

There is no answer for x2

Do omnivore and gobbler observe The
Sixteenth Commandment?

What is the value of nibbler

. (define nibbler
(lambda (food)

(let ((x (quote donut)))
(set! x food)
(cons food

(cons x

(quote 0))))))

\iVhat is the value of
(nibbler (quote cheerio))

Does nibbler still know about cheerio

How do we determine the value of
(nibbler (quote cheerio))

And second?

And third?

100

Yes , X2 is an imaginary name just as Xl is an
. .
Imagmary name.

They do . The name in (set! . . .) is
introduced by a (let ...) . .

Unimaginable. Keep reading.

(cheerio cheer io) .

No!

First, we determine the value of
(quote don ut) , which is easy. And then we
give it a name: x .

Second, we change what x stands for to
cheer io.

Third, we determine the value of

(cons food
(cons x

(quote 0)))
where x is cheer io
and

food is cheerio .

Chapter 15

So ,,"hat was t hc use of (let" " ")

So why is it unimaginable?

one" If (let" " ") and (set! " " ") ar \l ret
without a (lambda" " " b tW,('ll them, th .v
don't h lp us to remember things.

Because there is no (lambda bet\\"eCll the
(let ((x " " ")) " " .) and t he (set! x " . ") in

(lambda (food)

(let ((x (quote don ut)))
(set! x food)
" "))"

The Seventeenth Commandment

(preliminary version)
Use (set! x ...) for (let ((x ...)) . . .) only if
there is at least one (lambda ... between it
and the (let ((x ...)) . . .) .

Isn' t (let ...) like (letrec ...)

Do you think The Sixteenth and Seventeenth
Commandments also apply to names in the
name part of (letrec ...)

Why did we forget The Sixteenth
Commandment earlier?

The Difference Between fen and BOJ"

Yes , we said it was similar.

Yes , they do, and we will see examples of
this , but not just yet.

Occasionally we need to ignore
commandments , because it helps to
explain things .

101

,<

!1G)�

ru��� �c �

" I

,\ I �J I �I I

/

. .

"
,

o
,
I

c _

y(l:-', that's the one.

What is the value of (sweet-toothR x)
where

x is chocolate

What are the ingredients

What is the value of
(sweet-toothR (quote fru i t))

Now, what are the ingredients

Find the value of (sweet-toothR x)
where

x is cheese

What does the name ingredients refer to?

What is the value of
(sweet-toothR (quote carrot))

And now, what are the ingredients

Now that you have had the dessert . . .

Ready, Set, Bang!

Here's the function:

(define sweet-toothR
(lambda (food)

(set! ingredients
(cons food ingredients))

(cons food
(cons (quote ca ke)

(quote 0)))))

(chocolate ca ke) .

(chocolate) .

(fru it cake) .

(fru i t chocolate).

It is (cheese ca ke) .

(cheese fru i t chocolate).

(carrot cake) .

(carrot cheese fruit chocolate).

Is it time for the real meal?

109

Her 1 what N SI refers to:

(16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0)

vVhat does RS1 refer to?

What is (find 3 (quote 0) (quote 0))

But what would be the result?

What would be a good answer?

Ready, Set, Bang!

Our favorite food!

(((((((((((((((((pizza))))))))))))))))
(((((((((((((((pizza)))))))))))))))
((((((((((((((pizza))))))))))))))
(((((((((((((pizza)))))))))))))
((((((((((((pizza))))))))))))
(((((((((((pizza)))))))))))
((((((((((pizza))))))))))
(((((((((pizza)))))))))
((((((((pizza))))))))
(((((((pizza)))))))
((((((pizza))))))
(((((pizza)))))
((((pizza))))
(((pizza)))
((pizza))
(pizza)
pizza)

Doesn't this look like a slice of pizza?

This questions is meaningless. Neither N SI

nor RS1 is empty so find would never be
used like that .

No answer.

If n is not in Ns , then (find n Ns Rs) should
be #f. We just have to add one line to find
if we want to cover this case:

(define find
(lambda (n Ns Rs)

(letrec
((A (lambda (ns rs)

(cond
((null? ns) #f)

((= (car ns) n) (car rs))
(else

(A (cdr ns) (cdr rs)))))))
(A Ns Rs))))

1 17

What is the value of

(define length
(lambda (l)

0))

(set! length
(lambda (l)

(cond
((null? l) 0)
(else (addl (length (cdr l)))))))

Here is one way to do it without using a
name introduced by (define ...) in a
(set! ...)

(define length
(let ((h (lambda (l) 0)))

(set! h
(lambda (l)

(cond
((null ? l) 0)
(else (addl (h (cdr l)))))))

h))

It is as if we had written:

(define length
(lambda (l)

(cond
((null? l) 0)
(else (addl (length (cdr l)))))))

But doesn't this disregard The Sixteenth
Commandment? Aren't we supposed to use
names in (set! ...) that have been
introduced by (let .. .)?

And this one disregards the The Seventeenth
Commandment : there is no (lambda . ..
between the

(let ((h . . .)) . . .)
and the

(set! h . . .).

The Seventeenth Commandment

(final version)
Use (set! x ...) for (let ((x ...)) ...) only if there is at least
one (lambda... between it and the (let ...) , or if the new
value for x is a function that refers to x.

Ready, Set, Bang! 1 19

vVhat is the value of

(define length

"

(let ((h (lambda (l) 0)))
(set! h

(lambda (l)
,< (cond

((null? l) 0)
(else (addl (h (cdr l)))))))

h))

True. Evaluating the .definition creates an
imaginary definition for h by removing it
from the (let ...)

What is the value of

(define hI
(lambda (l)

0))

(define length

120

(let 0
(set! hI

(lambda (l)
(cond

((null ? l) 0)
(else (addl (hI (cdr l)))))))

It is as if we had written:

(define hI
(lambda (l)

0))

(define length
(let 0

(set! hI
(lambda (l)

(cond
((null ? l) 0)
(else (addl (hI (cdr l)))))))

Yes , and the (let 0 _ _ _) is now only used to
order two events: changing the value of hI
and returning the value of hI-

It is as if we had written:

(define hI
(lambda (l)

(cond
((null? l) 0)
(else (addl (hI (cdr l)))))))

(define length
(let 0

hI))

Cl18.pter 16

What is the value of

(define length
(let 0

hI))

Does this mean length would perform as we
expect it to?

Okay, let's start over. Here is the definition
of length again:

(define length
(let ((h (lambda (l) 0)))

(set! h
(lambda (l)

(cond
((null ? l) 0)
(else (addl (h (cdr l)))))))

h))

Can you eliminate the parts of the definition
that are specific to length

Here is L

(define L
(lambda (length)

(lambda (l)
(cond

((null? l) 0)
(else (addl (length (cdr l))))))))

Can we use it to express the right-hand side
of (set! ...) in length

Ready, Set, Bang!

