
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CIS 310 Operating Systems
Week 10: Virtual Memory

Dr. Brian C. Ladd

Friday 5th November, 2021

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 1 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 2 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

fork v. exec

fork()

Creates a new process control block (PCB).
PCB — OS-specific data structure; access must be privileged.
fork() is a library wrapper around a system call.

Trap to the OS. k-stack saved to current (parent) PCB.
Duplicate parent PCB, duplicate all FD, duplicate memory
assignment but separate writable pages.
Policy Prefer parent or child process by returning from the system
call to one or the other.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 3 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

fork v. exec

fork()

Creates a new process control block (PCB).
PCB — OS-specific data structure; access must be privileged.
fork() is a library wrapper around a system call.
Trap to the OS. k-stack saved to current (parent) PCB.

Duplicate parent PCB, duplicate all FD, duplicate memory
assignment but separate writable pages.
Policy Prefer parent or child process by returning from the system
call to one or the other.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 3 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

fork v. exec

fork()

Creates a new process control block (PCB).
PCB — OS-specific data structure; access must be privileged.
fork() is a library wrapper around a system call.
Trap to the OS. k-stack saved to current (parent) PCB.
Duplicate parent PCB, duplicate all FD, duplicate memory
assignment but separate writable pages.

Policy Prefer parent or child process by returning from the system
call to one or the other.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 3 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

fork v. exec

fork()

Creates a new process control block (PCB).
PCB — OS-specific data structure; access must be privileged.
fork() is a library wrapper around a system call.
Trap to the OS. k-stack saved to current (parent) PCB.
Duplicate parent PCB, duplicate all FD, duplicate memory
assignment but separate writable pages.
Policy Prefer parent or child process by returning from the system
call to one or the other.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 3 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

fork v. exec

exec("cmd")

Loads new program code into memory and starts the loaded program
from the beginning.
Will read from filesystem. Will modify context. Privileged operations.
exec() is a library wrapper around a system call.

Trap to the OS. Save context to PCB. Release user memory (will
keep FD and most of the PCB the same).
Load beginning of the code segment of cmd file. Allocate new
memory for heap and stack for a new program.
Put the string cmd and provided arguments in memory according to
OS convention.
Modify context so IP contains the virtual starting address for a new
program.
Return from interrupt.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 4 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

fork v. exec

exec("cmd")

Loads new program code into memory and starts the loaded program
from the beginning.
Will read from filesystem. Will modify context. Privileged operations.
exec() is a library wrapper around a system call.
Trap to the OS. Save context to PCB. Release user memory (will
keep FD and most of the PCB the same).

Load beginning of the code segment of cmd file. Allocate new
memory for heap and stack for a new program.
Put the string cmd and provided arguments in memory according to
OS convention.
Modify context so IP contains the virtual starting address for a new
program.
Return from interrupt.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 4 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

fork v. exec

exec("cmd")

Loads new program code into memory and starts the loaded program
from the beginning.
Will read from filesystem. Will modify context. Privileged operations.
exec() is a library wrapper around a system call.
Trap to the OS. Save context to PCB. Release user memory (will
keep FD and most of the PCB the same).
Load beginning of the code segment of cmd file. Allocate new
memory for heap and stack for a new program.

Put the string cmd and provided arguments in memory according to
OS convention.
Modify context so IP contains the virtual starting address for a new
program.
Return from interrupt.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 4 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

fork v. exec

exec("cmd")

Loads new program code into memory and starts the loaded program
from the beginning.
Will read from filesystem. Will modify context. Privileged operations.
exec() is a library wrapper around a system call.
Trap to the OS. Save context to PCB. Release user memory (will
keep FD and most of the PCB the same).
Load beginning of the code segment of cmd file. Allocate new
memory for heap and stack for a new program.
Put the string cmd and provided arguments in memory according to
OS convention.

Modify context so IP contains the virtual starting address for a new
program.
Return from interrupt.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 4 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

fork v. exec

exec("cmd")

Loads new program code into memory and starts the loaded program
from the beginning.
Will read from filesystem. Will modify context. Privileged operations.
exec() is a library wrapper around a system call.
Trap to the OS. Save context to PCB. Release user memory (will
keep FD and most of the PCB the same).
Load beginning of the code segment of cmd file. Allocate new
memory for heap and stack for a new program.
Put the string cmd and provided arguments in memory according to
OS convention.
Modify context so IP contains the virtual starting address for a new
program.

Return from interrupt.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 4 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

fork v. exec

exec("cmd")

Loads new program code into memory and starts the loaded program
from the beginning.
Will read from filesystem. Will modify context. Privileged operations.
exec() is a library wrapper around a system call.
Trap to the OS. Save context to PCB. Release user memory (will
keep FD and most of the PCB the same).
Load beginning of the code segment of cmd file. Allocate new
memory for heap and stack for a new program.
Put the string cmd and provided arguments in memory according to
OS convention.
Modify context so IP contains the virtual starting address for a new
program.
Return from interrupt.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 4 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Address Space

Definition
An address space is all of the memory that a (process/machine) can
address.

