1

2

3

4

5

6

7

8

9

10

11

12

13

1

[DJocumentation is your secret weapon, the unsung hero of your startup, ... which keeps things going behind the product
development.
— Vadim Kravcenko
https://vadimkravcenko.com/shorts/proper-documentation/

Introduction

A computer program is a detailed description of how to solve a problem, detailed enough that a computer compiler can turn it
into a sequence of instructions that the computer can execute on any instance of the problem, solving it.

The programmer, to write the program: understands the problem, understands how to solve the problem, and understands
how to describe how to solve the problem. When the problem specification changes (as they always do), the future programmer
must rebuild this knowledge for the existing code and determine how to map that old solution onto a new solution.

Good program design makes a program easier to understand; good coding standards make a program easier to read so that the
design can be seen.

This document is written as a collection of coding standard rules. Each subsection begins with a statement of a rule, an
example of applying the rule, and then a discussion of the motivation of the rule ! The sections collect related rules into groups.

Readability

You write a computer program for the first time once. A program is read more than ten-times more often (by you during
debugging, during code review, during modification, etc.) than it is written. It is therefore cost-effective to make the code as
physically easy-to-read. For yourself and any future programmer (who may well be you, too).

Formatting

Reading is a mechanical process first. You need to make sure your code guides the reader’s eye across the page as efficiently as
possible.

Lines

Rule Lines should never be longer than 80 characters.
Example Compare the following two listings of the same code segment:

while (charCount == @) {
for (int i = offset; i < offset + charCount; i++) {
if (!this.inMultiLineComment && !this.inSingleLineComment && !this.ignoreInput) {

if (destinationBuffer[i] == ’#’ && i < offset + charCount - 1 && destinationBuffer[i+1] == ’|’) {
this.inMultilLineComment = true;

} else if(destinationBuffer[i] == ’;°) {
this.inSingleLineComment = true;

} else {
destinationBuffer[last++] = destinationBuffer[i];

while (charcCount == 0) {
for (int i = offset; i < offset + charCount; i++) {
if (!this.inMultiLineComment &&

1this.inSingleLineComment &&

tthis.ignoreInput) {

if (destinationBuffer[i] == ’#’ &&
i < offset + charCount - 1 &&
destinationBuffer[i+1] == ’|?) {
this.inMultiLineComment = true;

} else if(destinationBuffer[i] == ?;?) {
this.inSingleLineComment = true;

!Dr. Ladd first encountered this presentation order in Koenig and Moo’s Accelerated C++.

https://vadimkravcenko.com/shorts/proper-documentation/

} else {
destinationBuffer[last++] = destinationBuffer[i];

Motivation Reading involves scanning lines of text (code). Lines that are too wide for reading in about two glances slow down
processing. Also, as in the example above, printing out code that is too wide can go beyond the width of a page and lose infor-
mation.

Exceptions Import lines go on a single line.

Rule Never break import or package lines.
Motivation Long package lines do not often go beyond the 80 character limit but if they do, there is no good way to determine
where they should be broken. There are also few of them and they appear at the top of the file so they do not break reading flow.

Rule Indentation must be consistent in source files. Always use the space character for indentation, never the tab character. f
Example It the following code, what is the body of the loop?

void readFile(String fname) {
try {
Scanner fin = new Scanner(new File(fname));
int wordCounter = 0;
while (fin.hasNext()) {
String word = fin.next();
wordCounter += 1;
System.out.println(String.format(?[%d] %s”, wordCounter, word));
}
} catch (I0Exception e) {
e.printStackTrace();
}
}

Yet, the same code can be made easier to read with consistent 2-space or 4-space indentation:

void readFile(String fname) { 1 void readFile(String fname) {
try { 2 try {
Scanner fin = new Scanner(new File(fname)); 3 Scanner fin = new Scanner(new File(fname));
int wordCounter = 0; 4 int wordCounter = 0;
while (fin.hasNext()) { 5 while (fin.hasNext()) {
String word = fin.next(); 6 String word = fin.next();
wordCounter += 1; 7 wordCounter += 1;
System.out.println(String.format(”’[%d] %s”, 8 System.out.println(String.format(”’[%d] %s”,
wordCounter, word)); 9 wordCounter, word));
} 10 3
} catch (IOException e) { 11 } catch (I0Exception e) {
e.printStackTrace(); 12 e.printStackTrace();
} 13 }
} 14 }

Motivation Indentation in programming languages shows structure. In Python, whitespace is structure. Consistent indentation
guides the reader across details they want to just scan and helps them drill down on the details deemed important.