It is as if we had written:

(define length
(lambda (l)

(cond
((null? l) 0)
(else (addl (hI (cdr l)))))))

Yes , it would because it is basically the same
function it used to be. It just refers to a
recursive copy of itself through the imaginary
name hI'

The right-hand side of (set! ...) needs to be
eliminated:

(define length
(let ((h (lambda (l) 0)))

(set! h . . .) '
h))

The rest could be reused to construct any
recursive function of one argument .

That should be possible.

1 2 1

· Rewrite the definition of length so that it

becomes a function of L. Call the new
function 1�

Can y u xplain Y-bang

(d e fin e Y-bang

(lam.bda (f)
(l e t re e

((h (f (lambda (arg) (h (lT�q)))))
h)))

\i\'rit l ngth u illg l� 'lll I L

R ady, S L, Bang!

(d e fine l�
(lambda (L)

(le t ((h (lambda (l) (quot e 0))))
(se t! h

(L (lambda (arg) (h arg))))
h)))

Thank y u, Peter .J. Landin.

11 [(' ar' Ollr word,':

.. _�\ (1 tr e . . .) is an abbrc'\'iation for an

xprc's,'joJ) collsist ing of (l t .. .) and

(t! ...) . '0 <-tllothc'r \yay of w riting 1, IS

)·-bOI/.rJ." I

I ,\ (I LI" • • •) I Ital ell 11111 � 111111 II ally n"'llr�iH'
ell fJlllli()lI� ('<til III al,hll'vialt'd 11'>1116 (I t . ..) and

s L!.) "Xi'I I's�i()It'>
t I lr '

(I.I' 1 'I! 1

[·1'11 fI:I))
)

I't (1'10) (.til u))
IN 'II (t I) . . (1/11 1\ II})

s l! 1'1 III)

" l!)'11 I/n))

lltl' II 1I111'� III , 1/11 11111'>1 IIpl U(,(,1I1 ill n I . . . (\ 11 and
I lit) /1111'>1 lIul Il' (11IN'n fltJIll till' Il,Ull('S l'1 . . . ·1'11'
lllllhli/ill� Idllt 0 IS ;uhitt.d,l' alld it j,> II rung U 'L"SlIIllC
I h,' II 11111 S 1'1 ... ·1'11 an' 0 ill "l .. (\ II·

(1 fin lell.l/lh (1� L))

123

Y u ha,'e just worked through the derivation

of a function called 'the applicati ve-order,
imperat ive Y combinator." The interesting
a pect of 1, is that it produces recursive
definitions without requiring that the
functions be named by (define , , ,)
Define D so that depth * is

I (define depth * (Y! D))

.' <

How do we go from a recursive function
definition to a function f such that (}Ii 1)
builds the corresponding recursive function
\\'ithout (define . . .)

Is it true that the value of (Y 1) is the same
recursive function as the value of (Yi 1)

vVhat happens when we use Y and Yi with a
function that does not have this shape?

Give the following function a name:

(define . . .

124

(let ((x 0))
(lambda (f)

(set! x (addl x))
(lambda (a)

(if (= a x)
o
(f a))))))

(define D
(lambda (depth *)

(lambda (s)
(cond

((null? s) 1)
((atom ? (car s))
(depth * (cdr s)))

(else
(max

(addl (depth * (car s)))
(depth * (cdr s))))))))

Our words:
" f is like the recursive function except that
the name of the recursive function is
replaced by the name recfun and the whole
expression is wrapped in

(lambda (recfun) .. .) ,"

Yes , the function Yi produces the same
recursive function as Y for all f that have
this shape.

Let ' s see.

How about biz , an abbreviation for bizarre?

Chapter 16

That is as good a nam as any other . What
i the valu of this definition?

V\ hat is the value of
((Y biz) 5)

What is the value of
((y! biz) 5)

Does your hat till fi .

Then again , eating som m r Tambl d

eggs and pancak may do thing to y u!

It is as if we had written:

(define Xl 0)

(define biz
(lambda (f)

It o.

(set! Xl (add1 Xl))
(lambda (a)

(if (= a Xl)
o
(f a)))))

It' not O. It doe n't even have an answer!

Of ourse it does . .. ft r you have worked
through he definition of the Y combinator
nothing will eyer aff ct your hat ize again,
not even an attempt to under tancl the
differenc between Y and 1�.

111 thing light r like Belgian waffles , would
cl it, t oo.

For that elephant ate all night,
And that elephant ate all day;

Do what h could to furni h him food,
The cry was still more hay.

Wang: The :Man wi th an Elephant
on His Hands [189 1]

-John Cheever Goodwin

Ready, Set, Bang! 125

's 1 k at (L p again.

And let s look at deepM with the new
version of deep included:

(define deepM
(let ((Rs (quote 0))

(Ns (quote 0)))
(letrec

((D (lambda (m)
(if (zero ? m)

(quote pizza)
(cons (D (subl m))

(quote 0))))))
(lambda (n)

(let ((exists (find n Ns RS)))
(if (atom ? exists)

(let ((result (D n)))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result)

exists))))))

Can) ou help D with its work?

Go d. I it true that there i no longer any
n ed for (letrec ...) in deepM

H' hange, Tb r for 1r .-\.1' !

It i .. g d to I hark. \\'l1a ' 11(,,-"!

H r i a fini ti n using (if ...) :

(define d P
(lambda (m)

(if (z ro ? m)
(quote pizza)
(cons (d p (. 7tb 1 m))

(quote ())))))

Easy: D should refer to deepM in tcacl f
itself.

(define deepM
(let ((Rs (quote 0))

(Ns (quote ())))
(letrec

((D (lambda (m)
(if (zero ? m)

(quote pizza)
(cons (deepM (subl m))

(quote 0))))))
(lambda (n)

Ye ,

(let ((exists (find n Ns RS)))
(if (atom ? exists)

(let ((result (D n)))
(set! Rs (cons result R))
(set! Ns (cons n N))
result)

exist))))))

since D is no long r 111 ntion 1 in th
definition of D.

127

This ill ans w can use (let ...)

Better: there needs to be only one (let ...)

Because Ns and Rs do not appear in the
defini tion of D

12

(define deepllif
(let ((Rs (quote 0))

(Ns (quote 0)))
(let

Why?

((D (lambda (m)
(if (zero ? m)

(quote pizza)
(cons (deepM (subl m))

(quote 0))))))
(lambda (n)

(let ((exists (find n Ns RS)))
(if (atom ? exists)

(let ((result (D n)))
(set! Rs (cons result Rs))
(set! Ns (cons n Ns))
result)

exists))))))

This is true.