If the addresses refer to actual RAM locations, they are physical
addresses in a physical address space.
If the addresses must be translated before they refer to actual RAM
locations, they are virtual addresses in a virtual address space.

The size of an address space is determined by the number of address bits
it has: n bits of address ⇒ 2n bytes of memory.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 5 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Virtual Addresses

Virtualization should be transparent.

The process sees a single, contiguous address space beginning at 0
(hex).
All addresses in the process (contents of IP, pointers, load/store
instruction targets) are virtual.
Indirect addressing, through an OS-supported translator, is always
applied for user-space machine code.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 6 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Virtual Addresses

Virtualization should be transparent.
The process sees a single, contiguous address space beginning at 0
(hex).

All addresses in the process (contents of IP, pointers, load/store
instruction targets) are virtual.
Indirect addressing, through an OS-supported translator, is always
applied for user-space machine code.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 6 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Virtual Addresses

Virtualization should be transparent.
The process sees a single, contiguous address space beginning at 0
(hex).
All addresses in the process (contents of IP, pointers, load/store
instruction targets) are virtual.

Indirect addressing, through an OS-supported translator, is always
applied for user-space machine code.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 6 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Virtual Addresses

Virtualization should be transparent.
The process sees a single, contiguous address space beginning at 0
(hex).
All addresses in the process (contents of IP, pointers, load/store
instruction targets) are virtual.
Indirect addressing, through an OS-supported translator, is always
applied for user-space machine code.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 6 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Address Translation
Base Register

A base register is a CPU or MMU register that permits dynamic
memory relocation.

The physical address is calculated by adding the virtual address to
the value in the base register.
The base register alone can permit user programs to generate
dangerous addresses.
Combined with a bounds register, the translation is much safer.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 7 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Address Translation
Base Register

A base register is a CPU or MMU register that permits dynamic
memory relocation.
The physical address is calculated by adding the virtual address to
the value in the base register.

The base register alone can permit user programs to generate
dangerous addresses.
Combined with a bounds register, the translation is much safer.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 7 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Address Translation
Base Register

A base register is a CPU or MMU register that permits dynamic
memory relocation.
The physical address is calculated by adding the virtual address to
the value in the base register.
The base register alone can permit user programs to generate
dangerous addresses.

Combined with a bounds register, the translation is much safer.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 7 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Address Translation
Base Register

A base register is a CPU or MMU register that permits dynamic
memory relocation.
The physical address is calculated by adding the virtual address to
the value in the base register.
The base register alone can permit user programs to generate
dangerous addresses.
Combined with a bounds register, the translation is much safer.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 7 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Memory Management Unit

Fetch
IP 0000010C
Base 00001000
Bounds 00002000

O
ut

-o
f-

Bo
un

ds
Addr

Base

+

Bounds

>

0000010C

00001000
00002000

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 8 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Memory Management Unit

Fetch
IP 0000010C
Base 00001000
Bounds 00002000

O
ut

-o
f-

Bo
un

ds
Addr

Base

+

Bounds

>

0000010C

00001000
00002000

0000110C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 9 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Memory Management Unit

load R1, 0x00001100
Base 00001000
Bounds 00002000

O
ut

-o
f-

Bo
un

ds
Addr

Base

+

Bounds

>

????????

00001000
00002000

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 10 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Memory Management Unit

load R1, 0x00001100
Base 00001000
Bounds 00002000

O
ut

-o
f-

Bo
un

ds
Addr

Base

+

Bounds

>

00001100

00001000
00002000

????????

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 11 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Memory Management Unit

load R1, 0x00001100
Base 00001000
Bounds 00002000

O
ut

-o
f-

Bo
un

ds
Addr

Base

+

Bounds

>

00001100

00001000
00002000

00002100

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 12 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Problems Fitting Processes

Using a single base/bounds register pair for a process permits
dynamic relocation of the whole virtual address space.

This requires contiguous physical memory that can contain the
virtual address space.
Fixed size process spaces will probably over allocate for many
processes, wasting memory in internal fragmentation.
Variable-size process spaces will lead to external fragmentation.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 13 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Problems Fitting Processes

Using a single base/bounds register pair for a process permits
dynamic relocation of the whole virtual address space.
This requires contiguous physical memory that can contain the
virtual address space.

Fixed size process spaces will probably over allocate for many
processes, wasting memory in internal fragmentation.
Variable-size process spaces will lead to external fragmentation.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 13 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Problems Fitting Processes

Using a single base/bounds register pair for a process permits
dynamic relocation of the whole virtual address space.
This requires contiguous physical memory that can contain the
virtual address space.
Fixed size process spaces will probably over allocate for many
processes, wasting memory in internal fragmentation.

