
Operating Systems: Study All the Things

Three [4] Easy Pieces
Persistence Saving data across computer power cycles; non-volatile memory
can use magnetic or optical media or solid-state memory that remembers its
state.
Virtualization Emulating part (or all) hardware in system software to protect
the actual hardware from direct access by running software. Can apply to the
processor and the memory.
Concurrency Safely sharing resources across multiple processes that are run-
ning “at the same time”, typically by ordering their instruction interleaving such
that they behave as if they were run serially.
Abstraction Dr. Ladd’s Fourth Easy Piece The operating system provides a
facade over heterogeneous hardware, an abstract interface that hides the com-
plexity of the underlying systems.

0.1 Mechanism/Policy
Mechanism v. Policy — Remember that mechanism is how the system can
do something and policy is deciding when or why to do it.

Computer Hardware

Computer Hardware
1. CPU
2. RAM
3. Disk(s)
4. I/O

Memory Hierarchy
1. Registers
2. RAM
3. Disks
4. Network

Von Neumann Architecture — CPU runs a fetch-decode-execute cycle.
Program counter keeps track of next instruction.
Instructions can manipulate register contents or load register from memory or
store register to memory.
All data manipulation is at the CPU.

Hardware Assists for Modern OS
Privilege Bit (system bit, kernel bit) The privilege bit is a CPU flag bit that
determines whether the CPU is currently executing on behalf of the system or
the user.
Privileged Actions
• Direct memory access (bypass memory address translation and page table).

1



• Execution of CPU instructions deemed privileged: setting CPU flags, in-
stalling interrupt handlers, I/O, etc.

• Changing the CPU flags
The user program runs with limited-direct execution: non-privileged in-
structions run directly in a translated memory space while privileged instruc-
tions require a syscall (software interrupt) into the operating system for the
system to perform (after checking that it is permitted) the operation.
Interrupts The fetch-decode-execute cycle can be interrupted asynchronously
by an interrupt signal; the syscall instruction will also generate an interrupt
when run. Each interrupt has a number indicating its source (so the power
switch, syscall, a timer expiring, and the network controller signaling it is ready
can be told apart) and that number is used as an index into the ISV interrupt
service vector (remember: vector = array), a vector of machine addresses
where the OS has put code to handle each kind of interrupt.
Syscall (trap) an instruction that generates an interrupt from user-space code.
The only way to elevate privileges from user-space to system-space.
CPU registers are used to pass requested function and required parameters to
the syscall handler which is just an interrupt handler for the specific syscall
interrupt.
k-stack The k-stack (kernel stack) is one way for the OS to capture the context
of the interrupted process. This hardware assist sees the CPU copy full
register contents onto the k-stack when the interrupt is taken; the interrupt
service routine can run and either return from interrupt (back to the same
process) or save the contents of the k-stack, put the context of a different
process there, and return from interrupt into a different process.
Note that returning from an interrupt uses the k-stack as well, restoring the
state on the k-stack onto the CPU before dropping from kernel to user mode
and starting the instruction addressed by the PC.

Speed/Safety Spectrum
Unlimited Direct Execution: Fast execution with no protection of one pro-
cess from another.
Limited Direct Execution: Compromise between speed and safety
Virtual Execution: Safe execution with every instruction run in software.

Persistence
Interacting with Peripheral Devices
Polling While the process requesting the I/O is running, the CPU continuously
reads (polls) the device’s interface to see if the operation in finished. When it
is finished, the processor can return from the syscall to the process’s user code
(without a context switch).
Interrupts Since the CPU resource is busy doing nothing, better use can be

2



made by blocking the process that initiated the I/O until the device reports that
it is done. The CPU is free to switch to other, non-blocked, processes.
To signal that it is done, the device raises an interrupt. An interrupt (just like
the timer interrupts of multiprocessing) causes the CPU to jump to operating
system code based on the interrupt number and the interrupt service vector
(ISV). The handler determines which blocked process can be made ready and
moves the PCB from the waiting to the ready queue.
Hybrid Benefit of polling: no context switch if wait is short; cost of polling:
running the CPU w/o making progress. Best of both worlds? Poll for a little
while; if not done, block on the device. Short I/O does not pay a context switch;
long I/O does not hold the CPU.
Question: Using hybrid I/O device handling above, is the amount of time that
the OS polls for a given process mechanism or policy? Must the length of polling
time be the same for every process?

