
CIS 310 Operating Systems
Week 2: What is a Computer?

Dr. Brian C. Ladd

Thursday 4th November, 2021



Outline

Computer Architecture
The main parts

Hardware Support for an OS
Privilege Bit
Interrupts
System Calls



Computer Architecture

Definition
Your machine is a digital, binary, general-purpose device.

digital composed of discrete units (digits).
binary using base 2, the set of {0, 1}.

general purpose capable of interpreting encoded data. Given
enough bits, anything can be encoded.

Definition
Our stored-program computers can store and interpret
instructions on how to interpret bits in memory.



Computer Architecture

Definition
Your machine is a digital, binary, general-purpose device.

digital composed of discrete units (digits).

binary using base 2, the set of {0, 1}.
general purpose capable of interpreting encoded data. Given

enough bits, anything can be encoded.

Definition
Our stored-program computers can store and interpret
instructions on how to interpret bits in memory.



Computer Architecture

Definition
Your machine is a digital, binary, general-purpose device.

digital composed of discrete units (digits).
binary using base 2, the set of {0, 1}.

general purpose capable of interpreting encoded data. Given
enough bits, anything can be encoded.

Definition
Our stored-program computers can store and interpret
instructions on how to interpret bits in memory.



Computer Architecture

Definition
Your machine is a digital, binary, general-purpose device.

digital composed of discrete units (digits).
binary using base 2, the set of {0, 1}.

general purpose capable of interpreting encoded data. Given
enough bits, anything can be encoded.

Definition
Our stored-program computers can store and interpret
instructions on how to interpret bits in memory.



Computer Architecture

Definition
Your machine is a digital, binary, general-purpose device.

digital composed of discrete units (digits).
binary using base 2, the set of {0, 1}.

general purpose capable of interpreting encoded data. Given
enough bits, anything can be encoded.

Definition
Our stored-program computers can store and interpret
instructions on how to interpret bits in memory.



von Neumann Architecture

• A single, unified memory.
• A single∗ processor.
• A bidirectional connection between them.



Parts

Registers

...

idr
pc

Control

ALU

CPU

0x0000

0x0001

0x0002

0x0003

0x0004

...
0xFFFB

0xFFFC

0xFFFD

0xFFFE

0xFFFF

RAM

Memory Bus



The Cycle

while (not halted):
fetch instruction from RAM[pc] into idr
decode idr
execute



What Only Hardware Can Do

• Interrupts

• Privilege Bit
• System Calls
• Address Translation
• Atomic Instructions



What Only Hardware Can Do

• Interrupts
• Privilege Bit

• System Calls
• Address Translation
• Atomic Instructions



What Only Hardware Can Do

• Interrupts
• Privilege Bit
• System Calls

• Address Translation
• Atomic Instructions



What Only Hardware Can Do

• Interrupts
• Privilege Bit
• System Calls
• Address Translation

• Atomic Instructions



What Only Hardware Can Do

• Interrupts
• Privilege Bit
• System Calls
• Address Translation
• Atomic Instructions



Kernel/User Mode

• CPU status register has a privilege bit
0 ⇒ user mode
1 ⇒ kernel (system) mode



User Mode

• All addresses are translated by the hardware according to
policy set by the operating system.

• Direct interaction with certain parts of memory is forbidden,
e.g. memory-mapped device ports, OS data structures,
interrupt service vector, OS code, hardware timer settings.

• Certain CPU instructions are forbidden and will generate an
interrupt if they are attempted.

• Limited Direct Execution



Kernel Mode

• Permit all the forbidden stuff.
• Direct Execution



Switching?

How can your program write something to a file if it lives in user
mode and only the system mode can interact with devices that
have files on them?

Good Question
We will answer it in a minute.



Switching?

How can your program write something to a file if it lives in user
mode and only the system mode can interact with devices that
have files on them?
Good Question
We will answer it in a minute.



Next Instruction

How does the CPU select the next instruction to execute?

The value in the pc register
fetch
decode
execute

What if some hardware or even some software needs immediate
service?
An Interrupt



Next Instruction

How does the CPU select the next instruction to execute?
The value in the pc register

fetch
decode
execute

What if some hardware or even some software needs immediate
service?
An Interrupt



Next Instruction

How does the CPU select the next instruction to execute?
The value in the pc register

fetch
decode
execute

What if some hardware or even some software needs immediate
service?

An Interrupt



Next Instruction

How does the CPU select the next instruction to execute?
The value in the pc register

fetch
decode
execute

What if some hardware or even some software needs immediate
service?
An Interrupt



Taking an Interrupt

• Before fetch: check for pending interrupt.
• With highest priority pending interrupt

• Set privilege bit
• Save context of user program on k-stack
• Use interrupt number is index into ISV: jump to the address.
• Run interrupt service routine using normal

fetch-decode-execute cycle (but with privilege).



