
CIS 443 Programming Languages
Spring 2025

Quadratic 2025-01-20

pQuadratic—Using REPL

Learning Outcomes
After completing this program, students will be able to
• Use define to define named values.
• Use quote and its tick mark shorthand to enter literal values.
• Use cons, car, cdr, to build and manipulate Scheme lists.

Racket
I will only test code using racket with the following command:
$ racket -I simply-scheme -f <your-file.scm> -i

If your code
Loads with errors I stop grading and give a 0.0.
Fails to run due to interpreter errors I stop grading and give 0.0.
Produces incorrect results I grade with the generated results against the requirements in the assign-
ment.

You are obligated to test your code on an appropriate interpreter. Racket 8.15 is installed in the lab
and drracket is available on most major platforms.

Procedure
Read the whole assignment. This is important for every assignment: it puts the task into your brain so
that it can begin working on answering the questions. Of particular interest when you read are the SLO
(first section above); gives you the links between the assignment to the big picture (learning computer
science).

Expressions in Scheme
Scheme is a (relatively) functional language. Each expression is written in a prefix notation: the first
element in a list is interpreted as a function to be applied to the remaining elements in the list:
> 17
17
> (first '(a b c))
'a
> (* (+ 5 3) (- 11 4))
56

As shown in the third example, list evaluation continues, recursively, if any parameters are them-
selves lists. Numeric literals evaluate to their own value.

Setting Symbols in Scheme
Note the following bit deviates from the pedagogy of Simply Scheme by showing you how to set symbols
to have non-function values. It violates the idea of functional purity.



Quadratic 2025-01-20

Scheme has a special form (which you can treat just like a function for the moment), define, which
associate a valuewith aname. If, in Java, youwouldwrite something likea = 17orb = (5 + 3) * (11 - 4),
you would use the following in Scheme:
> (define a 17)
> (define b (* (+ 5 3) (- 11 4)))
> a
17
> (+ b 9)
65

Note that define is also used to define named functions.
It is odd that define does not return a value. This is a peculiarity of Scheme: each Scheme imple-

mentation can return whatever they want for define; Chicken Scheme chose nothing.

Lists in Scheme
When we give a list to Scheme, it assumes the first element names a function and the rest of the list can
be treated as parameters. This is what happens whenever Scheme evaluates a list.

Sometimes we want to give Scheme an expression (variable name, list) without it being evaluated.
This is done by using the quote special form around the expression:
> (quote (* (+ 5 3) (- 11 4)))
(* (+ 5 3) (- 11 4))

Typing the quote around an expression is tedious and it adds another set of parentheses, so there is
a shorthand for it using the tick mark, '.
> '(* (+ 5 3) (- 11 4))
(* (+ 5 3) (- 11 4))

1. You will be turning in a Scheme source file through the classroommanagement system. Put code at
the top of the file to set symbols that identify you:
(a) Set the symbol full-name to a list of your first and last names. Each of the component names

will be symbols in the list.
(b) Set the symbol age to your age, in years, at your last birthday. (If, for any reason, you do not

want to share your actual age, put in a semi-plausible age and I will never know the difference.)
(c) Set the symbol age-in-months to the equivalent age in months, using Scheme to calculate the

number of months you were old on that date.
(d) Set the symbol expression-for-age-in-months to the expression that you used to calculate

your age in months. It should be a list containing a valid Scheme expression.

Lists
Everything in Scheme is either an atom or a list. An atom is a symbol, a number, or a string. A list is
either empty or a head followed by a list. Simply Schememanipulates both lists and symbol names
the same way.
Every expression you have typed in to your file or the REPL is either an atom or a list (these are not
being typed into the REPL):

Page 2



Quadratic 2025-01-20

(* (+ 5 3) (- 11 4)) ; a list that evaluates to a number
(define kilo (* (+ 5 3) (- 11 4))) ; a list that sets the value of

; a symbol to a number
kilo ; an atom, a symbol, that evaluates to its defined value
999 ; an atom, a number, that evaluates to itself

(define pets '(knight scooby rex fido willy))
; a list that sets a symbol's value to a list

pets ; evaluates to the list (defined vaule of symbol)

How can we manipulate the list '(knight␣scooby␣rex␣fido␣willy)? Using simply-scheme:
> (first '(knight scooby rex fido willy))
'knight
> (butfirst '(knight scooby rex fido willy))
'(scooby rex fido willy)
> (last '(knight scooby rex fido willy))
'willy
> (butlast '(knight scooby rex fido willy))
'(knight scooby rex fido)
> (butlast 'willy)
> 'will

The opposite of taking a word (atom) or a sentence (list) apart is to assemble one:
> (sentence 'garfield '(knight scooby rex fido willy))
'(garfield knight scooby rex fido willy)
> (word 'te 'le 'phone)
'telephone

Notice that garfield had to be quoted because all parameters to a function (all elements after the
first in an evaluated list) will be evaluated. So, without the quote, garfield becomes whatever it is
defined to be. With the quote, it is just the symbol.
The empty list is () and it evaluates to itself.
We can build a list, say (cat in the hat) with sentence:
> (sentence 'cat 'in 'the 'hat)
'(cat in the hat)

2. Add code to your .scm:
• Use the first and butfirst (and/or last/butlast) to extract (+ 5 3) from the list
(* (+ 5 3) (- 11 4)).

• Extract the 11 from the list above. You will need to get the third element from the top list and
then get the second element from that.

• Build the sentence (one fish two fish red fish blue fish) using quotes only on individ-
ual symbols.

• Define k as the list (oh the places). Then evaluate the following two expressions and explain
the difference in results:
(sentence 'k '(you will go))
(sentence k '(you will go))

Page 3



Quadratic 2025-01-20

• Add this to your file.
(define better-pets '((cat knight) (dog scooby) (fish rex) (moose fido) (orca willy)))

– Write a Scheme expression that uses better-pets and evaluates to (moose fido).
– Write an expression that evaluates to the type of animal willy is. Not a function.
– Write an expression that evaluates to the name (not a list with the name but just the name) of

the fish.

Submit through ClassroomManagement System
Submit your commented (name, answers to questions) Scheme code through the classroommanagement
system.

Page 4


