
SUNY Potsdam Computer Science Coding
Standards

Department of Computer Science

January 6, 2023

1 Introduction
When you learned to write an essay, you learned both the mechanics of
writing and how to approach the overall process of writing an essay. This
document provides similar guidance for writing a computer program.

1.1 Intended Audience
Before you write an essay, most guides tell you to know your audience. Writ-
ing for a precocious ten-year old and writing for a college composition class
are both different from writing a cover letter for a job application. The same
is true for computer programs.

Computer programs are written for future programmers who must un-
derstand the code. This future programmer (who may well be a future you)
knows Java and English but needs you to not only solve the assigned prob-
lem but clearly explain why the problem needed solving, what your program
does, and how your program solves the problem. This explanation is in the
form of the Java code, the names you give the things in your code, and the
comments that you include.

1.2 Current Department Standard Java Version
Along with standards for code style and commenting, the Department en-
forces standard versions of the programming languages used in courses. The
“foundation language” in our program is Java. The current standard Java

1

version in the CS Department is Java 12. This is the Java version that is
installed in the CS Lab (Dunn 302). All student programs submitted for
credit must compile under this standard version. It is your responsibility to
ensure that you are turning in code that meets the standard, even if you are
developing on your own computer.

For courses that do not use Java, details of required language versions
and other software tools will be provided by the instructor.

2 Readability
Programmers read a program when joining a team, when validating that the
program meets requirements, when requirements change, when evaluating its
quality, and while fixing bugs. Programmers read a program over and over
again while fixing bugs.

A computer program is read at least an order of magnitude more of-
ten than it is written. The emphasis on readability stems from this simple
observation.

Much like an essay in a natural language, readability depends on the
formatting and structure of the text, the use of spacing and capitalization,
and the use of introductions and conclusions at multiple levels (i.e., to the
essay, to a section, to a paragraph). These conventions make the English
essay much more readable.

Just as an example, consider the previous paragraph without punctuation
or word breaks and random line breaks and capitalization1:
Muchlikeanessay

INANATURALLANGsUpAaGcEiRnEgADABILITYDEPENDSONTHE

FORMATTINGANDSTRUCTureof t h e t e x t t heuseofconventional

spacingandcapita l i z a tionspacin

gandtheuSEOFintrudo ctionsandin clusionsat

multiplelevelsietotheessaytoasectiontoaparagraph

tHeseconventionsmaketheenglishspeacsinsg aymuchmorereadable

This section has an overview of the structure of a Java source file followed
by subsections on documentation and formatting.

1The unformatted paragraph is not only difficult to read. It is also difficult to debug:
several spelling errors and minor variations from the original were introduced and are
non-obvious without careful scrutiny.

2

2.1 Source Files/Class Declaration
A source file is the .java file that is named for the single top-level class

declared inside it. The sections of the source file should be separated by
exactly two (2) blank lines; any empty section can be omitted along with
the blank lines for that section.
<Header Comment>

<Import Statements>

<Class Declaration>

2.1.1 Header Comment

Every file submitted must have a Javadoc header comment. A Javadoc com-
ment begins with a slash followed by two (2) stars (see following example).

The header comment has three parts: class summary, detailed class de-
scription, and the programmer’s identification block.

1 /**
2 * Gargoyle draws a random ASCII art monster on standard output.

3 *
4 * Gargoyle has all static methods ﴾and no constructor﴿ including

5 * main. It is run with a single integer on the command-line that

6 * is used to randomize the monster that is generated.

7 *
8 * @author Jimmy A. Student

9 * @email studeja199@potsdam.edu

10 * @course CIS 203 Computer Science II

11 * @assignment 4

12 * @due 04/25/2018

13 */

A file header comment begins with a single-line summary of the class
defined in the file. Do not just repeat the name of the class in English. Give
enough detail so another programmer can figure out if this is where they
will find whatever they are looking for. (Actually, the summary permits a

3

programmer to know that what they are looking for is not in this file. If
the file cannot be dismissed instantly, then the programmer must read the
detailed description.)

