
Programming Languages — Subprograms, AST

Subprograms
• Signature name plus order and type of parameters
• Types function (returns a value); procedure (void or no return value)
• generic variable on some type in the signature
• overloaded reuse of subprogram name with different signature
• override reuse of a full signature in a subclass
The 5 Properties
1. Named — A subprogram has a name

Relaxed: unnamed subprograms; lambda

2. Explicitly called — Control is transferred to the subprogram through a line calling it
Relaxed: exception handler (or any other handler); callback

3. Immediate transfer of control — Called subprogram begins as soon as call happens
Relaxed: deferred execution

4. Caller suspended — Calling subprogram stops making progress until callee returns control and
only then continues after call site
Relaxed: concurrency, multiple threads of control

5. Callee finishes, returning control to caller — Called subprogram runs to completion, setting return
value if necessary, and returns control to site of call; callee context is no longer available
Relaxed: coroutines, yield, generators, lazy lists

Parameters
Formal Listed when subprogram is defined; in scope within the subprogram.
Actual Provided at the call to the subprogram; evaluated in calling scope, assigned to formal
parameters. Method of assignment depends on parameter passing semantics
value actual parameter evaluated and value put in new, local variable for the formal parameter.
(pointer) programmer takes address of actual parameter and that is passed by value to the formal
parameter; must be manually dereferenced.
reference lvalue of actual parameter determined and set as lvalue of formal parameter.
copy also value-return: parameter passed in by value; at end of called subprogram, value of formal
parameter copied back into actual parameter.
name the text of the actual parameter is passed into the callee and evaluated in the callee’s scope
when the formal parameter is used. This is a lot like macro expansion.
Pass by Name

function returnTwice(byName : integer): integer;
begin
returnTwice := byName + byName

end;

If we call with actual parameter that has no side effects, all is well:

i := 5;
j := returnTwice(i);
writeln(i, j);

Gives us 5 and 10, as expected.
Call with an actual parameter with a side effect:

1

i := 5;
j := returnTwice(inc(i));
writeln(i, j);

and while we might expect 6 (5 incremented) and 12, we instead get 7 (because increment was called
once each time the parameter was evaluated) and 13 (first increment returned 6, the second 7; do
the math). So returnTwice, which looks like it would return double its parameter (and therefore a
multiple of two), returns an odd number.

Parsing, AST
Language processing is going from a stream of characters to a stream of instructions.
In lexical analysis, the stream of characters is transformed into a stream of tokens. That stream of
tokens is then parsed into an abstract syntax tree (AST) (or equivalent).
there must be some intermediate form that represents the meaning of the program so that the
instructions can preserve that meaning.
Grammar

<expression> ::= (+ <expression> <term>) | (- <expression> <term>) | <term>
<term> ::= (∗ <term> <factor>) | (/ <term> <factor>) | <factor>
<factor> ::= <expression> | [int] | [var]

(∗ x (+ 2 y))

<expression>
|

<term>
/ / / \ \
(∗ <term> <factor>)

| |
<factor> <expression>

| / / | \ \
[var:x] (+ <expression> <term>)

| |
<term> <factor>

| |
<factor> [var:y]

|
[int:2]

2