Variable-size process spaces will lead to external fragmentation.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 13 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Problems Fitting Processes

Using a single base/bounds register pair for a process permits
dynamic relocation of the whole virtual address space.
This requires contiguous physical memory that can contain the
virtual address space.
Fixed size process spaces will probably over allocate for many
processes, wasting memory in internal fragmentation.
Variable-size process spaces will lead to external fragmentation.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 13 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Multiple Base/Bounds Pairs

Easier to fit if virtual address space is broken down into multiple
pieces, each with it’s own base/bounds pair.

Can break down by segment.
With four base registers, the left-most pair of bits would indicate
which segment base to use for relocation.
The OS can allocate four blocks, each a quarter of the size of the
virtual address space, for the process.
Still variable size. Can still fragment.
Speed: Another problem is speed of addition. O(log(bits))

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 14 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Multiple Base/Bounds Pairs

Easier to fit if virtual address space is broken down into multiple
pieces, each with it’s own base/bounds pair.
Can break down by segment.

With four base registers, the left-most pair of bits would indicate
which segment base to use for relocation.
The OS can allocate four blocks, each a quarter of the size of the
virtual address space, for the process.
Still variable size. Can still fragment.
Speed: Another problem is speed of addition. O(log(bits))

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 14 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Multiple Base/Bounds Pairs

Easier to fit if virtual address space is broken down into multiple
pieces, each with it’s own base/bounds pair.
Can break down by segment.
With four base registers, the left-most pair of bits would indicate
which segment base to use for relocation.

The OS can allocate four blocks, each a quarter of the size of the
virtual address space, for the process.
Still variable size. Can still fragment.
Speed: Another problem is speed of addition. O(log(bits))

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 14 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Multiple Base/Bounds Pairs

Easier to fit if virtual address space is broken down into multiple
pieces, each with it’s own base/bounds pair.
Can break down by segment.
With four base registers, the left-most pair of bits would indicate
which segment base to use for relocation.
The OS can allocate four blocks, each a quarter of the size of the
virtual address space, for the process.

Still variable size. Can still fragment.
Speed: Another problem is speed of addition. O(log(bits))

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 14 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Multiple Base/Bounds Pairs

Easier to fit if virtual address space is broken down into multiple
pieces, each with it’s own base/bounds pair.
Can break down by segment.
With four base registers, the left-most pair of bits would indicate
which segment base to use for relocation.
The OS can allocate four blocks, each a quarter of the size of the
virtual address space, for the process.
Still variable size. Can still fragment.

Speed: Another problem is speed of addition. O(log(bits))

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 14 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Multiple Base/Bounds Pairs

Easier to fit if virtual address space is broken down into multiple
pieces, each with it’s own base/bounds pair.
Can break down by segment.
With four base registers, the left-most pair of bits would indicate
which segment base to use for relocation.
The OS can allocate four blocks, each a quarter of the size of the
virtual address space, for the process.
Still variable size. Can still fragment.
Speed: Another problem is speed of addition. O(log(bits))

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 14 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Fixed Size Allocation Blocks

Avoid external fragmentation by only allocating a single size of block.

Big block v. small block

Big: fewer base registers needed; more internal fragmentation
Small: less internal fragmentation; more base registers

Small page size with translation information accessed indirectly from
RAM is paged virtual memory.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 15 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Fixed Size Allocation Blocks

Avoid external fragmentation by only allocating a single size of block.
Big block v. small block

Big: fewer base registers needed; more internal fragmentation
Small: less internal fragmentation; more base registers

Small page size with translation information accessed indirectly from
RAM is paged virtual memory.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 15 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Fixed Size Allocation Blocks

Avoid external fragmentation by only allocating a single size of block.
Big block v. small block

Big: fewer base registers needed; more internal fragmentation

Small: less internal fragmentation; more base registers
Small page size with translation information accessed indirectly from
RAM is paged virtual memory.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 15 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Fixed Size Allocation Blocks

Avoid external fragmentation by only allocating a single size of block.
Big block v. small block

Big: fewer base registers needed; more internal fragmentation
Small: less internal fragmentation; more base registers

Small page size with translation information accessed indirectly from
RAM is paged virtual memory.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 15 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Fixed Size Allocation Blocks

Avoid external fragmentation by only allocating a single size of block.
Big block v. small block

Big: fewer base registers needed; more internal fragmentation
Small: less internal fragmentation; more base registers

Small page size with translation information accessed indirectly from
RAM is paged virtual memory.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 15 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Address Translation
Page Table

A page table base register (PTBR) is a CPU or MMU register that
contains the physical address of the beginning of the page table.

