Introduction

This assignment is a *group* assignment. If I, in the room, do not **hear** you interacting with the other students, you are doing it *wrong*!

Assignment Goals

Learning Outcomes After completing this group assignment, each student is expected to be able to

- Convert between *binary*, *decimal*, and *hexadecimal* representations of unsigned integers.
- Convert between *binary* and *decimal* representations of **signed** integers.

Procedure

Get out paper. The group will turn in *one* document. Make sure all participating members' names are on the page. **Copy each question before the answer**. Since the point is to make your answer sheet a stand-alone study guide, the copy need not be verbatim but must give your answer enough context to evaluate.

Assign Roles. Students should take roles they have not held recently (or, perhaps, ever):

Manager Move discussion forward.

Recorder Writes the report that will be turned in.

Reflector Monitor that everyone gets heard and is caught up. (This is a **group** obligation, really.)

Speaker (Combine w/ Reflector if necessary.) Asks facilitator questions; communicates what the team has done.

Answer these questions.

1. Add the following binary numbers; indicate whether or not there was overflow. The addends are presented in the expected bit width of the sums.

		1110	1111
(a)	+	0110	0001
	1	0101	0000
		0001	0010
(b)	+	0110	0110
	0	0111	1000
		1111	1111
(c)	+	0001	0000
	1	0000	1111

2. **Interpret** each problem in question 1 by translating the *binary* numbers to corresponding *decimal* numbers, assuming they are encoding *unsigned integers*. Are the answers the same in both representations?

Solu	ition:
239	
97 80	336
18	
102	
120	120
255	
16	
15	271

3. **Interpret** each problem in question 1 by translating the *binary* numbers to corresponding *decimal* numbers, assuming they are encoding *sign-magnitude integers*. Are the answers the same in both representations?

4. **Interpret** each problem in question 1 by translating the *binary* numbers to corresponding *decimal* numbers, assuming they are encoding *2's-compliment integers*. Are the answers the same in both representations?

Solution: -17 97 80 80 18 102 120 -1 16 15 15

5. If you were to interpret the integers in question 1 as *excess-n* integers, what would *n* be?

Solution:	
$128 = 2^{8-1}$	

6. Convert each of the following decimal numbers into their corresponding 6-bit, unsigned, binary number.

(a)	32 10	0000	(c)	100	0001
(b)	27 01	1011	(d)	15 00	1111

7. **Convert** each value in question 6 into a 6-bit, signed, 2's-compliment, binary number or explain why that cannot be done.

(a)	32 Cannot be done: range is -32 – 31	(c)	1 11 1	1111
(b)	27 10 0101	(d)	15 11	0001

- 8. Negate each value in question 6 and **convert** the result into a 6-*bit, signed, 2's-compliment, binary number* or explain why that cannot be done.
- 9. Negate each value in question 6 and **convert** the result into a 6-bit, signed, sign-magnitude, binary number or explain why that cannot be done.
- 10. Negate each value in question 6 and **convert** the result into a 6-*bit, signed, excess-n, binary number* or explain why that cannot be done.
- 11. **Interpret** (into *decimal*) each of the following 6-bit patterns as 6-bit numbers according to each of the integer encodings we know.

		Unsigned	Sign/Magnitude	Excess-n	2's-Compliment
10	0000				
00	0001				
10	0001				
11	1111				
00	0000				
01	1111				
11	0000				

12. Which of the above answers represent the *largest* or *smallest* value that can be encoded into a 6-bit representation using the given encoding system?