Spinning Platter Drives
A spinning disk drive has
Platters Spinning, round, flat disks covered with magnetic media. Drive has
one or more; they can be single or double sided.
Tracks Each platter is divided into concentric rings for storing data. A head
is positioned over a track to read or write bits on the magnetic medium passing
below it.
Sectors Each track is divided into some number of arcs. The magnetic medium
in each arc can store bits when influenced by a strong magnet in the write head.
Different tracks can have different numbers of sectors: each sector holds the
same number of bits so outer tracks can fit greater numbers of sectors because
the perimeter is greater.

Each sector has a unique address: [platter, track, sector]: platter picks which
read/write head (there is at least one per platter) to use; track indicates how far
from the center of the disk the sector lives; sector number indicates the angle
around the circle of the track the data begins.

A sector is often between 512B and 4KB in size. There are file systems with
variable size sectors and some with very, very large sectors.

Fragmentation
A file stores bytes into one or more sectors on a drive. Assume file sizes (in bytes)
are randomly distributed (probably true for a general-purpose file system). The
last sector of the file “wastes” half of the sector, on average. The amount of
this internal fragmentation (internal to the file; out of sight of the file system)
depends on the size of sectors.
Question: What is external fragmentation which is visible to the file system?
Address Translation Just as the OS can translate addresses inside a pro-
cess, so modern disks translate their internal addressing to provide a simple,

3



consistent view: a drive is just an array of sectors. Each has a simple integer
index.

On-disk Data Structures
A file is an extensible array of bytes when viewed from a user program. There
is an offset for reading the array and another for writing the array. A read past
the end of the array will return end of file and a write past the end will extend
the array to fit the new data.

What is a file to the file system? A named sequence of sectors along with
some metadata.

A sequence of sectors must be stored on the disk. This could be done with
linked lists (remember how DOS sped this up?) or a tree.

Unix (our Very Simple File System) uses an inode that contains
Type (D, F, …)

Reference Count
Size (in Bytes)

Direct[n]
Indirect1
Indirect2

…
This is a skewed tree.

Question: What does it mean to be a skewed tree? Draw a picture. Much
more important: Why? What did designers know about access patterns and file
statistics before settling on this?

A directory is just a special kind of file. It has the same kind of inode with
a different type field. The content of the directory is structured. It is a sequence
of name/inode# pairs.

Directory traversal: To translate from a path, /home/laddbc/review.txt, to an
inode: OS must know the inode number of the root directory in the file system.
This is part of FS design and can be set up when the FS is mounted.

Each directory’s inode is loaded (starting with the known location of the
root directory). Then the data for that folder is loaded and searched for the
next path component’s name. The path component’s name is associated with
the inode for that component. If the component is a directory, recur. If not, it
is the inode for the file named in the path.

Path Inode Data
/

√
/ inode√
/ contents: home:inode

/home
√

/home inode√
/home contents: laddbc:inode

/home/laddbc
√

/home/laddbc inode√
/home/laddbc contents; review.txt:inode

/home/laddbc/review.txt
√

/home/laddbc/review.txt inode
The final inode can be stored in the file control block that the internal file

descriptor can refer to while the file is open. Note how all three names are

4



relate.
Path The hierarchical name leading across directories to the file. A file can
have more than one simultaneous path name, its path name can change over
time, and it is possible to remove this name from a file without destroying it (if
the file is open).
File Descriptor Index of an internal (OS) data structure for an open file inside
a process. The same file can have multiple file descriptors associated with it.
File descriptors do not persist after the end of a process.
Inode An on-disk data structure that is allocated when the file is create and
remains the same (the same inode) throughout the life of the file. The inode con-
tains addresses for data segments of the contents and often counts the number
of references (from other types of names) are made to the inode.
Bit-Maps Bit maps are compressed Boolean arrays. They are quick to load,
store, and search. They are small(-ish) and are used to efficiently search for free
inodes in the inode table and data blocks in the block store.