(define deepM
(let ((Rs (quote 0))

(Ns (quote 0))
(D (lambda (m)

(if (zero ? m)
(quote pizza)
(cons (deepM (subl m))

(quote 0))))))
(lambda (n)

(let ((exists (find n Ns RS)))
(if (atom ? exists)

(let ((result (D n)))
(set! Rs (cons result Rs))

(set! Ns (cons n Ns))
result)

exists)))))

Chapt r 17

Can we replac th on us of D by th

expression it names?

(define deepM
(let ((Rs (quote 0))

(Ns (quote 0)))
(lambda (n)

(let ((ex ists (find n Ns RS)))
(if (atom ? ex ists)

(let ((Tesult . . .))
(set! Rs (cons Tesult Rs))
(set! Ns (cons n Ns))
Tesult)

ex is ts)))))

\Vhat should w pIa e at th dots?

Therefore v"e an unname an xpre' ion th at

\ve named with th (let ...)

Don 't you think appl 'ing a (lambda ...)
immediately to an argum nt i qui\-al nt t o
(let ...)

Compi t the following d finiti n f d pM

(define deepM
(let ((Rs (quote ()))

(Ns (quote ())))
(lambda (n)

(let ((ex i ts (find n Ns RS)))
(if (atom ? ex ists)

(let ((T . 'ult . . .))
(set! R. (cons Tes'ult Rs))
(set! Ns (cons n Ns))
T sult)

exists)))))

Is it true that all w got was anothcr

(let ...)

We Change, Therefore We Are!

Since the definition does not contain

(set! D . . .) and D is used in only one place,
we can replace D by its value:

((lambda (m)

n)

(if (zem? m)
(quote pizza)
(cons (deepM (subl m))

(quote ()))))

Yc . that is wh�! the two definitions are

q ui\-alent .

Ye , determining th value of either one

man, d.t rmining the value of the value

part aftcr as. ociating a name with a value.

(let ((m n))
(if (zeTa ? m)

(quote pizza)
(cons (deepM (subl m))

(quote ()))))

And it introduced a name to name another

name.

129

Yes, what does counter refer to?

Have 'vV ever seen an incomplete definition
befor ?

[Idefine counter)

It j ust means t hat we do not care what th

first value of counter is, . . .

Correct. But how many argument doe

counter take?

Ton

\"hat i the valu of (count r)

And ,,"hat doe

What is th valu of (d p 5)

vVhat i t h ,·al u of (ount r)

Y s, 5

Wha is t he value of (d p 7)

What is th valu of (count r)

We Change, Therefore We Arc!

A function, perhap ?

No, it looks strange.

. . . be ause we immediately change it ?

�on('?

ohm\" do we u e it ?

It is '" hate,·er -�"2 refers to.

.--\t thi tim , O.

(((((pizza))))) .

5':

H(m· did t hat happen?
.. ach time consC is II cd, one i ad led to

N"2. . ncl the answer to (counter) always

rrf 1". to whatever N"2 r fer to ."

(((((((pizza))))))).

Obviolls: 12.

133

I it clear nov. how we determine 500,500?

But that is easy. Modify the function
supercounter so that it returns the answer of
(counter) when it has applied its argument
to all the numbers between 0 and 1000

(define supercounter
(lambda (f)

(letrec
((5 (lambda (n)

(if (zero ? n)
(f n)
(let 0

(f n)

(5 (subl n)))))))
(5 1000))))

What is the value of (supercounter f)
where f is deep

Is this what we expected?

Where did the extra 12 come from?

That's correct.

Let's get rid of them .

Good question! Write a function set-co'unter

134

Not quite; we need to use deep on a
thousand and one numbers.

As with (let ...) and (lambda ...), we can
also have more than one expression in the
value part of a (letrec ...) :

(define supercounter
(lambda (f)

(letrec
((5 (lambda (n)

(if (zero ? n)
(f n)
(let 0

(f n)
(5 (subl n)))))))

500512.

(5 1000)
(counter))))

No! We wanted 500500.

Are these the leftovers from the previous
experimen ts?

We should not have leftovers.

How?

What does it do?

Chapter 17

The function set-counter and counter are
opposites. Instead of getting the value of the

imaginary name, it sets it.

And what h app n now ·.

Now, what is th value of (set- count e r 0)

We Change, Therefore We Are!

We could modify the defini tion of cons C.

(d e fin e counter)

(d e fin e set-counter)

(d e fine consC
(le t ((N 0))

(se t! count r
(lambda ()

N))

(se t! s t-counter
(lambda (x)

(se t! .z;)))
(lambda (.r y)

(e t! (oddl N))
(con. .r; y))))

\Y(\ gC't thrC'P [Ullct io ns anel all imaginary

namo:

(d fine count ,.
(lalubda ()

S:�))

(define 8ft-connIe,.
(lanlbda (.r)

(t! S ·3 .i")))

(define consC
(lambda (:1: y)

(t! 1(3 (addl NJ))
(co ns .t y)))

135

Here is rember 1 * again:

(define rember 1 *
(lambda (a l)

(letrec
((R (lambda (l oh)

(cond
((null ? l)
(oh (quote no)))

((atom ? (car l))
(if (eq ? (car l) a)

(cdr l)
(cons (car l)

(R (cdr l) oh))))
(else

(let ((new-car
(letcc oh

(R (car l)
oh))))

(if (atom ? new-em')
(con (caT l)

(R (dT l) oh))
(cons new-caT

(cdr l)))))))))
(let ((new-l (letcc oh (R l 017,))))

(if (atom ? new-l)
l
new-l)))))

"Vrit i t again using our coun ing Y('rsi n of

cons

\Vhat is the valu of (t-counter 0)

\\That is the valu of

(rember 1 *C a l)
where

a is nood les
and

I is ((food) more (food))

liVe Challge, Therefor "liFe Arc!

This is a safe version of the last definition We'

saw in chapter 14:

(define rember l * C
(lambda (a l)

(letrec
((R (lambda (l oh)

(cond
((null? l)
(oh (quote no)))

((atom? (caT l))
(if (eq? (caT l) a)

(cdT l)
(cons C (car l)

(R (edT l) oh))))
(else

(let ((ne'U)- cox

(letcc oh
(R (rar l)

oh))))
(if (atom'! new-rar)

(ron. C (caT l)
(R (r(b' l) oh))

(con. C neW-('(L7'
(edT l)))))))))

(let ((new-l (letcc oh (R l oh))))
(if (atom ? 71 w-l)

l
TI w-l)))))

((food) more (food)),
bC'canse t his list doC's not contain noodles.