After a blank line in the comment comes a deeper description of why
this class is part of the program. It gives usage details and how this class
connects to other classes in the program. References to sources for the code
in the file belong here.

The end of every file header comment identifies the programmer and
project to which the file belongs. Get in the habit of including this block in
every .java file you create: no program will be graded if any file that makes
it up is missing the id block.

(Hint: Put the id block in each file when you create it. Or teach your
editor/IDE to include it whenever you start a file.)

The lines begin with @ and a keyword because they are designed to be
processed automatically by software tools like javadoc.

2.1.2 Import Statements

The import statements list the classes that this class declaration depends
on. Required classes are imported by giving their full names after the import

keyword.
A class’s full (or qualified) class name is a dot-separated name, a lot like

a Web address. Using an asterisk as the last part of the name will import
all classes that share the specified first part. For example

1 import java.util.*;

will import all classes defined inside the java.util package. When writing
(or reading) an import with a wildcard (the star matches any name in the
package, so it is a wildcard), you do not know which, nor how many, classes
are imported.

If you include the full name in the import, then you know exactly what
is being imported. For example, if you were using List, Map, ArrayList and
HashMap classes in your code:

1 import java.util.ArrayList;

2 import java.util.HashMap;

3 import java.util.List;

4 import java.util.Map;

4

Always prefer importing specific classes over the use of wildcards. The
first example above should be considered bad code:

1 import java.util.*;

Imports should be ordered in alphabetic order (unless there is an explicit
ordering constraint on content; Java should not need this). Each import is
to be on a single line: it is not to break to the next line, even if it goes past
80 characters.

2.1.3 Class Declaration

There is to be exactly one top-level class declaration in a .java source file.
The class declaration appears on one line unless it has an implements or extends

clause. Those clauses begin on a new, indented line. As in
1 class Gargoyle

2 implements Comparable {

3 ...

4 }

Field Declaration Order The fields of a class all come before the meth-
ods. All static fields come before all object-level fields. Constant fields (and
constant, static fields) should come at the beginning of the section for that
type of field.

Method Declaration Order A standard order for methods declared in-
side a class is like using call numbers to sort books in a library: the reader
knows where to look and can tell if a section is empty.

main The public, static, void main method is the first method, if it is
present.

Constructors All of the constructors (if there are any) follow main.

Overloaded Methods Methods with the same name (overloading the
same name) must be adjacent in the source code.

5

2.1.4 A Deeper Look

Larger, more complicated programs require additional levels of abstraction.
In particular they need multiple Java packages. A package is a collection
of source files in a directory named for the package; each source file must
also include a line declaring the package to which it belongs. The package
declaration is a new, first, section in the source file:
<Package Declaration>

<Header Comment>

<Import Statements>

<Class Declaration>

Package Declaration If the .java file appears in a non-default package,
then the declaration of the package name is the first line in the source file.
It is all to be on one line: it is not to break to the next line, even if it goes
past 80 characters.

Static Import Statements import statements come in two flavors: regular
(non-static) imports and static imports. Regular imports should come before
static imports and the two groups should be separated by a blank line.

As with regular imports: always prefer specific, non-wildcard static im-
ports; the group of static imports should be sorted in ascending alphabetic
order; each static import is to be on a single line, even if it goes past 80
characters.

2.2 Documentation
Documentation encompasses all of the human-readable materials that com-
pose and accompany a computer program: variable names, source code com-
ments, file names, README files, and user manuals. These should all work

6

together to permit a user of the program to run it and another programmer
to understand, verify, and extend the program.

2.2.1 Naming

The names in programs must be meaningful (numberOfCows as opposed to
n). The greater the scope where the variable is visible, the longer and more
detailed the name must be (cows, numberOfCows, numberOfCowsFromRadioCollars).

Single letter names can only be used for loop control or temporary vari-
ables.

Spell out words completely: it is hard to remember how you abbreviated
the word level the next time you work on the code: was it lvl? lv? lev?
Surely not just l?