Virtualization
Virtualized Processing
Process Abstraction

Program Binary-encoded instructions in a file on disk.
Process Program file contents loaded into RAM along with context
Context of a process is the setting of all CPU and memory subsystem registers.
The idea is that if the OS captures the context of the running process, the CPU
can do “something else” and then, at some time in the future, put the saved
context back and the same process would continue running, unaware that it had
been paused.
Context Switch is changing from the context (execution) of Process A by
saving its context to the context of Process B by loading its context from a saved
copy. This is how two (or more) processes can share a single CPU concurrently.
Process Data Structures The OS keeps track of a process in a process control
block (PCB); the PCB for all processes as stored in an OS-level vector that is
indexed by the process identifier (PID) of each process.
In the PCB the OS keeps the context of the process, memory configuration, file
control blocks, etc.
Process state is one of the things tracked in the PCB (the state is also indicated
by where the PCB resides: Running, in a ready queue, or in an I/O queue):

5



Ready

Blocked

Running

Descheduled

Scheduled

Awaited Event (I/O
Finish)

Wait
on

Even
t (I/

O)

Question: What happens, at the CPU register level, when a timer interrupt
occurs, triggering a context switch between process S and process T? Include
the k-stack, the privilege bit and when it is set/cleared, and one or more PCB
in your answer. What state(s) are S and T in before and after the switch?

Where, in this diagram, are the scheduling queues? That is, where do pro-
cesses that could make progress but are not on the CPU wait?
Starting Processes
fork Copy the current process (with a new PID and PCB). Return PID of child
(to parent) or 0 (to child).
exec Load the named file/program over the current process, resetting all regis-
ters and memory subsystem settings to process start values.

Scheduling

Scheduling Metrics Which is important depends on the type of workload the
system expects.
Turn-around Time Tturn-around = Tcompletion − Tarrival; batch workloads
Response Time Tresponse = Tfirstrun − Tarrival; interactive workloads
Scheduling Policies
First In, First Out
Shortest Job First
Shortest Time to Completion
Round Robin
Question: Which of the given policies do not require a mechanism for preemp-
tion? Explain why the others do require that mechanism.
Multi-Level Feedback Queue with a quantum length q. Rules when picking
the next job:
1. On arrival, job J is put in Qmax.
2. If job K surrenders the CPU before its quantum is done, it goes to the end

of QP ; its priority remains unchanged.
3. If job K uses its whole quantum, it goes to the end of QP−1; its priority is

lowered.

6



4. Next job to schedule is the first job on QX where X is the highest priority
of a non-empty ready queue.

5. After the boost period, B, B ≫ q, all jobs are reenqueued into Qmax.
Question: Why is rule 5 necessary? What if ¬(B ≫ q)?
Question: Consider an MLFQ with: 3 queues, quantum of 1, allotment of 1,
and a boost time of 25. The queues are numbered, in decreasing priority order:
3, 2, 1. Given the following list of jobs:

Job Arrival Run Time
A 0 4
B 2 4
C 4 1
D 6 3

Mark the quanta in which each job executes in the following table, using as
the marker the number of the queue the job was scheduled off of.

So, for example, if Job D came off of queue 2 in the first quantum, there
would be a “2” in row D and colunm 1 (the quantum starts at 0, ends at 1).

Before you mark anything:
How many non-empty squares will there be in each row?
How many in each column?
How many total in the table?

Quantum Ending
Job 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
B
C
D

How many columns? 12 (total quanta for all programs)
How many non-empty squares will there be in each row? Run time of
program in the row.
How many in each column? One, there is only one CPU being sched-
uled.
How many total in the table? 12, one per column or one per quantum
where a program is running.

