
Programming Languages — Scheme and High-level Concerns
syntax Rules for producing valid sequences of tokens in a language. How to write valid sentences.
semantics Rules for interpreting valid sequences of tokens in a language. What valid sentences
mean.
static anything that is known (or knowable) before load time; e.g. size of Java int, type of C++
variable, address of global function main in C.
dynamic anything that is not static; e.g. value of argv[1] for C program, memory address of a local
variable in a stack-based language, the type of a Python variable.
Question: define recursion in terms of a programming language function or subprogram.
Question: is the return address of a function static or dynamic? Where would it be stored to
support recursive functions?

Abstract Data Type (ADT)
An abstract data type has:
• interface — the collection of world-facing operations
• implementation — the collection of internal fields and functions in memory
• encapsulation — limiting external interaction to the interface; complete hiding of the implemen-

tation from client code
Question: How does this relate to object-oriented programming in Java? How is the implementation
hidden?
Question: How is a Java float an ADT?
Question: What is the interface to an array? (No, the type of elements in the array is immaterial
to the answer.)

scheme

Scheme is a Lisp dialect. Programs are written in prefix notation with the operator coming before
the operands in a list. All lists are enclosed in parentheses. A list, an s-expression is both the
fundamental data type in Scheme and the fundamental building block of code in the language. This
simplifies writing Scheme to manipulate Scheme.
Environment is the lookup table for definitions. Think of the calling stack for Java. Environments
are linked and each define or lambda or let introduces a new one. Remember that an environment is
linked to a parent environment.
Question: What is the parent environment when you call a function? How does that relate to the
idea of a closure?
Higher-level functions are functions that take other functions as parameters or return them as
results.
(define make-adder (n)
(lambda (x) (+ x n))) => make-adder

(map (make-adder 1) '(10 20 30 40)) => (11 21 31 41)

Language Processing Programs
Our computers are
• digital — values selected from a discrete set

1



• binary — the set is {0, 1}
• general-purpose — arbitrary types can be encoded, including instructions that direct the pro-

cessor
Language processors lie along a spectrum:
compiler Reads a description of an algorithm or process in a (typically high-level) language and
translates it to a (typically lower-level) language while preserving the semantics.
In the Russian book analogy: the Russian monk who reads the book once and produces an English
version and then goes home. (What happens if I want to know what was on p. 10 a second time?)
interpreter Reads and performs a description of an algorithm in a language. Perform means to
execute steps matching the semantics of the algorithm as written. Notice that the performance
happens as the program is read.
In the Russian book analogy: the Russian monk who reads a page and translates it to English,
jumping to whatever following page they need to and doing it again. The monk can never go home.
(What happens if I want to know what was on p. 10 a second time?)
Question: What do you know about hybrid language processors in the middle of the spectrum?
How are tasks divided in time and between compiling and interpreting?
A macro is a text-transformation function. Think of it like a form-letter template. When pro-
cessed (perhaps with parameters), the macro processor generates new text from the template. In
programming terms, that generated text is compiled/interpreted as the program to execute. The
macro processor in this model comes before the lexical and syntactic processing.
Question: C++ was originally written as a preprocessor that took as input C++ and produced as
output C which could then be fed to a standard C compiler to produce an executable. Explain this
in terms of the language processing spectrum.

2



Helpful Information
Remember that you will get this in the exam but you need to understand it.

;; define is used to define new names.
(define x 10)
(define double (lambda (x) (∗ x 2)))

;; quote quotes literal data (symbols or lists)
;; the tick-mark ' is syntactic sugar
(quote hello) => hello
(quote (1 2 3)) => (1 2 3)
'(1 2 foo bar) => (1 2 foo bar)

;; lambda is used to generate new functions
(lambda (x) (+ x 10)) ; an anonymous function
(define plus10 (lambda (x) (+ x 10)))

;; if is a two-branch conditional
(if (equal? '(+ 5 8) 13)
'fibonacci
'non-fibonacci) => fibonacci

;; cond is a general conditional
(cond
((eq? 'foo 'bar) 'hello)
((= 10 20) 'goodbye)
(#t 'sorry)) => sorry

;; let, let∗, letrec are for locals
(let
((x 10)
(y 20))
(+ x y))

=> 30
;; --- not your usual length ---
(letrec ; -- let recursive
((length (lambda (lst)

(if (null? lst)
0
(+ 2 (length (cdr lst)))))))

(length '(1 2 3 4))
) => 8

;; begin is the sequencing construct
(begin
(∗ 1300 (- 567 391))
(sqrt 127000)
(+ 2 2)

) => 4

;; arithmetic: +, -, ∗, /, quotient, modulo
;; relational: <, <=, >, >=, =
(quotient 87 9) => 9
(= 1 2) => #f ; = for numbers

;; Equality and identity: eq? and equal?
(eq? 'hello 'goodbye) => #f ; identity test
(eq? 'hello 'hello) => #t
(eq? '(1 2) '(1 2)) => #f
(define foo '(1 2))
(define foo bar)
(eq? foo bar) => #t
(equal? foo bar) => #t ; if they look the same
(equal? foo '(1 2)) => #t

;; Lists: cons, car, and cdr
;; Making new lists, via quoting, cons, or list
(define foo '(1 2 3))
(define bar (cons 1 (cons 2 (cons 3 ()))))
(define baz (list 1 2 3))

;; Process lists with car, cdr, and null?
(null? '(1 2)) => #f
(null? ()) => #t
(car '(1 2)) => 1
(cdr '(1 2)) => (2)

;; takes two single parameter functions, f and g
;; returns the f composed g function.
(define compose
(lambda (f g)
(lambda (x)
(f (g x)))))

;; applies f to every element of the-list
(define map
(lambda (f the-list)
(if (null? the-list)
the-list
(cons (f (car the-list))

(map f (cdr the-list))))))

(map even? '(1 2 3 4)) => (#f #t #f #t)

;; association lists
(define e '((a 1) (b 2) (c 3) (7 g)))
(assq 'a e) => (a 1)
(assq 'b e) => (b 2)
(assq 'd e) => #f
(assoc 7 e) => (7 g)
(assq (list 'a) '(((a)) ((b)) ((c)))) => #f
(assoc (list 'a) '(((a)) ((b)) ((c)))) => ((a))

Cribbed from https://courses.cs.washington.edu/courses/cse341/02wi/scheme/cheat-sheet.html

3

https://courses.cs.washington.edu/courses/cse341/02wi/scheme/cheat-sheet.html