Rule Use enough blank lines to structure your code but do not use too many blank lines.

Motivation No example here, just some rules of thumb.

Set the package line off from the header comment with a single blank line.

Set the import lines off from the ctass header comment with a single blank line.

Consistently put zero (0) or one (1) blank line between data members in classes. If use no whitespace between lines, make sure
to offset the data with a blank line from the rest of the class.

2Except in Makefiles and other formats that give meaning to the tab.

Consistently put one (1) or two (2) blank line(s) between methods in a class.

It is often a good idea to set a loop (top and bottom) or conditional (top and/or bottom) from the rest of the code by a single
blank line. This is important in long methods (and might be better addressed by breaking long methods into shorter, simpler,
single-purpose methods).

Rule Opening curly braces, {, should never be alone on a line; closing curly braces, }, are alone on a line more often than not.

Example Bad code! Good code!
public class Cubic 1 public class Cubic
extends Square 2 extends Square {
{ 3 public static void main(String[] args) {
public static void main(String[] args) 4 if (args.length != 1) {
{ 5 System.err.println(”Call w/ exactly one file name.”);
if (args.length != 1) 6 System.exit(1);
{ 7 } else {
System.err.println(”call w/ exactly one file name.”); 3 // ... code
System.exit(1); 9 3}
} 10}
else 1un }
{
// ... code
}
3
}

Motivation This is a topic open to heated debate in the realm of software engineering. The concluding advice in most arguments
for a given style is that a smart programmer learns to use the formatting rules of the shop where they program.
You program in the CS Department and this is the given style for curly braces.

Ordering: File

Source files should follow consistent convention so that the programmer reading the code knows where to look for necessary
information

Rule Sections in a Java source file should be ordered as follows. Skip any empty section.

<Package Declaration>
<Header Comment>
<Import Statements>

<Class Declaration>

Example The following is a minimized example without an explicit package nor any import statements.

/**
* Hello, World in a minimized class.
*
* Hello, World is a 5 decade old example. This in default package
* @author Brian C. Ladd

*/

public class Helloworld {
public void main(String args[]) {
System.out.println(”’Hello, World!”);
}
}

Motivation The relative ordering of everything but the comment is dictated by the Java programming language. The package
comes first because many editors look for it there. The header comment is probably the first think a programmer wants to see
upon opening your file.

Rule A .java file must contain a single class definition.

Motivation Java requires that a public class be declared in a file with the same name as the class. It is possible to declare (and
use) non-public classes outside that class in the same file.

Never do this.

It makes finding the hidden class definition impossible for a future programmer.

Note: you may declare any inner classes inside the single, top-level, public class.

Ordering: Class

One must navigate within class definitions. A structure serves as a skeleton on which you hang your code.

Rule Fields/methods in a class should be ordered as follows. Skip any empty section. Within any given section, order alphabet-
ically by the names of the fields or methods. With overloaded methods (including constructors) order by number of parameters.

public class <Class Name>
extends <Parent>
implements <InterfaceA>, <InterfaceB>, ... {

<Private Field Declarations>
<Constructors>
<Public Methods>

<Private Methods>

}

Motivation Java is very permissive on ordering (as with blank lines and other whitespace). Java source code does not support
the idea of a table of contents so this ordering convention makes it easier to scan for the part of the class that one suspects is of
interest.

Comments

The first (above the source code) level of documentation is the comments in a source file. Header comments are required and
must use JavaDoc formatting.

In-line comments clarify complex code — if you are writing lots of these comments, consider if you can write less complex
code and guide the reader to your thinking/intent.