Type Convention Examples
class Capitalize first letter, class Insect

CamelCaseWithin class MotorCar

class IngredientCollection

Descriptive, singular noun phrase that names a type or family of values.
Singular even if it contains multiple values; the class names the type of the
container, not contained objects.
constant All uppercase, words final double PI = 3.1415

SEPARATED_BY_UNDERSCORES final int DEBUG_PRINT_LEVEL = 4

Descriptive, singular noun phrase.
method lower-case first letter, void scaleImage(double factor)

camelCaseWithin boolean isTransparent()

int lengthOfSampleInMeters()

void function is an active verb phrase. boolean method is a yes/no question.
Otherwise named as the value returned (see variable below).
variable lower-case first letter, double costOfDiamondInEuros

camelCaseWithin List<Double> heighsInHands

Descriptive, singular noun phrase; plural noun phrase if the variable names
a collection.

Capitalization is used in alphabetic natural languages to make them easier
to read. For example, capital letters in English indicate the beginning of a
sentence or highlight a proper noun. Similar (but different) rules apply in
other languages. Analogous benefits come from capitalization rules when
writing in a programming language.

7

Camel Case Code differs from natural languages: for the ease of process-
ing by a compiler, words separated by whitespace always refer to separate
things. Computers cannot group a sequence of words, say “the distance to
the sun in kilometers”, into a phrase.

Programmers jam all the words together: thedistancetothesuninkilometers.
Now the phrase is a single word2, a very difficult-to-read3 word. There are
two standard fixes for this: underscores and camel case.

i Replace spaces with underscore characters (“_”) instead of erasing them.
The resulting phrase would have no spaces (for the computer) but visual
spacing between the words (for humans): the_distance_to_the_sun_in_kilometers.
Improved readability comes at the expense of degraded writablity (or at
least typability).

ii Camel case removes the spaces as in the first option, capitalizing the ini-
tial letter of each word to visually separate them: theDistanceToTheSunInKilometers4.
The capitalization of the initial character in the name depends on what
kind of thing is being named (as discussed below).

Camel case is the standard way of combining multiple words into a single
name in Java.

Capitalization by Part of Program Camel case is used when construct-
ing a name out of a multi-word phrase. The type of thing being named de-
termines what kind of phrase should be used and the capitalization of the
initial character in the name.

Class In Java, a class is a new type of object. It is a class of things (a
blueprint for a type of buildings, for example) that the program will
manipulate. Class names must begin with a capital letter and use
camel case after that. The capital letter sets the name of types of
objects apart from the names of objects themselves.
The class name should be a singular noun or a noun phrase: Warehouse,
SkiLodge, ModernOfficeComplex.

2See Finnish for natural language examples of the same.
3In written English, we can use dashes for much the same purpose, to make a phrase

into a single adjective.
4The name camel case comes from the interior capital letters looking like the hump(s)

of a dromedary.

8

Constant A constant is a named value that is used in place of a literal
value. The constant is named to make it easier to change (finding all
the 4’s in a program is possible; which ones are being used to indicate
the number of F franc to the US dollar?) and, more importantly, to
document what the value is used for.
Constants are the only names that use a single case (upper) and un-
derscores to separate words.
The constant name is a noun or a noun phrase: STATE_COUNT, AVOGADROS_NUMBER,
HASH_TABLE_SIZE, FRANC_PER_DOLLAR.

Method A method (or a function) is a named block of code that adds a
new command to the language. It starts with a lower-case letter and
uses camel case.
The return type determines how the method is named:

void A specific, active verb phrase. The method is called to do some-
thing: move, playSoundEffect, setTaxRate.

boolean A yes/no question that the method answers: isAVampire,
canMove, validCoordinate.

Other Describe the value returned by the method as a variable, per-
haps with a description of how the parameters are used: indexOfSmallestEntry,
celsiusFromFahrenheit, getTaxRate.

Variable A variable (or a field (in a class but not within a method) or a
parameter (in the parameter list of a method)) begins with a lower-case
letter and uses camel case.
A variable is a thing: a singular noun phrase is typical as in zipCode,
totalPoints, distanceFromEarthKilometers.
Sometimes a variable names a collection of values: a plural noun phrase
makes sense as in allZipCodes, teamScores, fleetSpaceShips.

