
Learning Outcomes
After completing this program, students will be able to

• Write a library of functions in a separate assembly file.

• Manipulate C-style strings (character arrays).

Note: For this assignment you may make use of the mult instruction it MIPS.

Overview
Students will write a program that prompts the user for a line of text until the user enters "done". Each line will
be broken up into “words” on space characters with each word printed on a separate line.

Think for a minute: how would you write this program in Java using the length, indexOf, substring and
assignment to another string, word. The input string is split into parts separated by single space characters until
the line is empty.

0

Procedure
1. Read this entire assignment. Spend a few minutes thinking about what you are going to do.

String Library
2. You will write (at least) two assembly files. One, main.s, will contain the mainmethod along with the .data

segment and program specific functions.
The other file, string.s, contains all of the standard routines in the string library. Your librarymust include
all of the following global functions; the global functions must adhere, exactly, to the given interfaces. If you
discover a better signature or interface for a function you must give it a different name and then implement
the global functions using your great new function.
Terminology: a buffer and a string are both passed as the address of (pointer at) a character array (char *).
A string is always NUL-terminated (ends with '\0'); a buffer is not, necessarily, NUL-terminated and can be
space set aside to hold a new string.

char * chomp(char * str)
str – a non-null string
“Chomps” off all trailing tabs, carriage returns, line feeds, and the like. This is done by trimming all
characters with ASCII codes less than 32 (the space character, ' ', is ASCII 32). Trimming is halted
when the string is empty or a character at or above code 32 is encountered.
Returns str.

int strlen(char * str)
str – a non-null string
Counts the number of characters (bytes) before the NUL.
Returns the length of str.

char * strcpy(char * destination, char * source)
destination – a non-null buffer
source – a non-null string
Copies the string source into the memory pointed to by destination, including the NUL.
Returns destination.

1



char * strcat(char * destination, char * source)
destination – a non-null string
source – a non-null string
Copies the string source onto the end of the string destination, including the NUL.
Returns destination.

char * strncpy(char * destination, char * source, int n)
destination – a non-null buffer
source – a non-null string
n – the maximum number of characters to copy
Copies the stringsource into thememorypointed to bydestination, including theNUL ifstrlen(source)
is less than n and just n characters otherwise (Correct: might not copy in a NUL).
Returns destination.

char * strncat(char * destination, char * source, int n)
destination – a non-null string
source – a non-null string
n – the maximum number of characters to copy
Copies the string source onto the end of destination, including the NUL if strlen(source) is less
than n and just n characters otherwise (Correct: might not copy in a NUL).
Returns destination.

int strcmp(char * left, char * right)
left – a non-null string
right – a non-null string
Compare left to right, character by character returning an int reflecting the relationship between
them.
Returns negative value if left < right (lexicagraphically), zero if they are the same, and a positive
value if left > right.

char * strchar(char * str, char ch)
str – a non-null string
ch – a character to search for
Scan across str for a match for ch.
Returns address of first occurrence of ch in str or, if none is found, the NULL pointer.
(NULL != NUL)

char * substring(char * destination, char * source, int start, int n)
destination – a non-null buffer
source – a non-null string
start – the offset in source from which to start copying
n – the maximum number of characters to copy
Copies the string from source[start] to destination until n characters or the end of source is
reached. If start is out of bounds, copy zero characters. If fewer than n bytes were copied, append
a NUL.
Returns destination.

3. Themain program that uses the string library follows a really simple CS I program: loop, prompting the user
for a line of text and breaking the line into individual words, printing one word per line, until the input is the
sentinel value.
In a C/Java-like syntax:

1 while (true) {
2 char * line = promptReadAndChomp("Next line: ", line, 100);
3 char * word;
4
5 if (strcmp(line, "done") == 0)

2



6 break;
7
8 char * space; // location of leftmost ' ' in line
9 while ((space = strchr(line, ' ')) != NULL) {

10 word = substring(word, line, 0, space - line);
11 line = substring(line, line, (space - line) + 1, 100);
12 println(word);
13 }
14 if (strlen(line) > 0)
15 println(line); // whatever is leftover
16 }

Testing
4. You should build small test programs for each routine in the string library. To have MARS do the right thing:

• Start with your test program, testChomp.s in the same folder as strlib.s. Write a program that, say,
reads a line and chomps the end off of it.

• Test the library routine by assembling the test program and giving it some input (or build data in RAM
if that makes more sense to you). (Make sure, with chomp in particular, to have more than just \n at the
end of the string; remember that \t should get chomped, too.)

• After you are happy that the test passes, make a sibling directory for your main, strlib.s, directory.
Maybe call it testChomp. Move testChomp.s to that folder so that you can put a different main file in
with the library.

• Notice this is a great time to check the working code into git, too.
• If, in the future, you seem to have problems with chomp, you could copy the current state of strlib.s
into testChomp/ and run testChomp.s against the newest library.
Don’t forget to backport changes in testChomp/strlib.s to the main copy. When done with this test-
ing, you should make sure the backporting is done and delete the copy of the library. Really. Use the
DRY Principle — Do not Repeat Yourself: have a canonical place for everything and only keep it there.

This test pattern is not part of the grading rubric (would probably garner Aesthetic points). Your code should
work, be clean, and be well documented. Building working components is a good way to get to working code.

Submit through Gitea
Check your working code into git. When you have one working “feature” in your program, checking it in to
git is a good thing. Protect yourself from making things worse.

Use a .gitignore file to exclude any garbage files your IDE produces from the repository. They will cost you
points.

You have an account on the departmental Gitea server. Submit your work in your shared organization in a
repo named pAddingSomeNumbers

3


