
Programming Languages — Parsing and Data Types

Array Indexing
In C/C++ an array is a pointer to the first element of a contiguous collection of homogeneous
elements.

int A[10]; // A is address of A[0] which is an int; sizeof(A) == 10 ∗ sizeof(int)
char ticTacToe[3][3]; // ticTacToe is address of ticTacToe[0] which is a char[3];

// sizeof(ticTacToe) == 3 ∗ 3 ∗ sizeof(char)
float Q[2][4]; // Q is pointer at a float[4]; sizeof(Q) == 2 ∗ 4 ∗ sizeof(float)

Addressing is base (the array variable) plus the right-most index times the size of an element plus the
second to right-most index times the size of an element times the size of the right-most dimension
and so on. This assumes row-major storage of multidimensional arrays.

&A[5] == A + 5 ∗ sizeof(int);
&ticTacToe[2][1] == ticTacToe + 2 ∗ (3 ∗ sizeof(char)) + 1 ∗ sizeof(char);

&Q[1][0] == Q + 1 ∗ (4 ∗ sizeof(float)) + 0 ∗ sizeof(float)

Question: How would the calculations change for column-major storage? For any that do not
change, explain why (there are two differet reasons).
Arrays of pointers to arrays is an alternative way to store multiple dimension arrays: the last
(right-most) index indexes an array of elements. The next dimension to the left indexes a (one-
dimensional) array of pointers at arrays of elements and so on.
Question: What are the benefits of this layout? What are the costs?
Question: Which method does Java use for simple arrays? What about C/C++?

String
A string in most PL is an array of characters. Note that character is different from char: char is
typically one byte is size while a modern character is whatever type can hold characters for human
languages that the program can process (Unicode).
A C-style string is an array of char. It is variable length in that the '\0' character serves as an end
of string sentinel. The maximum length of a string is constrained by the memory set aside for it but
it can be marked as shorter with a NUL character (that is the ASCII name for the zero character).

Pointers
A pointer is a variable that holds the address of an element of some specified type. In C-style
languages, a pointer can be used with square brackets and integer addition/subtraction to calculate
the address of contiguously stored elements of the same type (actuall same size).
Something to think about: How does delete[] know how big the array was when new was called?

Memory Leaks

Dynamically allocated memory (new) in C/C++ and Java must be reclaimed when it is no longer in
use. The two have different approaches:
Java uses garbage collection in that when a heap-allocated object is no longer live (reachable through
the transitive closure of live references), it will be marked as garbage and, at some point, reclaimed.
C/C++ count on the programmer to delete the memory, giving it back to the run-time library’s
memory manager. Failure to do so creates a memory leak.

1



Question: Compare and contrast the two approaches.
Question: Write short C++ code that leaks. Then rewrite it to fix the leak. What is the cost of
Java programmers not needing to care?

Scope, Lifetime
The scope of a variable is where the name of the variable refers to a particular definition of the
variable. Reusing a variable name can create scope-holes where a given name could refer to either
of two declarations; in lexcial scoping, it refers to the innermost declaration even though outer
declarations live on.
Scope-holes are different from using the same variable name in two, non-overlapping scopes.
Variables in calling contexts remain live. So global variables typically are live until the end of
program execution.
Dynamic scope resolution uses the active calling stack (rather than text of the source code) to resolve
non-local variable references.

Lexical Analysis
Language processing is going from a stream of characters to a stream of instructions; there must be
some intermediate form that represents the meaning of the program so that the instructions can
preserve that meaning.
A stream of characters is typically transformed into a stream of tokens during the lexical analysis
phase of processing. A token is a symbol in the alphabet of symbols that make up a program in a
given language, e.g. integer literal, keyword, variable, +, ”.
To avoid overwhelmingly large alphabets, tokens are usually grouped by type and a token carries
with it the actual string value it is associated with, its lexeme. So v is a variable token with the
lexeme v.
Consider this set of token definitions

<add_op> ::= '+'|'-'
<mult_op> ::= '∗' | '/' | '%'
<assign_op> ::= ':='
<paren> ::= '(' | ')'
<ident> ::= Any valid Java identifier
<int_lit> ::= [0-9]+
<EOF> ::= End of file marker

What is the tokenization of the string

readable := 10 ∗ comments + whitespace + goodNames <EOF>

Token Type Lexeme
<ident> readable
<assign_op> :=
<int_lit> 10
<mult_op> ∗
<ident> comments
<add_op> +
<ident> whitespace
<add_op> +
<ident> goodNames
<EOF> <EOF>

2