2.2.2 Comments

Comments are the most important documentation for programmers reading
the code in the future. They serve as a sort of an outline to find which
section of the code performs a function without having to keep track of all
the details in the code itself.

9

Good commenting conventions address the four I’s:

Introduction WHY? Why is this file part of the solution. At a high level,
what routines are in the current file?

Identification WHO? Name the programmer responsible for this code. Gives
the author credit (or blame).

Intent WHAT? What does this method do? The next level of detail from
the name.

Implementation HOW? How does the code work? One level up from the
code, guiding the next programmer to see how the statements of Java
go together.

File Header Comment A file header comment (as discussed earlier) has
three parts: summary, detailed description, and identification block.

Together the summary and detailed description introduce the class in the
file, addressing the intent of the class it provides. The programmer’s id block
identifies the author of the code in the file.

1 /**
2 * Gargoyle draws a random ASCII art monster on standard output.

3 *
4 * Gargoyle has all static methods ﴾and no constructor﴿ including

5 * main. It is run with a single integer on the command-line that

6 * is used to randomize the monster that is generated.

7 *
8 * @author Jimmy A. Student

9 * @email studeja199@potsdam.edu

10 * @course CIS 203 Computer Science II

11 * @assignment 4

12 * @due 04/25/2018

13 */

The summary does not just repeat the name of the class (and file) in
English. It is a single line that permits a programmer to quickly determine
whether or not they need to read the detailed description. When searching
for the part of the code that does some specific thing, the quicker one can
stop reading unrelated code the better.

10

The description is detailed in comparison with the summary. It is also a
statement of the intent of the whole file, a description for an outsider using the
class to know what it is supposed to do. Mention any general assumptions
made in the class, non-library classes upon which this class depends, and
references to any sources from which you derived code.

As mentioned earlier, the id block uses keywords starting with the am-
persand (@) because these are treated specially by the javadoc5 program. This
id block is required in all CS classes. Files without an id block will not be
graded and given a 0 (zero).

Method Header Comment Every method in every class must have its
own Javadoc header comment. The comment begins with the slash and two
asterisks (makes it a Javadoc comment) and, like the class header comment,
has a summary and detailed description. The difference is in level: a
method header is about the intent of the method, answering the questions
“What does this method do?” and “How is this method used?” (What are
the parameters and what do they mean?).

1 /**
2 * Turns gargoyle drawing clockwise.

3 *
4 * Rotates the monster being drawn by the number of

5 * degrees. Cannot turn 360.0 degrees or more nor

6 * less than 0.0 ﴾one rotation﴿.

7 *
8 * @pre 0.0 <= facing < 360.0

9 * @post 0.0 <= facing < 360.0

10 * @param degreesOfTurn how far to turn the monster; on the range

11 * [0.0 - 360.0﴿

12 * @return the new facing, normalized to [0.0 - 360﴿

13 * @throws IllegalArgumentException if the argument is outside

14 * specified range

15 */
16 pubilc static double turnClockwise(double degreesOfTurn)

17 throws IllegalArgumentException {...}

5javadoc is a compiler like javac but instead of handling the Java code and creating
a .class file, javadoc handles the special comments beginning with the /** and produces
linked Web pages that document the code.

11

The summary is the one line intent of the method6 The description is
a more detailed description of the intent, including use of parameters.

The keywords are to appear at the end of the header comment. All
of the keywords are described below in the order they appear in a header
comment, including keywords not used in the example. Obiously: not all
keywords are used in every header.

@pre The required preconditions. What must be true for the method to
perform correctly. In non-static methods “The object has been con-
structed” is an implicit precondition that need not be written.

@post The promised postcondition. What is always true when the method
finishes?

@param A parameter passed in to the method. Name it, then describe what
it means and include limitations on expected range of values passed in.
There is one @param for each parameter passed in to the method.

@return Describe the value the method returns. Omit when the method
returns void.

@throws If the method has a throws clause, name the exception thrown
and describe the conditions under which it is thrown. There is one
@throws keyword for each different type of exception thrown.