139

And \yha t 15 the value of (counter)

Do you also remember the first good version
of rembeTl *

(define rember 1 *
(lambda (a l)

(letrec
((R (lambda (l)

(cond

(R l))))

((null? l) (quote 0))
((atom ? (car l))
(if (eq ? (car l) a)

(cdr l)
(cons (car l)
.. . (R (cdr l)))))

(else
(let ((av (R (car l))))

(if (eqlist ? (car l) av)

(cons (car l)
(R (cdr l)))

(cons av
(cdr l)))))))))

Rewrite it, too, using consC

'Vhat is the value of (set-counter 0)

What is the value of
(consC (consC f (quote ()))

(cansC m
(consC (consC f (quote 0))

(quote 0))))

f i.' food
and

'Tn l,' more

140

0,
because we never used consC. We always
used the compass needle and the North
Pole to get rid of pending consCes.

It is the version that failed by repeatedly
checking whether anything had changed for
the car of a list that was a list:

(define rember 1 *C2
(lambda (a l)

(letrec
((R (lambda (l)

(cond

(R l))))

((null? 1) (quote 0))
((atom ? (car 1))
(if (eq ? (car l) a)

(cdr 1)
(consC (car 1)

(R (cdr l)))))
(else

(let ((av (R (car 1))))
(if (eqlist ? (car l) av)

(consC (car l)

(R (cdr l)))
(consC av

(cdr l)))))))))

((food) more (food)) .

Chapter 17

Hcm- lllClny konsC's did WC' usC' now?

Hmy lllany konsC's did we' use altogether?

\Yha t IS the '-21.1 ue of

(define bakeTs-dozen-too

(add-at-end-too dozen))

Hu\y lllall\ kOn8('S did \\'C' uSC' now?

H()\y lllan�- konses did \YC' USC' altog('tlH'r?

DoC's that Illean that the konses in dozen arc

the Sc\lllC' as t he first twcl \"(' in

bakeJ�-dozen-too

Do('s that llleall that t hC' k07ZSC'S ill dOZ('1I em'

the !->cUllC' a:-, the first t\w1n) ill bakers-dozen

(define bakcTs- doze'!/.-agni T/,

((ul d-nt-(,Tl d rf OZf''T/))

Hm\- lllall�- kons('s did W(' liSP 1l0\Y'?

\Y(,H' YOU snrprisC'd that it wasn't 13'1

How lllany konsC's did We' llSC' altopptllC'r'?

J

Due'S that mean that t.he kOTLses in dozen cuC'

the s"U 11 (' as the first twelve ill

bnke7�-dozeTL-again

1-18

13_

25.

To fiud ou t. \\"C' m us t dC'terminC' the val11(, of

(adrl-at-end-too dozen)_

OUC'.

26.

bso1 u tel'.-!

Absolutcl�' not!

1-1.

Yes.

-10.

Absolutcly not, again!

Clulpter 18

Why is' there no value?

How many konses does it contain?

Didn't we write length together in The Little
Schemer?

" .
Did we disobey any of the commandments
when we wrote length

Then what's wrong?

And?

\iVhy is this bad?

Because long is very long.

12.

Yes , though lenkth now uses kdr because the
lists it receives are made with kons.

No, we didn't!

The last kons of long no longer contains
(quote ()) in the kdr part. Instead, the kdr
part refers to some kons inside of long .

o kdr refers to the empty list , because the
only one that did was changed.

It mean. that lenkth keeps taking kdrs
forever.

Draw a picture of "Kons the Magnificent" here.

152 Chapter 1

Define four-layers

A n d how abou t 1000 layers?

Yes. t hat's what we haye don .

Yes, \\'e can r memb r this kin d of fu nct ion

",,l i t h a (se t! . . .)

That is what we mean .

V\Te arc about to show you .

One step at a tim . D o you r memb r
(l e tcc . ..) from chapt r 13?

Absconding with the Jewels

(d e fin e jour-layers
(lamb da (p)

(cons
(cons

(cons
(cons p (quot e 0))
(quot e ()))

(quot e 0))
(quot e 0))))

V\ 11, we wou ld need to define the function
thousand- layers . Somehow w eem to define

a fu nction that doe' exactly what is left to

do when deep's argument ha' become O.

Isn't t h re an easier \-vay to do this?

Do y u mC'an 'omet hing like t h is?

(d e fin e deepB
(lambda (m)

(cond

((zero? m)
. .. (e t! toppings .. .) . . .)

(e l se (cons (deepB (ubi m))
(quot e 0))))))

-

But ,,:hat do 'vV put where the dot are .

A n d how do we make sure the fu nction still

rc'turns p'lzza aftenyard?

Yes.

157

Yes, toppings would forget everyth ing. What

would be the valu e of
(cons (toppings (quote cake))

(cons (toppings (quote mozzarella))
(cons (toppings (quote pizza))

(quote 0))))

Yes! vVhen we use a value made with

(letcc ...) it forgets everything around it .

Does this mean that we can never cons
anything onto toppings

Let 's try anyway. Here i a relativ of deep:

(define deep&co
(lambda (m k)

(cond
((zero ? m) (k (quote pizza)))
(else

(deep&co (subJ m)
(lam.bda (x)

(k (cons .x (quote ())))))))))

Yes, but collectors ar u . ef 11 h r to .

How could we d termine th valu of

(deep 6)

using deep & co

Which function doe that?

What is the value of

(deep&co a (lambda (x) x))

Absconding with the Jewels

((((ca ke)))).l

1 S: Here, the value of the first argument is determined
before the secone! one, but in Scheme the order of evaluation

in an application is intentionally unspecified.

Just as the com m andment says.

Yes , never!

This is a version of deep that uses a collector.

It has b en a long time since we saw

collectors in cha pter 8.

That's g od to know .

Th con 1 argu ment of deep&co must be a

fun ·tion that returns pizza wh n given pizza.

(lambda (x) x) .

pizza.

161

\"hat would be (get - nex t (quote go))

\iVhat would be (get - ne.'G t (quote go))

Are ther any more atoms to look at?

'''hat would (get-first l) be

where

l is (f ish (ch i ps) ch i ps)

vVhat \;vould be (get-ne,'Gt (quote go))

vVhat would be (get-next (quote go))

Is it true that ch i ps occurs t wice in a row i n

(fi sh (chips) ch i ps)

Should \ve define t wo-in-a-ro w*? l i ke this:

(define two - in-a-row*?
(lambda (l)

(let ((fst (get-first l)))
(if (atom ? 1st)

(two-in-a-ro w- b * ? 1st)
#f))))

W hy does two-in-a-row* ? check whether 1st
is an atom?

vVhy does two-in-a-row-b * ? not take the li:t

as an argument?

Absconding with the Jewels

ch i ps .

o·

No!

f ish.

chips.

ch i ps .

