of black marbles.
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