@note A footnote to the header comment. Can be used to describe implementation
details, note sources that influenced the code, or to explain the design
rationale embodied in this method.

Field (variable) Declaration Comments When declaring a field (read
the or variable throughout this section; hopefully variable scope and good
naming practices will mean this primarily applies to fields), sometimes you
want to tell the future programmer something about the field being declared.
You start to write a comment on the declaration.

6It is often repeated in introductory programming texts that if you cannot come up
with a short summary (or a good name) for a method, it is an indication that you are
trying to do too much. Compare it to trying to write the topic sentence for a paragraph;
if it is hard to do, the paragraph is probably trying to do too much at once and should be
broken up.

12

Stop!
Think very hard whether or not you can use the name of the field to

communicate the same thing. Always prefer having the name of the field
document the field to having a separate comment on the declaration. Using
the name, the important information is available everywhere the field is used.
The future programmer cannot forget to read the comment. The field name
must describe its function/purpose in the program. This is known as self-
documenting naming.

If you beleive that comments are unavoidable, put comments on the
line(s) before the declaration. Use a // (end-of-line) comment if the com-
ment is a single line. Use /**/ comments otherwise.

In-line Comments Code, like fields above, should be clear and named
methods, variables, and constants should explain what is happening. This
is, of course, not always possible. So, strategically placed comments in the
code serve as landmarks for the future programmer.

Put comments on the line(s) before the code being documented. Use a
// (end-of-line) comment if the comment is a single line. Use /**/ comments
otherwise. In-line comments must appear on a line or lines by themselves.
Not this

1 sum += data[i]; // add value to the sum

but rather this
1 // add value to the sum

2 sum += data[i];

The only exception to the “no comments after code” rule is when you are
documenting the closing curly brace of a block, including a comment on the
else line of a selection statement:

1 if (value >= 0) {

2 . . .

3 } else { // value < 0

4 . . .

5 }

6

7 while (!inputString.equals(QUIT_COMMAND)) {

8 . . .

9 } // while ﴾inputString.equals﴾QUIT_COMMAND﴿﴿

13

Example Comments The following examples show how to apply these
rules, along with good naming and formatting, to produce readable code.
The class containing these methods is left out for brevity.

1 /**
2 * Take the square root of the parameter.

3 *
4 * @pre nonNegative >= 0

5 * @param nonNegative the ﴾non-negative﴿ double to square root

6 * @return square root of nonNegative

7 */
8 public double getSquareRoot(double nonNegative) {

9 return Math.sqrt(nonNegative);

10 }

1 /**
2 * Calculate the sum of the values in the array.

3 *
4 * Sum the values in the array; returns zero if there

5 * are no elements.

6 *
7 * @param valuesToSum collection ﴾array﴿ of double to sum

8 * @return the sum of all values; zero ﴾0﴿ if the array is empty

9 */
10 public double sumOfValues(double [] valuesToSum) {

11 double sum = 0;

12 for (int i = 0; i < valuesToSum.length; i++)

13 sum += valuesToSum[i];

14 return sum;

15 }

1 /**
2 * Print the sum of the values in the array to standard output.

3 *
4 * If the values array is not empty, use sumOfValues to calculate

5 * the sum of the contents and then print it.

6 *
7 * @pre values.length > 0 ﴾values is NOT empty﴿

8 * @post the sum of the values is printed to standard output

14

9 * @param nameOfTheArray the name of the array in printed message

10 * @param theArray array of values to print the sum of

11 * @throws IllegalArgumentException if theArray is empty

12 */
13 public void printSum(String namOfTheArray, double [] theArray)

14 throws IllegalArgumentException {

15 if (theArray.length == 0)

16 throw new IllegalArgumentException(”theArray is empty”);

17

18 double sum = sumOfValues(theArray);

19 System.out.println(”The sum of ” + nameOfTheArray + ” = ” + sum);

20 }

2.2.3 README

With every programming assignment, students must turn in a README file.
The README documents the overall problem being solved, how the program
was tested for correctness, and how to run the program.