Yc>s. it docs! � nel by n i ng get-firs t alld
g e t-ne:rt. \\'(' C'Ul find Oll t.!

Yes, ,'t11cl h(,1'e is two- in-a-To w-b * ?:

(define two-in-a-7'Ow-b *:;
(lambda (a)

(let ((n (g e t-ne:!'t (quote go))))
(if (ato m? n)

(or (eq? n a)
(t wo-'in-a-l'Ow- b * ? n))

#f))))

Return i ng 0, a nOll-atom, is g e t-fi:I'st 's \Yet'"
of saying that ther(' is no atom in t.

Because ge t-n e:r t kno\\'s hcm' to get the rest

of tIle' atoms, without bei ng told about l .

175

ISH't t hi. ' a larg definition?

And ,,·hat ' . (two-in - a-row*? l)
,,·here

l is (((food) 0) (((food))))

Are you hungry yet?

Okay, let's hurry then. This is only an

appetizer anyway.

Real food.

Hold on!

Don't forget your banquet , but we still need

to do something.

Yps, it is. It was a good idea to clcw'lop it in
several steps.

#t.

Very!

What's n xt?

Let's have a banquet.

vVhy?

What?

Hop, Skip, and Jump!

Absconding with the Jewels 17T

."

l
I I II ,.! __ __ - .IJ I _

I I if
, I

I I
� .,

H re is a function that changes the contents
of a box

(define setbox
(lambda (box new)

(box (lambda (it set) (set new)))))

Write the function unbox which extracts a , ,
value from a box

So, is it true that if a name is paired with a
boxed value that we can change what the
name stands for without changing the table?

What is th value of x

'iVhat is (value e)

where
e IS x

Here is the-meaning

(define the-meaning
(lambda (e)

(meaning e lookup-in-global- table)))

vVhat do you think lookup-in-global- table
does?

Is it true that lookup-in-global- table is j ust
like a table?

Do s this mean lookup-in-global- table is like
global- table

1 2

That's easy :

(define unbox
(lambda (box)

(box (lambda (it set) i t))))

Yes, it is. Using setbox changes the contents
of the box but the table stays the same.

3.

3 .

The function lookup-in-global- table is a
function that takes a name and looks up its
value in global- table . It is easy to define:

(define lookup-in-global- table

(lambda (name)
(lookup global- table name)))

Yes , it is a function that takes a name and
returns the value that is paired with the
name in global- table .

Yes and no. Since *define changes
global- table , lookup-in-global- table is always
j ust like the most recent global- table not l ike
the one we have now.

Chap tel' 20

\Yhat i the value of

(set! x 5)

\Yhat is the value of x

\Vhat is (value e)

where
e is (set ! x 5)

V\That is (value e)
where

e is x

How does *set differ from *identifier

Where does the new value for the box come
from?

Can you write *set now?

Can you describe what *set does?

1 4

o an wer .

5 .

No answer.

5.

It too looks up the box t hat is paired with
t he name in a (set ! . . .) expression , but it
changes the contents of the box instead of
extracting i t .

I t i s the value of the right-hand side in a
(set ! . . .) expression .

Yes , it j ust means translat ing t he words into
a definit ion :

(define *set

(lambda (e table)
(setbox

(lookup table (name-of e))
(meaning (right-side-of e) table))))

Yes .
"The function lookup returns t he box that
is paired with the name whose value is to
be changed . The box is then changed so
that it contains t he value of th right-hand
side of the (set ! . . .) exprcs ion ."

llClptrr 20

What is the value of (lambda (x) x)

What is (value e)
where

e is (lam bda (x) x)

What is the value of
((lambda (y)

(set! x 7)
y)

0)

vVhat is the value of x

What is (value e)
where

e is ((lambda (y)
(set ! x 7)
y)

0)

What is (value e)
where

e IS x

It is a function.

It could also be a function .

o.

7.

o .

7.

Here is *lambda That 's interesting, but what are beglis and
box-all?

(define *lambda
(lambda (e table)

(lambda (args)
(beglis (body-of e)

(multi-extend
(formals-of e)
(box-all args)
table)))))

VVhat 's i n S tore ? 1 85

D es this tal l know about odd ?

Do this tabl know about even 7

Doe this mean that (value)
where

is (odd? 1)
doe not have an answer?

(value e)
where

e is (defi ne even?
(l a m bda (n)

(cond
((zero? n) It)
(e lse (odd ? (sub1 n))))))

vVhat is (value e)
where

e is (odd 7 1)

C an you explain "vhy?

Have we seen t his method of changing a

function before?

1£ *lambda represents (l a m bda . . .) \vith a

function, how does *application work?

" " hat 's in S tore ?

It ur doe . .

Not yet.

ot yet.

No answer.

#t . Time for tea and cookies .

Here is how we can explain it :

"The table that is embedded in the

representation of odd? is

lookup-in-global- table . It is like a table, but

when it is given a name, it looks in the

most current value of global- table for the

value that goes with the name. Since

global- table may grow , lookup is guaranteed

to look through all definitions ever made.

Yes, when we derived l ! in chapter 16, and

when we discussed lookup- in-global- table .

T hat is easy. It just applies the value of the
first xpression in an application to th

val ues of the reo t of the application's

expresslOns.

1 9

Here is the function *application

(define *application
(lambda (e table)

((meaning (function-of e) table)
(evlis (arguments-of e) table))))

The functions function-of and arguments-of
are easjr ones, and we can write them later.
But what does the function evlis do?

\iVhy do we use ((lambda (val) . . .) . . .) in
evlis

Do we need ((lambda (val) . . .) . . .) here
too?

What happens when we determine the value
of (value e)
where

e is (car (cons 0 (quote 0)))

And then?

Does thi. mean the value of
(meaning (quote ca r) table)

must b a function?

190

The function evlis determines the values of a
list of expressions, one at a t ime, and returns
the list of values . It is quite similar to beglis .

(define evlis
(lambda (args table)

(cond
((null ? args) (quote 0))
(else

((lambda (val)
(cons val

(evlis (cdr args) table)))

(meaning (car args) table))))))

We still don 't have (let . . .) .

Yes , l here and i n beglis .
Thank you, John Reynolds .

1 s : So that our definitions always work in Scheme.

The function value uses the function
the-meaning , which in turn uses meaning to
determine a value.

Then expression-to-action determines that
(c a r (con s 0 (quote 0))) is an application , so
that *application takes over.

Yes ,
because *application expects
(function-of e) to be represented as a
(lambda . . .) , no matter what e is.

Cllapter 20

The Fifteent h Commandment

(final v rsion)
Use (let ...) to name the values of repeated ex
pressions in a function definition if they may be
evaluated twice for one and the same use of the
function. And use (let . . .) to name the values
of expressions (without set!) that are re-evaluated
every time a function is used .

