Logically Complete

A set oflogic gates (or logic operators), L, is logically complete if it can be used to build a logical circuit (or expression) that is logicallly equivalent to any arbitrary logical circuit (or expression).

For any arbitrary logical circuit, C, there is a logical circuit, C^{\prime}, such that $C \equiv C^{\prime}$ and C^{\prime} is constructed using only gates from L.

Proving a Set of Gates is Logically Complete

- Approach (Reduction)

Give a canonical set of logically complete gates, say $L C G$, a different set of gates, K, could be proven to be logically complete by showing that $\forall g \in L C G \exists g^{\prime} \ni g \equiv g^{\prime} \wedge g^{\prime}$ only uses gates in K. This reduces the set K to a solved problem.

- Proving $L C G$ is Logically Complete This is the hard part. Picking the first set to prove logically complete and then proving it.
- $\{\neg, \wedge, \vee\}$ Is Logically Complete

TBP: $\forall K \in\{$ LogicalExpression $\} \exists K^{\prime} \ni K \equiv K^{\prime} \wedge K^{\prime}$ uses only operators from the set $\{\neg, \wedge, \vee\}$.
Given logical expression K : K has some number, n, logical variables and a truth table with 2^{n} rows. Logic variables will be named x_{i} starting from $0 \leq i<n$.
Consider some row where K is 1 .
Build a conjunction of all of the variables or their negation. For each column, i, if x_{i} is 1 , include x_{i} in the conjunction; if x_{i} is 0 , include its negation:
$\bigwedge_{i=0}^{n-1}\left(x_{i}==1\right) ? x_{i}: \overline{x_{i}}$
With three logical variables and a K with four rows that are 1 , four conjunctions are created is in this next table.

x_{0}	x_{1}	x_{2}	K	$\overline{x_{0} x_{1} x_{2}}$	$\overline{x_{0} x_{1} x_{2}}$	$x_{0} \overline{x_{1} x_{2}}$	$x_{0} x_{1} x_{2}$	$A \vee B \vee C \vee D$
0	0	0	0	0	0	0	0	K^{\prime}
0	0	1	1	1	0	0	0	0
0	1	0	0	0	0	0	0	1
0	1	1	1	0	1	0	0	0
1	0	0	0	0	0	0	0	1
1	0	1	1	0	0	1	0	0
1	1	0	0	0	0	0	0	1
1	1	1	1	0	0	0	1	0

Note that in the table $K \equiv K^{\prime}$ because the values are the same for every combination if input variables.
The K^{\prime} column is generated by making a disjunct of all of the conjuncts built for the rows where K is 1 .
Because each conjunct is 1 in only the row that was used to construct it, there is one conjunct with a 1 in each row where K is 1 and none with 1 in any row where K is 0 . Joining them with a logical or creates a column with exactly as many 1 rows as there are conjuncts (none overlap) and in exactly the rows where K is 1 . Thus the disjunct of the constructed conjuncts is the sought K^{\prime}.
\therefore We can build a conjunct for any row with a 1 in K using just \wedge and \neg operators. These conjuncts are combined in a disjunct with only the V operator. The resulting K^{\prime} is logically equivalent to K by construction and uses only operators in the set $\{\neg, \wedge, \vee\}$.
$\therefore \forall K \in\{$ LogicalExpression $\} \exists K^{\prime} \ni K \equiv K^{\prime} \wedge K^{\prime}$ uses only operators from the set $\{\neg, \wedge, \vee\}$.

- Anything Else
- Make an And, an Or, and a Not