Rule All header comments must use Javaboc formatting and styling.
Example The /** beginning of the comment is intentional; it is how the Javaboc program can tell which comments to process
(those with the double star) and which to skip (those with a single star in the beginning).

1 [x*

2 * @author Jimmy A. Student

3 * @email studeja199@potsdam.edu

4 *

s * @param n the non-negative integer to calculate the factorial for
6 * @note n is NOT checked as being non-negative; caveat emptor

7 * @return n! or n factorial

s X/

Motivation The fields, marked by @, such as @author, mark the names of fields that could be extracted by the gavaboc program
when creating HTML documentation.

The @param and @return are important in that they document how to pass information into and read information back from a
method.

Exceptions

Rule Every source code file must begin with a file header comment
Example Imagine that the file 6argoyle. java is part of the project solution. That file must begin with the following

1 %%
2 * Gargoyle draws a random ASCII art monster on standard output.
3 *

12

13

16

17

* Gargoyle has all static methods (and no constructor) including

* main. It is run with a single integer on the command-line that

* is used to randomize the monster that is generated.

*

* @author Jimmy A. Student

* @email studejal99@potsdam.edu

* @course CIS 203 Computer Science II

* @assignhment 4

* @due 04/25/2018

*/
Motivation A file header comment has three parts: summary (the first line), detailed description, and developer identification
block.
The summary and detailed description document the intent of the class defined in this . java file.
More than just repeat the name of the class, the summary indentifies, in eighty characters or less, why this class exists. The
reader gets early guidance if this class contains the functionality they need to see.
In comparison to the summary, the detailed description expands on what the class does, how a programmer would use it, and
lists the collaborator classes in the solution.
As mentioned earlier, the id block uses keywords starting with the ampersand (@) because these are treated specially by the
javadocl program. This id block is required in all CS classes. Files without an id block will not be graded and given a 0 (zero).

Rule Every method must have a header comment with the parameters and return value documented in Javaboc format.
Example A very complete method header comment. Note the @throws keyword in particular.

/**

* Turns gargoyle drawing clockwise.

Rotates the monster being drawn by the number of
degrees. Cannot turn 360.0 degrees or more nor
less than 0.0 (one rotation).

% % % %

*
* @pre 0.0 <= facing < 360.0
* @post 0.0 <= facing < 360.0
* @param degreesOfTurn how far to turn the monster; on the range
* [0.0 - 360.0)
* @return the new facing, normalized to [0.0 - 360)
* @throws IllegalArgumentException if the argument is outside
* specified range
*/
pubilc static double turnClockwise(double degreesOfTurn)
throws IllegalArgumentException {...}

Motivation Like the file header comment, this comment begins with a summary and a detailed description. The summay, at a
higher-level of abstraction, documents the intent of this method, why it exists: “What does this method do?”# The description
documents parameters and calling conventions: “How is this method used?”

Keywords appear at the end of the header comment. All of the keywords are described below in the order they appear in a header
comment, including keywords not used in the example. Skip keywords that do not apply to the method.

@pre The required preconditions. What must be true for the method to perform correctly. In non-static methods “The object has
been constructed” is an implicit precondition that need not be written.

@post The promised postcondition. What is always true when the method finishes?

@param A parameter passed in to the method. Name it, then describe what it means and include limitations on expected range of
values passed in. There is one @param for each parameter passed in to the method.

@return Describe the value the method returns. Omit when the method returns void.

@throws If the method has a throws clause, name the exception thrown and describe the conditions under which it is thrown.
There is one @throws keyword for each different type of exception thrown.

3javadoc is a compiler like javac but instead of handling the Java code and creating a .class file, javadoc handles the special comments beginning with the
/** and produces linked Web pages that document the code.

*It is often repeated in introductory programming texts that if you cannot come up with a short summary (or a good name) for a method, it is an indication
that you are trying to do too much. Compare it to trying to write the topic sentence for a paragraph; if it is hard to do, the paragraph is probably trying to do
too much at once and should be broken up.

-

N

® N o u

-

N

@note A footnote to the header comment. Can be used to describe implementation details, note sources that influenced the code,
or to explain the design rationale embodied in this method.