Are we no\v ready to work with value

"Vhat is missing?

Is *cond simple?

And when we find one?

Here is the function *cond which u ses evcon
to do its job :

(d e fin e *cond
(lamb da (e table)

(evcon (cond-lines-of e) table)))

Can you define the function evcon

1 1 'ha t 's in Store ?

Almost .

The one kind of expression that we still need
to treat is th s t of (cond . . .) expreSSlOns .

Yes, there is nothing to it . We must

determine th fir t line in the (cond . . .)
expression for which the question is true.

Then vve determine the value of the answer

in that line.

By now, this is easy:

(d e fine evcon
(lamb da (lines table)

(con d
((else ? (question-of (car lines)))
(meaning (answer-of (car lines))

table))
((meaning (question-of (car lines))

table)
(meaning (answer-of (car lines))

table))
(else (ev('on (edT lines) table)))))

19.-

\Yhat is (value e)
"'her

e is (cond (else 0))

\Vhat is (value e)

where
e is (cond

((nu l l ? (cons 0 (quote 0))) 0)
(e lse 1))

vVhat is (value e)

where
e is (cond)

Time to continue with (Ietcc . . .)

Yes , (letcc skip . . .) remembers the North
Pole so that skip can find its way back. How
does it do this?

What does skip stand for in (letcc skip . . .)

Why is it like a function?

How is it different from a function?

How can *letcc name a North Pole that
remembers what is left to do?

And now that skip i� a North Pole, how can
we turn it into a function that *application
can use?

1 96

o.

1 .

No answer.

Is it time to go to t he North Pole?

We are about to find out .

We said it was like a function .

We use (skip 0) when we want to go to the
North Pole named skip.

When we use skip , it forgets everything that
is about to happen.

With (letcc skip . . .) .

The North Pole skip stands for a function of
one argument . So the function that
represents it for *application must take a list
that contains the representation of this
argument.

Chapter 20

'an \\"E' U omething that we have een
bd r to make thi function?

'i\'hat i . the name for the function j ust

cr ated ?

, nd how do we associat this name with the
function we created?

Here is the function *letcc

(define *letcc
(lambda (e table)

(letcc skip
(beglis (ccbody-of e)

(extend
(name-of e)
(box (a-prim skip))
table)))))

Can you describe what it does?

That's exactly what happens.

But vlhat would happen if we tried to

determine the value of (value e)
where

e 1 Z

So what would happen?

Have you forgotten about forgett ing? We

j ust showed you how it works.

n 'ha t ' in S tore ?

Yes, we an u e (a-prim kip) . Thi i
exactly the kind of funct ion \w n d .

If (I etcc skip . . .) i , th xpre ion t hat *letcc
receives, then sk i p is the name.

We can use extend to p u t the new pair into

the table that *letcc receives.

It sets up the North Pole skip , turns it into a

function that *application can u se, associate '
the name in e with this function, and

evaluates the value part of the exp ression.

Whew .

The name z hasn't been used with def ine yet .

We still would like to have a good ans\ver to

this question. W have not yet finished the

function the-empty- table .

It i wrong to ask for the value of a name

that is not in the table .

1 9 7

What hould happen when something wrong

happen ?

True enough. And how can we forget such
pending computations?

Where should the North Pole be while we
determine (value e)

But what can we put in the place of the dots?

Perhaps we should use (set ! . . .) to
remember it .

Here is the final definition of value

(define value

(lambda (e)
(letcc the-end

(set ! abort the- end)
(cond

((define ? e) (*define e))

(else (the-meaning e))))))

Can you finish this?

1 9

We could forget all pending computations . 1

1 We could also use (letcc . . .) to remember how the
computation would have proceeded, if nothing wrong had
happened .

We use (letcc . . .) .

Right at the beginning of value :

(define value
(lambda (e)

(letcc the-end

(cond
((define ? e) (*define e))

(else (the-meaning e))))))

Well , we probably should remember the-end

until we are done.

Yes , we have always used (set ! . . .) to
remember things .

We need to define abort:

(define abort)

Cllapter 20

And h ow d es abo,,,t h elp u '

Can \H' n \\' usc abo7,t i ns i c l [
th - f7 7 1pt y- t ab l " t h a t i t 1 1 I e ngN

I rcak. Thr L8\\' f a r"?

a J k a b I I I (',rp]'£' .. 1 0 11 - l o - (l c l / (11
a n d a I 0 7l1 - t o - a c t I0 7I

(d fin fJl l " . , l O TI - l o - O ri l O lI

(lambda (()
(l ld

(((l t () 711 '!) ((l / (J I n - t () - (l d / I J T/ 1 '))
(1 (I I , t - () - {/ tf / (J 7 1 I))))

(d fi 1 1 a t 0 11/ - t () - (I f t 1 (J 71

(laml da (()
(nd

((7l 1L 7I1 Un " (' (,(7 1 . t)
((({I) ' ('01/. /)
(('CJ '!) to Tl t)
(('q '! (I l l can)) ('O il I)
((CJ I (I U t c r)) ' (() ft I)
((((J '! ((I I I cd r)) ' CO l l , t)
((C'q '! ' (I U t n u I 1 7)) ' ('O il t)
(({'fj '! ' (1 u q 7)) .� t() II , I)
((eq '! ' (I U tom 7)) cu rLs /)
(({'4 '1 (uo z ro?)) ('0 7l . ' f)
((eq '! (' (q u t add l)) to n s t)
((q '! e (q u t su b l)) ('0 11 . ' /)

((eq '/ e (q u t n u m ber?)) ('ons t)

(1 idenL ifi or))))

I . t here ' a l ly t h i l lg I dt t

I t Vha t 's in St l')

"V(' . ,hou ld pr bably use it with

the- empty- t a b le , w h ich i. ' w hy we r defined

7 alu i n t h fi rst pIa c ,

D fi n i L J y, H rc' is how wr can fi l l i n t h e c lo ts
i n a 1 C ' t t r way :

\ "

(d fine I h - mp t y - t a bZ('

(lalub a (nam)
(nbort

(co n s (q uot no-answer)
(to n , 1/ n7T1 e (q u t ()))))))

, .
, , ('\\' , i 1 1 l pi ! l i ngs:

(d fi n ll . ., t - / o - o t! 10 1/

(Jam l a ((.)

r n I
((([/ () lI/ � (to r '))
(r n e l

(('II (('(1 " (') (t t l t q uote))
(j ILO/ e)

(((q � (('(I I ' e) (q u lam b d))
t(l/n uda)

((11(1 ((' (L) ' e) (q u t l e t cc))
f ll / ('(')

((r fj f (m l' 1') (I U set !))
. (/)

(1 '(1 " (('(L T ' (.) (q u t cond))
' ('(J ll ri)

(l ' appllco t t O i l)))
(1 ' ' nppll mlw lL))))

1 99

Here are a few more:

(define text-of
(lambda (.1:)

(car (cdr x))})
(define formals- of

(lambda (x)
(ear (cdr x))))

(define body-of
(lambda (x)

(cdr (cdr x))))
(define ccbody-of

(lambda (x)
(cdr (cdr x))))

(define name-of
(lambda (x)

(ca r (cdr .1:))))
(define right-side-of

(lambda (x)
(cond

((null ? (cdr (cdr x))) 0)
(else (car (cdr (cdr x)))))))

(define cond-lines- of
(lambda (x)

(cdr x)))
(define else ?