Quantum Ending
Job 1 2 3 4 5 6 7 8 9 10 11 12

A 3 2 1 1
B 3 2 1 1
C 3
D 3 2 1

Virtual Memory
Memory Translation

Address Spaces

7



Virtual The process address space. Always runs across the exact same range
(i.e. 0x00000000 - 0xFFFFFFFF). Permits the compiler/linker to ignore location in
physical address space.
Physical The hardware (and operating system) address space. Runs from
the first byte in a RAM chip to the last byte in the installed memory. Addresses
also start from 0 and count up, by byte.
Loading Policies
Singleton Load exactly one process at a time, into address 0x00000000. Pros: no
address translation, no CPU modification, easy compilation; Cons: maximum
of one running process.
Static Relocation Let the compiler target some range of physical memory
when executable is created. Load the program into that location. Multiple
programs, with non-overlapping address usage, can share the physical address
space. Pros: no address translation and no CPU mods; Cons: each process has
a single place to load or must be recompiled (or stored multiple times).
Dynamic Relocation OS transparently translates addresses based on where
the process was loaded. Pros: easy compiling, can load one executable into any
available memory, multiple processes in memory simultaneously; Cons: need
base/bounds (or similar) registers [Hardware Assist], each memory access
is translated (and bounds checked), dynamic memory management in the OS,
must allocate all process memory contiguously.
Segmentation Multiply the base/bounds concept by having a base/bounds
per process segment. Pros: easier to fit into fragmented memory, uses existing
link specification; Cons: more registers (this is context).
Paging Allocate all memory in small, identically sized blocks (pages of virtual
memory into frames of physical memory). Pros: no need to track size of al-
location, no need to find contiguous blocks of RAM, can be swapped out to
secondary storage (because of one size this is easier), no need to load entire
segments into memory; Cons: too many registers (need a page table per process
that is stored in RAM), bookkeeping on what frames to free on a page fault is
non-trivial.

Paging and segmentation can be combined.

Paged Virtual Memory

A page table entry (PTE) contains metadata about the page and the frame
address where it is (if it is in memory) or the swap address where it is if the OS
has swapped it out.

Metadata can include the valid bit (is this page a proper part of the process’s
address space), the present bit (is this page resident in memory), the dirty bit
(has this page changed since it was loaded), and the reference bit (has this page
been accessed by the process since the OS reset reference bits). The address
field in the PTE can contain a frame number (if page is present), a swap page
number if the page was evicted to the swap, or (effectively) null. The size of the

8



PTE is determined by taking the number of bits of address, adding the number
of bits of metadata, and rounding up to the next byte size.

The page table is an array of PTE. There is one PTE per page in the process
address space. The size of the page table is the product of the number of PTE
and the size, in bytes, of each PTE. The context of the process includes a page
table base register (PTBR), the physical address of the beginning of the page
table.

To translate an address: Split address into page number (P) and offset into
page (o). Use P and size of PTE to calculate array offset into page table of
proper PTE. Add array offset to PTBR and fetch PTE. Assuming no page fault,
extract frame number from PTE (F) and prepend F to o to get physical address.

On page fault (page not present): OS figures out where data for the page
lives: in the program file (if it is part of the immutable text or data segments), in
swap (if it is a mutable page that had been allocated earlier), or should be newly
allocated (it is in the free space between segments). If it is on disk, schedule the
read and block the process on the completion. If it is a new allocation, grab a
frame, zero, and update the PTE (into page table).

Once page contents are read, pick a victim frame and put the data in it.
Update PTE for this process and unblock it and also update page table of
process from which the frame was taken. Once page is full and PTE updated,
make process ready and it will restart the instruction.

Victim is selected by some policy. One good one is least-recently used (LRU).

Question: The table below describes a paged memory system. Fill in the empty
boxes to complete the description and answer the questions following the table.

Metadata (b)
valid present dirty reference

Bit Width Page Table
Address Space Bit Width Page/Frame Bit Width Number of Page/Frame Entry Size

Size (B) Address Size (B) Offset Pages/Frames Number in Bytes
Virtual 1M

Physical 32M 4K

a. Explain why the number of bits in the page numbers and the number of bits
in the frame numbers are/are not the same.

b. How many entries in a page table?
c. Size (B) of page table?

