Logically Complete

A *set of logic gates* (or logic operators), *L*, is **logically complete** if it can be used to build a logical circuit (or expression) that is **logically equivalent** to *any* arbitrary logical circuit (or expression).

For any arbitrary *logical circuit*, C, there is a logical circuit, C', such that $C \equiv C'$ and C' is constructed using **only** gates from L.

Proving a Set of Gates is Logically Complete

• Approach (Reduction)

Give a *canonical* set of logically complete gates, say LCG, a *different* set of gates, K, could be proven to be logically complete by showing that $\forall g \in LCG \ \exists g' \ni g \equiv g' \land g'$ only uses gates in K. This reduces the set K to a solved problem.

- Proving *LCG* is Logically Complete This is the hard part. Picking the first set to prove logically complete and then proving it.
- $\{\neg, \land, \lor\}$ Is Logically Complete

TBP: $\forall K \in \{\text{LogicalExpression}\} \exists K' \ni K \equiv K' \land K' \text{ uses only operators from the set } \{\neg, \land, \lor\}.$

Given logical expression K: K has some number, n, logical variables and a *truth table* with 2^n rows. Logic variables will be named x_i starting from $0 \le i < n$.

Consider some row where K is 1.

Build a *conjunction* of all of the variables or their negation. For each column, *i*, if x_i is 1, include x_i in the conjunction; if x_i is 0, include its negation:

$$\bigwedge_{i=0}^{n-1} (x_i == 1)?x_i : \overline{x_i}$$

With three logical variables and a *K* with four rows that are 1, four conjunctions are created is in this next table.

				A	B	C	D	K'
x_0	x_1	x_2	K	$\overline{x_0x_1}x_2$	$\overline{x_0}x_1x_2$	$x_0 \overline{x_1 x_2}$	$x_0 x_1 x_2$	$A \vee B \vee C \vee D$
0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	1
0	1	0	0	0	0	0	0	0
0	1	1	1	0	1	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	1	0	0	1	0	1
1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

Note that in the table $K \equiv K'$ because the values are the same for every combination if input variables.

The K' column is generated by making a *disjunct* of all of the *conjuncts* built for the rows where K is 1.

Because each conjunct is 1 in only the row that was used to construct it, there is one conjunct with a 1 in each row where K is 1 and none with 1 in any row where K is 0. Joining them with a logical or creates a column with exactly as many 1 rows as there are conjuncts (none overlap) and in *exactly the rows where* K is 1. Thus the disjunct of the constructed conjuncts is the sought K'.

 \therefore We can build a conjunct for any row with a 1 in K using just \land and \neg operators. These conjuncts are combined in a disjunct with only the \lor operator. The resulting K' is logically equivalent to K by construction and uses only operators in the set $\{\neg, \land, \lor\}$.

 $\therefore \forall K \in \{\text{LogicalExpression}\} \exists K' \ni K \equiv K' \land K' \text{ uses only operators from the set } \{\neg, \land, \lor\}.$

- Make an And, an Or, and a Not

[•] Anything Else