Format The file can be in plain text (README.txt), GitHub-style Markdown
(README.md), or Org mode (README.org).7 The most important factor of the
format of the README is that it be easily read in a plain text (read: code)
editor.

Problem Restatement Restating the problem that you are solving has
several benefits: it documents your understanding of the assignment, it helps
the grader, and it decouples your solution from the URL where the assign-
ment lived. Documenting your understanding of the assignment is especially
useful early in the solution process; if, after reading the assignment, you try
to restate what you’re doing, you will develop questions for the instructor on
the parts you cannot restate.

The grader benefits from your restatement in both seeing what you did
or did not understand about the assignment (see above) and is reminded

7The format of README should be indicated by the file extension. Your professor may
specify which format(s) to use in a given course so you should familiarize yourself with all
three types.

15

what the assignment was about just in case it has been a while since it was
assigned (hard to imagine Dr Ladd getting behind in grading, I am sure).

The problem, restated in the solution’s README makes the solution com-
plete; it does not depend on the assignment remaining available into the
future. The solution fits better in a programming portfolio when it is self-
contained.

Testing Criteria Consider any computer programming project: how do
you know when it is done? An important concept in software engineering
is defining what it means for code to be done. One dimension of that is,
typically, for the code to be correct. How could you convince someone (in
particular a grader) that your code is correct?

With an assignment there are often some explicit test cases, examples of
what the code should do in some cases. Of course, early in their program-
ming career, most students realize that the grader has a broader collection of
implicit test cases, cases that follow from the requirements of the software.
Students do well to think about these additional test cases.

As projects become more advanced, the number of implicit requirements
is greater than those explicitly described in the assignment. Part of pro-
gramming is being able to turn requirements into acceptance tests. Your
acceptance testing is part of your solution; you must document it just as you
would any other part.

The most important part of this documentation is to explain what the
expected results are for a given set of input. The reader (grader) needs to
know: (a) what data to give to the program; (b) how to run the program
with the test input; (c) how to evaluate the output for correctness. Of course
the programmer had to know those three things in order to test the program
in the first place, so this is just a written record of that work.

Execution Instructions The grader needs to be able to compile and run
the solution. It is possible the assignment explained how the code should
interface with the world; it is likely that some student(s) interpreted that
interface differently than the instructor who wrote it. You must explain,
clearly, how the solution is compiled (what tool or tools are needed, what
folder are they to be executed in, what are their parameters and what do
those parameters mean) and how it is run (what is the command-line one
types in the shell, what do the arguments mean, what limitations are there

16

on input values and input locations).

2.3 Formatting
Formatting, the layout of the text inside source files, is used to break up the
code into logical units.

• The sections of a source file are separated by exactly two (2) blank
lines (see Section 2.1, Source Files, for order and details on source file
sections).

• Method ordering: main first, all constructors next.

• All methods with the same name (overloads) must be adjacent (and
constructors come before all methods but main).

• No more than one statement per line.

• Line length should not exceed 80 characters.
Exceptions: package declaration; import statements.

• Use only spaces for indentation (see Section 2.3.1, Whitespace, for
more details).

• Indentation is either 2 spaces per level or 4 spaces per level (your
professor may specify). Whichever indentation is chosen, indentation
must be consistent across all files turned in together.

• No line should ever begin with an opening curly brace, {.

• The closing curly brace, }, should align with the indentation of the line
ending with the matching opening curly brace, {.

2.3.1 Whitespace

Whitespace, the blank space on a printed page, is something that is not there
when humans read it. The computer must keep track of all the characters
including blanks and the ends of lines.

17

Indentation uses only spaces for indentation.8 Blank lines should be
empty (no spaces or other non-printing characters).

In particular: configure your code editor to use spaces and not the tab
character for indentation.

Whitespace in source files is to use spaces and end-of-line characters.
In particular, turn off the use of tab characters for indentation in your editor
and use the escaped character sequence ’\t’ for tab in strings.

Each source code and documentation file should end at the beginning of
a blank line (the last character is an end-of-line).

Again: Indentation must use only spaces.

8Makefile formatting requires the use of the tab (’t’) character. It is the thereby
excepted from this rule.

18

