
CIS 356 Computer Organization
Spring 2024

gFunctions - MIPS Calling Conventions 2024-02-20

Introduction
This is a group assignment on calling and defining simple functions in MIPS assembly. Parameter passing, stack
frames, and return values are all explored.

Assignment Goals
Learning Outcomes After completing this group assignment, each student is expected to be able to
• TraceMIPS assembly code across function call and return.
• Use $a* and $v* registers according to MIPS calling conventions.
• Push, pop, and access values in the activation record of a function.

Procedure
Get out paper for a single turn-in at the end of class. Copy enough of each question so that the paper could stand
alone as a study guide.
Assign (Least-recently Held) Roles: Manager, Recorder, Reflector, Speaker. Everyone should help the whole team
contribute and manage time.
Answer these questions:

1. (a) Assume int sum(int a, int b, int c, int d) is translated toMIPS assembly. The following block of code,
in main, calls sum.
What are the (decimal) values of the four (4) parameters when control is transfered to sum?

li $a0, 101
li $a1, 0x19
sub $a2, $a0, $a1
li $a3, 0x111
jal sum

mov $a0, $v0
li $v0, 1
syscall

(b) Assuming sum returns the sum of its parameters, what is the output of the above snippet? Be exactwith the
formatting.

(c) Implement sum in Java as simply as you can. What other functions does your Java function call?
(d) Given what you know about MIPS calling conventions, implement sum in MIPS, again as simply as you can.

2. Playing with the stack:
(a) Write the two lines we have used to push $ra on the stack.
(b) Compare what happens in memory if the two lines in the push above were reversed.
(c) What does that tell you about where the $sp points (relative to the topmost item on the calling stack) in the

way we are using it?
(d) Write the two lines we use to pop the top of the calling stack into $ra.

gFunctions - MIPS Calling Conventions 2024-02-20

3. Consider the following code

1 .data
2 prefix:
3 .asciiz "["
4 suffix:
5 .asciiz "]"
6 eoln:
7 .asciiz "\n"
8
9 .text
10 .globl main
11 main:
12 li $t0, 0x10
13
14 # while $t0 >= 0
15 test:
16 bltz $t0, afterWhile
17
18 # println [i]
19 li $v0, 4
20 la $a0, prefix
21 syscall

22
23 li $v0, 1
24 move $a0, $t0
25 syscall
26
27 li $v0, 4
28 la $a0, suffix
29 syscall
30
31 li $v0, 4
32 la $a0, eoln
33 syscall
34
35 decrement:
36 subi $t0, $t0, 1
37 j test
38
39 afterWhile:
40 li $v0, 10
41 syscall

(a) What is the meaning of the j instruction in line 37? How is it different from the bltz in line 16?
(b) What is the output of the code?
(c) What is $t0 being used for here? What are the largest and smallest values it will hold while this is running?
(d) Dr. Ladd split suffix and eoln into two strings. Give pros and cons to this decision.

4. Consider the operation in the previous question. Imagine rewriting it as a recursive function, printEm. With the
same .data segment, main is rewritten to the following:

9 .text
10 .globl main
11 main:
12 li $a0, 0x10
13 jal printEm
14
15 li $v0, 10
16 syscall

(a) Write the Java function signature of the printEm function. How do you know the number/order of param-
eters.

(b) Implement printEm, in Java, so the rewritten main produces the same output as question 2.
(c) Translate the recursive printEm into MIPS. You probably want to start with the prologue/epilogue, then

the base case, then setting up the recursive call. Feel free to keep the code as simple as possible (but no
simpler).

Page 2