Naming

Naming in programs must be “self-documenting”, meaning that the identifier is descriptive of the purpose served by the named
entity. In general, the names in programs must be meaningful (numberofcows as opposed to n). The greater the scope where the
variable is visible, the longer and more detailed the name must be (cows, numberofcows, numberofcowsFromRadioCollars).

Rule Single letter names can only be used for loop control or temporary variables.

Example
Bad code! Good code!
int n = 0; 1 int numberofvalues = 0;

Motivation Single-letter names are confusing except in a context where their context is clear (e.g., as a loop counter. In the bad
code example, n gives no hint of the variable’s function in the program. The good code example naming is explicit and will not
lead to confusion.

Camel Case Code differs from natural languages: for the ease of processing by a compiler, words separated by whitespace
always refer to separate things. Computers cannot group a sequence of words, say “the distance to the sun in millions of kilo-
meters”, into a phrase.

Rule Identifiers must use camel case (but see clarifications regarding capitalization, below). This requires beginning the iden-
tifier with a lower case letter and using an upper case letter for the start of each subsequent word within the identifier.
Example The bad code example removes whitespace but is difficult to read. The good code example uses camel case for en-
hanced readability.

Bad code! Good code!

double thedistancetothesuninmillionsofkilometers = 150; 1 double theDistanceTothesunInMillionsOfKilometers = 150;

Motivation Since whitespace cannot be used within identifiers, words must be connected within an identifier. Underscores
add characters to the identifier and are reduce ease of typing. Camel case addresses both readability and typeability.

Capitalization by Part of Program Capitalization is used in alphabetic natural languages to make them easier to read. For
example, capital letters in English indicate the beginning of a sentence or highlight a proper noun. Similar (but different) rules
apply in other languages. Analogous benefits come from capitalization rules when writing in a programming language.

Camel case is used when constructing a name out of a multi-word phrase. The type of thing being named determines what
kind of phrase should be used and the capitalization of the initial character in the name.

Rule Class/interface names must begin with an upper case letter and use camel case after that.
Example The following are examples of good type names

public class Insect ...

public interface Motorcar ...

public class IngredientCollection {
class Node {

}

Motivation Class names should be easy to distinguish from the objects that are created from the class. In Java, a class is a new
type of object. It is a class of things (a blueprint for a type of buildings, for example) that the program will manipulate. The
capital letter sets the name of types of objects apart from the names of objects themselves.

Rule Constants must be named using ONLY upper case and underscores to separate words.
Example Constants are the only names that use a single case (upper) and underscores to separate words.

final double PI = 3.1415;
final int DEBUG_PRINT_LEVEL = 4;

Motivation A constant is a named value that is used in place of a literal value. The constant is named to make it easier to change
and, more importantly, to document what the value is used for.
Putting the name of the constant in ALL CAPITALS makes it stand out from variables and types.

1
2
3
4

«

Choosing Names Names in a program must be meaningful (e.g. numberofRows or rowcount rather than n or r). The broader the
scope (number of lines where the variable is usable), the more detailed (and longer) the name must typically be. The following
table summarizes the capitalization rules above and gives guidance on picking names for different parts of the program.

Type Convention Examples
class Capitalize first letter, interface class Insect
CamelCaseWithin interface MotorcCar

Descriptive, singular noun phrase that names a type or family of values. Singular even if it contains multiple values; the class
names the type of the container, not contained objects.

constant All uppercase, words final double PI = 3.1415
SEPARATED_BY_UNDERSCORES final int DEBUG_PRINT_LEVEL = 4

Descriptive, singular noun phrase.

method lower-case first letter, void scaleImage(double factor)
camelCaseWithin boolean isTransparent()
int lengthofSampleInMeters()

void function is an active verb phrase. boolean method is a yes/no question. Otherwise named as the value returned (see
variable below).

variable lower-case first letter, double costofDiamondInEuros
camelCaseWithin List<Double> heighsInHands

Descriptive, singular noun phrase for most variables. Use a plural noun phrase if the variable names a collection.