A Process in RAM
Machine RAM with a process, p in it.

RAM

p

hardware operating system

Looking more closely at hardware handled memory.

RAM

ISV

k-stack

Taking an interrupt.

RAM
IH



A Process in RAM
Machine RAM with a process, p in it.

RAM

p

hardware operating system

Looking more closely at hardware handled memory.

RAM

ISV

k-stack

Taking an interrupt.

RAM
IH



A Process in RAM
Machine RAM with a process, p in it.

RAM

p

hardware operating system

Looking more closely at hardware handled memory.

RAM

ISV

k-stack

Taking an interrupt.

RAM
IH



Returning from an Interrupt

• Ensure the context of appropriate user process is on k-stack.
• Unset privilege bit
• Restore context from k-stack.

• Restart instruction pointed to by pc for user code.



Big Idea

The idea of a jump table (or service vector) is very useful in
building a flexible interface.

• Outside world provides a number indicating an event or
request.

• Inside, we have an array of pointers at code. Indexing by
event gives us the code to run.

• Interface because we publish the list of numbers we expect
for different events (or accommodate such a list provided by a
hardware manufacturer).

• Flexible because we can change how we handle any given
event just by providing code and pointing at it.



System Call

• Can we avoid building a new system for user code to do
system things?

• Interrupt system already promotes from user ⇒ system mode.
• Still do not want to have user code executing in system mode

(Never trust users. Never!)
• Can the OS leverage this to permit user mode software to

request privileged services from the OS.
• System Call or a software interrupt.



System Call

• Can we avoid building a new system for user code to do
system things?

• Interrupt system already promotes from user ⇒ system mode.

• Still do not want to have user code executing in system mode
(Never trust users. Never!)

• Can the OS leverage this to permit user mode software to
request privileged services from the OS.

• System Call or a software interrupt.



System Call

• Can we avoid building a new system for user code to do
system things?

• Interrupt system already promotes from user ⇒ system mode.
• Still do not want to have user code executing in system mode

(Never trust users. Never!)

• Can the OS leverage this to permit user mode software to
request privileged services from the OS.

• System Call or a software interrupt.



System Call

• Can we avoid building a new system for user code to do
system things?

• Interrupt system already promotes from user ⇒ system mode.
• Still do not want to have user code executing in system mode

(Never trust users. Never!)
• Can the OS leverage this to permit user mode software to

request privileged services from the OS.

• System Call or a software interrupt.



System Call

• Can we avoid building a new system for user code to do
system things?

• Interrupt system already promotes from user ⇒ system mode.
• Still do not want to have user code executing in system mode

(Never trust users. Never!)
• Can the OS leverage this to permit user mode software to

request privileged services from the OS.
• System Call or a software interrupt.



Handling a System Call

• OS knows what kind of hardware interrupt happened by the
interrupt number.

• User code has to ask for many different actions from the OS.
• Yet syscall always generates the same interrupt.

How can the user communicate the function they wish to
request?



Handling a System Call

• OS knows what kind of hardware interrupt happened by the
interrupt number.

• User code has to ask for many different actions from the OS.

• Yet syscall always generates the same interrupt.
How can the user communicate the function they wish to
request?



Handling a System Call

• OS knows what kind of hardware interrupt happened by the
interrupt number.

• User code has to ask for many different actions from the OS.
• Yet syscall always generates the same interrupt.

How can the user communicate the function they wish to
request?



System Call Function Numbers

The OS can define that certain registers, in addition to being
saved during a syscall, will also be read or written by the OS.
The registers provide the function number and parameters for the
syscall.
How does the OS call the right code for a given function?



Program Writes a String

mov rax, 1 ; system call number for write
mov rdi, 1 ; param 1: file descriptor (FD) number.

; FD 1 is stdout
mov rsi, msg ; param 2: address of string
mov rdx, len ; param 3: length of string
syscall ; trap into OS kernel

By Linux convention
rax is the function number

and for write
rdi is a file descriptor

rsi points to an array of char
rdx is length of array of char



Requesting Privileged Access
What happens when our program makes a system call?

RAM

syscall

syscall generates an interrupt. Control passes through the ISV.

RAM

syscall

interrupt

To the syscall handler with its own jump table.

RAM

syscall

interrupt



Requesting Privileged Access
What happens when our program makes a system call?

RAM

syscall

syscall generates an interrupt. Control passes through the ISV.

RAM

syscall

interrupt

To the syscall handler with its own jump table.

RAM

syscall

interrupt



Requesting Privileged Access
What happens when our program makes a system call?

RAM

syscall

syscall generates an interrupt. Control passes through the ISV.

RAM

syscall

interrupt

To the syscall handler with its own jump table.

RAM

syscall

interrupt


	Computer Architecture
	The main parts

	Hardware Support for an OS
	Privilege Bit
	Interrupts
	System Calls