(lambda (x)
(cond

((atom ? x) (eq ? x (quote e lse)))
(else #f))))

(define ques tion-of
(lambda (x)

(car x)))
(define answer-of

(lambda (x)
(car (cdr x))))

(define function-of
(lambda (x)

(car x)))
(define ary'uments- of

(lambda (x)
(cdr x)))

"" hat i s u n usual about right-side-of

200

It returns 0 if there is no right-hand side.
This handles definitions l ike

(define global- table)
where there is no right-hand side.

Chap ter 20

H w do('s i t t ak care of uch d finit ion. '?

So what'. thE' val ue of all of this .

What is (value e)
where

e is (va l ue 1)

How can we teach value what va lue means?

And then?

So we also need to add def ine? to global- table

Are you sure we didn't forget anything?

How can we find out what other functions we

need?

What is (value e)
where

e is (va l ue 1)

H!ha t 's in Store?

I t lnake up a ,"a l l l for the nam until it i

changed to what it i su ppa ed t o b .

I t make people hungry.

(no-answer va l ue) .

We need to determine the value of (value e)
where

e is (def ine va lue
(l ambda (e)

(I etcc the-end
(set! a bort the-end)
(cond

((def ine? e) (*def ine e))
(e lse (the-mea n i ng e)))))).

Then the answer to our original question is

(no-answer defi ne?) .

Yes, we do. And while we are at it , we might
as well add *defi ne , the-mean i ng , lookup ,
lookup- i n-globa l-ta b le , and a few others.

We can try it out.

The same way that we found out that we
needed def ine?

First we decide that e is not a definition, so

we determine the value of (the-meaning e) .

20 1

And then?

Is this all?

.. .

Is it easy from here on?

Does that mean that we get the result 1

If e is some expression so that (value e)
makes sense and if f represents e , then we
can always determine the same value by
calculating (value value-on-f)
where

value-on-f is the result of
(cons v (cons f (quote ())))

where
v is va l u e

Isn ' t i t heavy duty work?

202

Then we determine the value of
(meaning e lookup-in-global- table) .

No. After we find out that e is an
application , we need to determine

(meaning f table)
and

(meaning a table)
where

f is va l u e
a is 1

and
table is lookup-in-global- table .

The value of va l ue is a function and the value
of 1 is 1. The function that represents value
extends table by pairing e with 1. And now
the function works basically like value .

Yes , because we added all the things we
needed to global- table .

That is complicated and true.

It sure burns a lot of calories, but of course
that only means that we will soon be ready
for a lot more food .

Chapter 20

Enjoy yourself with a great dinner :

((escargots gar l ic)
(ch icken P roven�a l)

I

((red w ine) and B rie)) T

t No, you don 't have to eat the parentheses .

Wha t 's in Store? 203

-,

You have' rea ched t he end f your i n t ro d u c t ion t o com pu t a t ion . A re you now rect,dy Lo tack le
a major progra m m i n g p roblem ? P rogram ming req u ires two k inds of k n mdedgc : under s t a l l d
i ng t h e n at u re of com putat ion , and d iscovering t h e lexic n , feat ur " an l i d iosyncrasies of a
part icu lar progra m m i n g langu age . The fi rst of t hese i.s t. he more d i ffi c u l t i n tellect ual task . If
�-ou u n derst a n d t h e m a t erial i n The Little Schemer- a nd t his book , 1'01 1 have m astered t h a t
ch al lenge . S t i l l , i t wou l d be wel l wor t h your t ime t o d velop a fu l ler u n der ' t an ding o f al l t hc'
capabi l i ti es i n Scheme-t h is requi res get t ing access to a run n i ng Scheme system and mast eri ng
t hose idiosyncrasies. If .'lOl l want to l ln derstand t h e Schell le program m ing language i n greater
dept h . take a look at t h e fol lmving books :

References

Abelson , Harold and G raId J . S u sman , w i t h J u l ie Sussman . Str-uctur-e and Interpr-etation
of Computer- Pr-ogmms, 2nd ed. The N IIT P ress , C a mbridge , Nla sachuset t , 1 996.

DybYig, R . K nt . The Sch me Pr-ogmmming Language. 2nd ed. P rent ice-Hal l InC " . .

E nglewood C liffs , New Jersey, 1 996 .

Ei enberg, Michael . Pr-ogmmming in Scheme. The Scient ific P res, , R ed'wood Ci ty, Cali

f r n i a , 1 98 8 .

Ferguson . Ian \yi t h Ed M a r t i n and Bert K a u fm a n . The Schemer- 's Guide, 2nd ed. Schemers

I nc . , For t Lauderdale, F lorida, 1 995 .

Han- y, B rian and � lat t h e,,\- 'Vright . Simply Scheme: Intr-od'ucing Computer- Science. T h e

� II T P res C ambridge Massach u ett , 1 99� .

� Ianis, " i n cent S . a n d J a mes J . L i t t le . The Schematics of Computation. P rent ice-Hal l

I nc . , Engle\vood C l iffs . Ne\v Jersey, 1 994 .

S m i t h , Jerry D. An Intr-oduction to Scheme. Pr n t ice-H 'l l l Inc . , E ngle\yood C l i ffs , :'\ew
J ersey, 1 989.

Springer George and D a n iel P. Fried m a n . Scheme and the A r-t of Pr-ogmmming. Th � I IT

P ress, Cambridge, Massachus t ts , 1 9 9 .

S teele, Guy L . , J r. Common Lisp : The Languag , 2nd ed. Digi t a l P re , , B u rl i ng t on .

Nlassachusett. , 1 990.

VVelcome to the Show

Afterword

In Fortran you can speak of numbers , and in C of characters and strings. In Lisp, you can speak
of Lisp. Everything Lisp does can be described as a Lisp program, simply and concisely.
And where shall you go from here? Suppose you were to tinker with the programs in Chapter 20.