Process Q’s page table is in memory beginning at 0x1000. The process’s
page table begins with the following entries (spaced as closely together as
possible on whole byte boundaries); all numbers are in hex.

9



Page Table
Meta Frame
3 000
C 0F0
A 00E
E D00
E 0CC
F B0B
B AA0

03FF8 movl 0x05010, %eax
top:

03FFC cmpl $0x21, %eax
04000 jg bottom
04004 movl 0x05010, %eax
04008 addl $0x01, %eax
0400C movl %eax, 0x05010
04010 jmp top

bottom:
04014

Initially RAM[0x05010] == 0.
d. Which pages are invalid?

On our computer, each instruction takes exactly one (1) clock cycle. Con-
sider the following code:

e. Give the virtual address trace for 12 clock cycles of this code.
f. Using the page table given above, give the corresponding physical address

trace.

User Memory Allocation
malloc is part of the C Runtime-Library (CRT).

One way of keeping track of free memory is with a free list: a linked list where
each node is a block (of variable size) with two fields placed at the beginning of
the block: size and next. size is the size, in bytes, of this node and next is the
address of the next node in the free list.
Question: Is next a physical or a virtual address?

Allocation is done by traversing the free list for a node large enough to
service the malloc call, along with any bookkeeping fields. Consider the best-
fit, first-fit, and worst-fit policies for allocating memory.
Question: Describe internal and external fragmentation in terms of malloc that
allocates only 1KB and 2KB blocks. What could possibly go wrong?
a. When could internal fragmentation cause there to be enough “free” memory

to exist for a 1.5KB allocation yet the system be unable to fulfill it?
b. When could external fragmentation cause there to be enough “free” memory

to exist for a 1.5KB allocation yet the system be unable to fulfill it?

Concurrency
Concurrency Terms
critical section a piece of code that accesses a shared resource.

10



race condition when multiple threads of execution enter their [same resource]
critical region at roughly the same time; multiple updates to the shared data
structure leads to potentially broken execution.
indeterminate programs are programs with race conditions; results of the
computation depends on ordering of threads and can vary from run to run.
mutual exclusion structures protect critical regions, permitting at most one
thread into the critical section. This eliminates race conditions, making the
program determinate at the potential cost of parallel execution and thus speed.

Process Segments

text
0x0000

data
0x0400

heap 0x0800

stack B
0xF400
0xF7FF

stack A
0xFC00
0xFFFF

Addresses assume 64KB address space
and exactly 1KB in use by each seg-
ment. Each thread has its own, inde-
pendent stack segment. This picture
shows a stack segment for thread A
and for thread B. The stack pointer
(and, perhaps, stack origin) is part of
the thread context and must be saved
in the thread control block (TCB).

In a single-threaded process, there
can be just one stack segment that
grows dynamically toward the heap.
Question: Which segment(s) grow
from lower-to-higher memory ad-
dresses? Which grow the opposite
direction?
Segment Usage
text the code segment containing the
machine instructions translated by the
compiler, linked together with libraries
by the linker, and loaded into the
“right” place by the loader.
data static/global data segment. In
addition to global variables, string and
composite literals, translated by the
compiler, end up here.
heap dynamically allocated memory;
where new gets its data.
stack dynamic allocation of local vari-
ables for function calls; the stack is
made up of activation records, one for
each currently active function.
Question: Which segment(s) are
loaded from the program file (stati-
cally)? Which segment(s) have their
contend generated purely dynami-
cally?