The PTBR is part of the context for a process; the page table is a per
process data structure.
Address translation is done by separating addresses into two parts:
the page/frame number and the offset.
<page #> <offset>

Only the page # is translated from the virtual to the physical address.
The offset is a fixed number of bits wide so that the bounds register
is no longer required.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 16 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Address Translation
Page Table

A page table base register (PTBR) is a CPU or MMU register that
contains the physical address of the beginning of the page table.
The PTBR is part of the context for a process; the page table is a per
process data structure.

Address translation is done by separating addresses into two parts:
the page/frame number and the offset.
<page #> <offset>

Only the page # is translated from the virtual to the physical address.
The offset is a fixed number of bits wide so that the bounds register
is no longer required.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 16 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Address Translation
Page Table

A page table base register (PTBR) is a CPU or MMU register that
contains the physical address of the beginning of the page table.
The PTBR is part of the context for a process; the page table is a per
process data structure.
Address translation is done by separating addresses into two parts:
the page/frame number and the offset.
<page #> <offset>

Only the page # is translated from the virtual to the physical address.

The offset is a fixed number of bits wide so that the bounds register
is no longer required.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 16 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Address Translation
Page Table

A page table base register (PTBR) is a CPU or MMU register that
contains the physical address of the beginning of the page table.
The PTBR is part of the context for a process; the page table is a per
process data structure.
Address translation is done by separating addresses into two parts:
the page/frame number and the offset.
<page #> <offset>

Only the page # is translated from the virtual to the physical address.
The offset is a fixed number of bits wide so that the bounds register
is no longer required.

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 16 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Paged Translation

Split virtual address: <page, offset>

Use page as an index into the page table array
Get frame out of page table entry
Combine <frame,offset> into physical address

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 17 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Paged Translation

Split virtual address: <page, offset>
Use page as an index into the page table array

Get frame out of page table entry
Combine <frame,offset> into physical address

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 17 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Paged Translation

Split virtual address: <page, offset>
Use page as an index into the page table array
Get frame out of page table entry

Combine <frame,offset> into physical address

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 17 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Paged Translation

Split virtual address: <page, offset>
Use page as an index into the page table array
Get frame out of page table entry
Combine <frame,offset> into physical address

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 17 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

Offset Bits:

12b
Page #: 00002
Offset: 10C
Address of PTE: F0000000 + 4 × 00002 = F0000008
RAM[F0000008] = 007F2
Physical Address: 007F210C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 18 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

Offset Bits: 12b
Page #:

00002
Offset: 10C
Address of PTE: F0000000 + 4 × 00002 = F0000008
RAM[F0000008] = 007F2
Physical Address: 007F210C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 18 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

Offset Bits: 12b
Page #: 00002
Offset:

10C
Address of PTE: F0000000 + 4 × 00002 = F0000008
RAM[F0000008] = 007F2
Physical Address: 007F210C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 18 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

Offset Bits: 12b
Page #: 00002
Offset: 10C
Address of PTE:

F0000000 + 4 × 00002 = F0000008
RAM[F0000008] = 007F2
Physical Address: 007F210C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 18 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

Offset Bits: 12b
Page #: 00002
Offset: 10C
Address of PTE: F0000000 +

4 × 00002 = F0000008
RAM[F0000008] = 007F2
Physical Address: 007F210C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 18 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

Offset Bits: 12b
Page #: 00002
Offset: 10C
Address of PTE: F0000000 + 4 ×

00002 = F0000008
RAM[F0000008] = 007F2
Physical Address: 007F210C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 18 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

Offset Bits: 12b
Page #: 00002
Offset: 10C
Address of PTE: F0000000 + 4 × 00002 =

F0000008
RAM[F0000008] = 007F2
Physical Address: 007F210C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 18 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

Offset Bits: 12b
Page #: 00002
Offset: 10C
Address of PTE: F0000000 + 4 × 00002 = F0000008
RAM[F0000008] = 007F2

Physical Address: 007F210C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 18 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

Offset Bits: 12b
Page #: 00002
Offset: 10C
Address of PTE: F0000000 + 4 × 00002 = F0000008
RAM[F0000008] = 007F2
Physical Address:

007F210C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 18 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

Offset Bits: 12b
Page #: 00002
Offset: 10C
Address of PTE: F0000000 + 4 × 00002 = F0000008
RAM[F0000008] = 007F2
Physical Address: 007F210C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 18 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

00002 10C

Addr

frame(00002)
Frame Lookup

10C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 19 / 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Address Spaces

Page Lookup

Fetch
Page Size 4KB
IP 0000210C
PTBR F0000000
sizeof(PTE) 4B

00002 10C

Addr

frame(00002)
Frame Lookup

007F2 10C

Dr. Brian C. Ladd CIS 310 Operating Systems Friday 5th November, 2021 20 / 1