Rule Spell out words completely in names.

Motivation How much typing do you save if, instead of gameLevel you use gameLvl or gameLev , or (shudder!) gameL ? How
can the future programmer guess which one was used?

Exceptions As with single letter names, short scope can sometimes excuse this. Consistent abbreviations in a program or
collection of programs might also make this acceptable. When writing a brand new program, stick with complete words.

Rule Always try to make the code clearer with naming, formatting, or additional methods rather than adding lots of in-line com-
ments. Avoid noise comments.

Example

Bad code! Good code!

// field counts the number of Christmas presents 1 // count all presents under this Tree
// stored in this Tree object 2 private int numberOfPresents;

private int someThing; 3 eee

4 sum += i;

sum += i; // add i to sum

The second comment in the bad code adds nothing. 1t repeats, in English, exactly what the Java says. Let the code communicate
the steps of the program.

Motivation Think very hard about making your variable names describe what is happening. Good names do not take away all
need for comments but they help make the code easier to read.

Removing comments that duplicate the code is especially important because if you comeback in three months and update the
code, you may not even bother to read the accompanying comment, let alone update it. Then, in six months, future you will see
code and comment that disagreef

Documentation

Documentation encompasses all of the human-readable materials that compose and accompany a computer program: variable
names, source code comments, file names, README files, and user manuals. These must work together to permit a user of the
program to run it and a future programmer to understand, verify, and extend the program.

Naming and source code comments have their own sections above. This section will focus on external documentation, par-
ticularly the ReapME file you will write for every assignment.

51t is said that if code and comments disagree, it is likely that neither is correct.

README

Students must turn in a README file with every assignment. The README restates the problem the program is to solve, design
decisions made by the developer, how to compile and run the program, and a test plan on how correct operation was tested for
and how the grader can run the same tests.

Rule README is either README. txt (plain text), README.md (GitHub-style Markdown), or README.org (Org mode) and is in the root
directory of the material submitted for grading.B

Motivation ReADME is intended to go with the source code and be update along with the source code. It is therefore in a format
that can easily be typed in a code editor. This also makes sure that it can be read on any given machine, whether or not any
given piece of software is installed.

Rule ReADME begins with a restatement of the problem being solved in the student’s own words.

Motivation Restating the problem in your own words is actually something you should do early in the process of writing a
program. If you cannot clearly restate the problem, that indicates that you do not understand it.

Including the restatement in the README makes the directory tree self-documenting and complete. It also tells the reader (grader)
how you interpreted any parts of it that might be open to that.

Rule ReAbME documents design decisions made in implementing the solution.

Motivation Did you, the programmer, select any major data structures or algorithms used in the program (that is, were they
not dictated in the problem statement)? If so, a short statement on the range of possibilities considered and justification for the
choice made is in order.

Similarly for any file formats you designed and third-party libraries that you included. This is also a convenient place to give
credit for code that you read in solving the problem.

Rule ReApME must include clear, concise instructions on how to compile and how to run the program.

Motivation The problem statement included how the program interfaces with the world and the solution language has conven-
tions for how to build executables. But tiny variations in interpretation make it hard for the user to quickly run your program.
Your README must clearly explain how to run the compiler or build tool, especially if the tool is run from a different folder than

the root of the project. Then it must explain how to run the program and how to provide data files and arguments to the running
file.

Rule ReADME documents the test plan used to validate the solution.

Motivation How do you know when any computer program is done? You stop when the program solves the problem correctly.
How would you convince someone (i.e. the grader, your boss, the client) that the program solves the problem and that it is
correct? By running tests with known outcomes and comparing expected and actual results.

The assignment may contain some explicit test cases. You can include those in the README. More important are the test cases you
develop as you figure out what correct behavior is.

You need to give explicit instructions on how to give test input to your program and how to compare the output to that which
is expected. These instructions must permit the user to confirm that your tests pass.

The user needs to know: (a) what data to give to the program; (b) how to run the program with the test input; (c) how to evaluate
the output for correctness. Of course the programmer had to know those three things in order to test the program in the first
place, so this is just a written record of that work.