Concurrency Primitives
Locks A lock (Mutex in Rust) is an ADT supporting
lock function permits one thread past; all other threads spin (keep checking

11



the lock status) or are put in the Blocked state with an unlock operation serving
to signal the thread to return to Ready.
unlock function releases some waiting thread to continue past its call to lock.
Lock is cleared if no thread is waiting.
Locks require some form of atomic update machine instruction (hardware assist)
such as test-and-set, load-linked/store-conditional, compare-and-swap, or fetch-
and-add.
Condition Variables A condition_variable (Condvar in Rust) is an ADT using
an external lock and a queue to protect a critical region without a spin lock.
The queue holds threads in the Blocked state.
wait(&lock) thread must hold &lock on call (and will hold it on return). wait
appears in a loop that tests the condition that would permit the thread to
continue and is called when the condition is false. wait (atomically) enqueues
the thread, releases the lock, and then does a thread context switch. When
the thread is made ready (dequeued), the wait code acquires the lock and then
return from wait. (And the condition is tested again.)
signal(&lock) While holding lock: if any threads await on the queue, make
the first one Ready. Release lock and return.
A thread will only pass the wait loop when the condition being tested is true.
Semaphores Initialized with a count (maximum number of threads allowed
into the critical region) and
wait decrements the counter and returns if the counter is non-negative (thread
continues into critical section) or blocks on a queue otherwise.
post increments the counter and wakes one of the waiting threads (if there are
any).
Again, wait is called in a loop.

Concurrent Algorithm Evaluation Criteria
Safety (or Mutual Exclusion) is the critical region actually safe? There must
be no sequence of interleaving that permits mutual exclusion to be violated.
Fairness does the algorithm avoid starvation? Does a waiting thread enter the
critical region before the thread that is in the critical region reenters it?
Performance what is the runtime impact of the primitive? Consider no-
contention, two-thread contention, and multi-thread contention. With caches
and multiple processors, new performance concerns arise.

Common Concurrency Problems
Producer/Consumer (Bounded Buffer) A set, P. of producer threads pro-
duce data; a set, C, of consumer threads use data; communication is through a
data buffer with n elements.
If a producer makes data and there are no buffer slots, it must wait until one is
free; if a consumer goes to take data and there is none available, it must wait

12



until one is available.
Reader-Writer A set of readers, R, and writers, W, share some data structure,
D. Readers read but do not change D; writers read and may modify D.
If a only readers are in their critical regions, arriving readers may enter theirs.
If a writer comes, it must wait until all readers leave their critical regions; if
readers arrive after a writer begins waiting, they wait on the writer leaving its
critical region.
Writers must enter their critical regions mutually exclusively with regard to
both readers and writers.
Efficient parallelism of readers and mutual exclusion for writers makes this a
challenge.
Dining Philosophers n philosophers sit at a round table with a bowl of rice
in the middle and one chopstick between each pair of philosophers. Philosophers
live life by thinking until they get hungry. When hungry, a philosopher must
pick up both adjacent chopsticks before he can eat rice. When no longer hungry,
the philosopher releases both chopsticks.
The problem is making a starvation-free algorithm for chopstick acquisition
given that a philosopher cannot communicate with his neighbors and only knows
the number on the chair on which they sit.

Atomic Instructions
Consider SpinLock:
class SpinLock {
public:
SpinLock();
void lock() volatile;
void unlock() volatile;

};

// --------------------------------------------------------------------------------------
// testAndSet(lockVar, newVal): atomically replace lockVar with newVal; return original value.
int testAndSet(int &lockVar, int newValue) {
int original = lockVar;
lockVar = newVal;
return original;

}

Question: Implement SpinLock with testAndSet.
// --------------------------------------------------------------------------------------
// compareAndSwap(lockVar, expVal, newVal): atomically swap lockVar value with newVal
// IFF lockVar's value was expVal. Return lockVar's original value
int compareAndSwap(int &lockVar, int expVal, int newVal) {
int original = lockVar;
if (original == expVal)
lockVar = newVal;

return original;
}

Question: Implement SpinLock with compareAndSwap.

13



// --------------------------------------------------------------------------------------
// loadLinked(lockVar) fetch and mark lockVar, return value
int loadLinked(int &lockVar) {
return [and mark] lockVar;

}

// saveConditional(lockVar, newVal) set lockVar to newVal IFF still marked by this thread
// return whether the value was saved
bool saveConditional(int &lockVar, int newVal) {
if (lockVar is marked by me) {
lockVar = newVal;
return true;

} else
return false;

}

Question: Implement SpinLock with loadLinked/saveConditional.

14


	Mechanism/Policy