Add a feature , change a feature . . . You will have a new language , perhaps still like Lisp or
perhaps wildly different . The new language may be described in Lisp, yet it will be not Lisp ,
but a new creation .

If you give someone Fortmn, he has Fortmn.
If you give someone Lisp, he has any language he pleases.

-Guy L . Steele Jr.

Afterword 20 7

Index

*application , 1 90

*cond , 1 95

*const , 1 9 2 1 94

*definc , 1 1

identifier , 1 83

*larnbda , 1 5

*l tc , 1 97

*q1wte , 1 3

* t , 1 -1
: car. 1 9 1

? ? ?, 1 7

a-pnm 1 9 1

abort, 1 9

add- at- nd , 1 -1 -1

add-at- nd- too , 1 -15

an w r- of . 2

argmn nt -of . 2

atom- to-action 1 99

b-prirn . 1 9 1

bak r. - doz n 1 -1 7
bak T. - doz n-again . 1 -1
bak r. -doz n- too , 1 -1

b gli , 1 6

biz . 1 2 -

body- of . 2 0

bon. 1 46

box . 1 1

box-all 1 6

call-with- current- continuation letcc 4 1

che�nous 1 03 1 04

c - body-of , 200

consC, 1 3 1 , 1 3 2 , 1 35

cond-lin s-of , 200

counter, 1 32 1 33 1 35

D , 1 24

deep 1 1 0 , 1 1 5 , 1 27, 1 3 2 , 1 55

deepf3co , 1 6 1

deepf3coB , 1 63

deepB, 1 57, 1 58

deepM, 1 1 3, 1 1 4, 1 1 6, 1 1 8 , 1 27-1 30, 1 36

Index

deepR, 1 1 1

define ?, 1 80

depth * , 69 , 70, 72-75 , 1 22

diner, 94
dinerR, 94
dozen 1 4 7

eklist ?, 149
else ? , 200

evcon 1 95

even ?, 1 88

vli , 1 90

xpression-to-action 1 99

xtend , 1 79

fill 1 69

find 1 1 3 1 1 7

finite-lenkth 1 53

food 1 02

formal -of 200

fou7'-lay T 1 5 7

fun tion-of , 200

9 t-fir t, 1 7-1
9 t-n xt 1 7 1

global- tabl 1 1

glutton 1 02

gobbler , 9

gouT7nand 93

gourmet 92

id 1 9

ingr di nts , 1 0

inters c t , 37 4

intersectall, 38, 39, 4 1 49

is-first- b ?, 6
is-fir-s t ? 5

kar 1 46

kdr , 1 46

kons , 1 46, 1 4 7

L, 1 2 1

last , 1 07

last-kons , 1 5 1

209

leave , 1 6 7

leftmost , 63-66, 76, 78, 8 1 , 8 2 , 1 6 7

length , 1 7, 1 1 8-1 23

lenkth , 1 43,

letcc & call-with- current-continuation, 4 1

list- to-action , 1 99

lm , 78
long , 1 5 1

lookup , 1 79

lookup-in-global- table , 1 8 2

lots , 1 43

max, 75

meaning , 1 83

member?, 3, 26, 27, 29

mongo , 1 53

mr, 18
multi-extend, 1 87

multirember , 1 7- 1 9 , 2 2 , 2 5 , 26

multirember-J , 23, 24 -

name-oJ , 200

nibbler, 1 00

Ns , 1 1 1

odd ?, 1 88

omnivore , 95, 96

question-oJ , 200

pick , 1 3

rember , 52

rember-beyond-first , 54

rember- eq ?, 23

rember-f , 23

rember-upto-last , 57

remberl * , 67, 68, 87, 88, 89, 1 39 , 1 40

remberl *C , 1 39

remberl *C2 , 1 40

restl , 1 7 1

rest2 , 1 72

2 1 0

right-side-of , 200

rm, 84 , 8 5 , 88, 89

Rs, 1 1 1

same ?, 1 50

scramble , 1 5 , 3 5 , 76

scramble-b , 1 4

set- counter , 1 35

set-kdr, 1 4 7

setbox , 1 82

six-layers , 1 56

start- it , 1 6 7

start- it2 , 1 69

sum-oj-prefixes , 9 , 1 1 , 34

sum-oJ-prefixes- b , 1 0

supercounter , 1 34

sweet- tooth , 1 07

sweet- toothL, 1 0 7

sweet-toothR , 1 09

text- oJ , 200

the -empty- table , 1 79 , 1 99

the-meaning , 1 82

toppings , 1 58

two- in-a-row*?, 1 75 , 1 76

two-in-a-row-b * ?, 1 75

two- in-a-TOw-b ? 7 , 1 65

two-in-a-TOw Q 4-7 33 34 1 65 . , , , ,

two- layers 1 62

unbox , 1 82

union , 27, 28 , 3 1 , 32

value 1 0 1 98

waddle , 1 69

walk , 1 6 7

x , 9 1 , 96, 1 80

Y-bang , 1 23

y ! , 1 23

Index

The Next Ten Commandments

The Eleventh Commandment

Use additional arguments when a function
needs to know what other arguments to the

function have been like so far.

The Twelfth Commandment

Use (letrec . . .) to remove arguments that

do not change for recursive applications.

The Thirteenth Commandment

Use (letrec . . .) to hide and to protect
functions.

The Fourteenth Commandment

Use (letcc . . .) to return values abruptly

and promptly.

The Fifteenth Commandment

Use (let . . .) to name the values of repeated

expressions in a function definition if they

may be evaluated twice for one and the

same use of the function . And use (let . . .)
to name the values of expressions (without
set !) that are re-evaluated every time a
function is used .

The Sixteenth Commandment

Use (set ! . . .) only with names defined in
(let . . .)s.

The Seventeenth Commandment

Use (set ! x . . .) for (let ((x . . .)) . . .) only
if there is at least one (lambda . . . between

it and the (let . . .) , or if the new value for
x is a function that refers to x .

The Eighteenth Commandment

Use (set ! x . . .) only when the value that :r

refers to is no longer needed .

The Nineteenth Commandment

Use (set ! . . .) to remember valuable t hiIlg�
between two distinct uses of a functio n .

The Twentieth Commandment

When thinking about a value created with
(letcc . . .) , write down the function that is
equivalent but does not forget . Then , when
you use it , remember to forget .

	Cover
	Contents
	Foreword
	Preface
	11. Welcome Back to the Show
	12. Take Cover
	13. Hop, Skip, and Jump
	14. Let There Be Names
	15. The Difference Between Men and Boys ...
	16. Ready, Set, Bang!
	17. We Change, Therefore We Are!
	18. We Change, There We Are the Same!
	19. Absconding with the Jewels
	20. What's in Store?
	Welcome to the Show
	Afterword
	Index
	The Next Ten Commandments