Git Commit Messages

gitis the version control system used in the CS Department. A version control system is a database of the source code that makes
up a program, keeping track of how the set of files has changed over time. This permits, at a minimum, long-term undo back to
any point saved in the history.

Each project is put into a gitrepository. Each time you add changes to the repository, you commit the changes. Each commit
includes a commit message. A commit message is documentation.

Rule Each student must use a private organization for each course to create their repositories for turning in code. The name of
the organization is of the form F23-310-1laddbc.

Motivation The organization is private because only the student and instructor should have access to materials submitted for
grading.

The naming of the organization is formatted so the it gives the semester, the course number, and the student’s campus computing
ID (email w/o potsdam.edu). This makes it possible to write scripts that find all the organizations for a given course offering.

The format of file is indicated by the file extension. Different professors in the department may use or specify different formats and you will want to be
familiar with all three.

The organization is owned by the student. The student must create a team with read-only access to the repos in the organization
and add their instructor to that team.
Exceptions

Rule Eachassignment is turned in through a private repository in the organization with the naming convention F23-31e-1addbc-peo1.
Motivation The repository is private so other students cannot look at work turned in for grading. The last part of the name,
poo1, for example, is given by the instructor to match their preferred assignment naming strategy.

The naming convention is redundant to make sure that each repository for an assignment in a class will have a unique folder
name on the grader’s computer.

Rule Each git commit message documents what changed at a level of abstraction above the list of changed files.
Motivation git can list all the changed files between commits. It cannot automatically document why this commit was made.
That is what the commit message is for. Especially the first line.

10

Rule Lines should never be longer than 80 characters.

Rule Never break import or package lines.

Rule Indentation must be consistent in source files. Always use the space character for indentation, never the tab character.
Rule Use enough blank lines to structure your code but do not use too many blank lines.

Rule Opening curly braces, {, should never be alone on a line; closing curly braces, }, are alone on a line more often than not.
Rule Sections in a Java source file should be ordered as follows. Skip any empty section.

<Package Declaration>
<Header Comment>
<Import Statements>

<Class Declaration>

Rule A .java file must contain a single class definition.
Rule Fields/methods in a class should be ordered as follows. Skip any empty section. Within any given section, order alphabet-
ically by the names of the fields or methods. With overloaded methods (including constructors) order by number of parameters.

public class <Class Name>
extends <Parent>
implements <InterfaceA>, <InterfaceB>, ... {

<Private Field Declarations>
<Constructors>
<Public Methods>

<Private Methods>

}

Rule All header comments must use Javaboc formatting and styling.

Rule Every source code file must begin with a file header comment

Rule Every method must have a header comment with the parameters and return value documented in Javaboc format.

Rule Single letter names can only be used for loop control or temporary variables.

Rule Identifiers must use camel case (but see clarifications regarding capitalization, below). This requires beginning the iden-
tifier with a lower case letter and using an upper case letter for the start of each subsequent word within the identifier.

Rule Class/interface names must begin with an upper case letter and use camel case after that.

Rule Constants must be named using ONLY upper case and underscores to separate words.

Rule Spell out words completely in names.

Rule Always try to make the code clearer with naming, formatting, or additional methods rather than adding lots of in-line com-
ments. Avoid noise comments.

Rule README is either README.txt (plain text), README.md (GitHub-style Markdown), or README.org (Org mode) and is in the root
directory of the material submitted for grading.

Rule ReADME begins with a restatement of the problem being solved in the student’s own words.

Rule README begins with a restatement of the problem being solved in the student’s own words.

Rule RreapMe documents design decisions made in implementing the solution.

Rule ReApME must include clear, concise instructions on how to compile and how to run the program.

Rule ReADME documents the test plan used to validate the solution.

Rule Each student must use a private organization for each course to create their repositories for turning in code. The name of
the organization is of the form F23-310-1addbc.

Rule Each assignment is turned in through a private repository in the organization with the naming convention F23-310-1addbc-pee1.
Rule Each git commit message documents what changed at a level of abstraction above the list of changed files.

