
Simply Scheme

The MIT Press
Cambridge, Massachusetts
London, England

Simply Scheme:
Introducing Computer Science

Brian Harvey
Matthew Wright

Foreword by Harold Abelson

SECOND EDITION





1999 by the Massachusetts Institute of Technology

The Scheme programs in this book are copyright 1993 by Matthew Wright and Brian
Harvey.

These programs are free software; you can redistribute them and/or modify them
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License (Appendix D of
this book) for more details.

This book was typeset in the Baskerville typeface, using the JOVE text editor and the TEX
document formatting system, for which we thank John Baskerville (1706–75), Jonathan
Payne (1964–), and Donald Knuth (1938–), respectively.

Library of Congress Cataloging-in-Publication Data

Harvey, Brian, 1949–
Simply scheme : introducing computer science / Brian Harvey, Matthew Wright ;
foreword by Harold Abelson. — 2nd ed.

p. cm.
Includes bibliographic references and index.
ISBN 0–262–08281–0 (hc : alk. paper)
1. Scheme (Computer programming language) 2. Computer science.
I. Wright, Matthew. II. Title.

QA76.H3475 1999
005.13’3–dc21 99-10037

CIP

Contents

xv

xvii

xxv

xxxi

2

5

I Introduction: Functions

xviii
xix

xxii
xxiii

xxv
xxvi

xxvii
xxviii

xxviii

5
7

7

v

Foreword

Preface

To the Instructor

Acknowledgments

1 Showing Off Scheme

One Big Idea: Symbolic Programming
Lisp and Radical Computer Science
Who Should Read This Book
How to Read This Book

Lists and Sentences
Sentences and Words
Overloading in the Text Abstraction
Higher-Order Procedures, Lambda, and Recursion
Mutators and Environments

Talking to Scheme
Recovering from Typing Errors
Exiting Scheme

17

26

29

41

II Composition of Functions

2 Functions

3 Expressions

4 Defining Your Own Procedures

8
8

10
12

13
14

15

18
19

20
21

21
22

22

30
33
33

35

41
42

43
45

46
47

48
51

vi Contents

More Examples
Example: Acronyms
Example: Pig Latin
Example: Ice Cream Choices
Example: Combinations from a Set
Example: Factorial
Play with the Procedures

Arithmetic
Words
Domain and Range
More Types: Sentences and Booleans
Our Favorite Type: Functions
Play with It
Thinking about What You’ve Done

Little People
Result Replacement
Plumbing Diagrams
Pitfalls

How to Define a Procedure
Special Forms
Functions and Procedures
Argument Names versus Argument Values
Procedure as Generalization
Composability
The Substitution Model
Pitfalls

57

71

89

100

103

III Functions as Data

If
And Or

If

Let

Every

Keep
Accumulate

Repeated

5 Words and Sentences

6 True and False

7 Variables

8 Higher-Order Functions

59
61

62
63

72
74

76
76

77
78

81
82

90
92

94
94

96

104
106

107
108

109
110

113
113

115

Contents vii

Selectors
Constructors
First-Class Words and Sentences
Pitfalls

Predicates
Using Predicates

Is a Special Form
So Are and
Everything That Isn’t False Is True
Decisions, Decisions, Decisions

Is Composable
Pitfalls

How Little People Do Variables
Global and Local Variables
The Truth about Substitution

Pitfalls

A Pause for Reflection

Combining Higher-Order Functions
Choosing the Right Tool
First-Class Functions and First-Class Sentences

Pitfalls

IV Recursion

Define
Let

Every

127

141

147

170

173

9 Lambda

Project: Scoring Bridge Hands

10 Example: Tic-Tac-Toe

11 Introduction to Recursion

129
130

132
133

133
135

147
147

148
150

151
153

155
157

158
159

160
163

166
166

175
176

177
177

178
179

181
182

185

viii Contents

Procedures That Return Procedures
The Truth about
The Truth about
Name Conflicts
Named and Unnamed Functions
Pitfalls

A Warning
Technical Terms in Tic-Tac-Toe
Thinking about the Program Structure
The First Step: Triples
Finding the Triples
Using with Two-Argument Procedures
Can the Computer Win on This Move?
If So, in Which Square?
Second Verse, Same as the First
Now the Strategy Gets Complicated
Finding the Pivots
Taking the Offensive
Leftovers
Complete Program Listing

A Separate Procedure for Each Length
Use What You Have to Get What You Need
Notice That They’re All the Same
Notice That They’re Almost All the Same
Base Cases and Recursive Calls
Pig Latin
Problems for You to Try
Our Solutions
Pitfalls

189

207

217

233

235

245

Reverse

Factorial

Downup
Evens

Every
Keep
Accumulate

Sort
From-Binary
Mergesort
Subsets

189
190

191
192

192
194

195
195

197
201

207
210

214

218
219

221
222

223
224

226
227

235
237

238
239

241

247

Contents ix

12 The Leap of Faith

13 How Recursion Works

14 Common Patterns in Recursive Procedures

Project: Spelling Names of Huge Numbers

15 Advanced Recursion

Project: Scoring Poker Hands

From the Combining Method to the Leap of Faith
Example:
The Leap of Faith
The Base Case
Example:
Likely Guesses for Smaller Subproblems
Example:
Example:
Simplifying Base Cases
Pitfalls

Little People and Recursion
Tracing
Pitfalls

The Pattern
The Pattern
The Pattern
Combining Patterns
Helper Procedures
How to Use Recursive Patterns
Problems That Don’t Follow Patterns
Pitfalls

Example:
Example:
Example:
Example:
Pitfalls

Extra Work for Hotshots

V Abstraction

Known-Values

249

278

281

305

16 Example: Pattern Matcher

17 Lists

18 Trees

249
251

252
253

255
259

261
264

266
269

270
272

272

282
285

287
289
290

291
292

294
298

306
310

310
312

313
314

x Contents

Problem Description
Implementation: When Are Two Sentences Equal?
When Are Two Sentences Nearly Equal?
Matching with Alternatives
Backtracking
Matching Several Words
Combining the Placeholders
Naming the Matched Text
The Final Version
Abstract Data Types
Backtracking and
How We Wrote It
Complete Program Listing

Selectors and Constructors
Programming with Lists
The Truth about Sentences
Higher-Order Functions
Other Primitives for Lists
Association Lists
Functions That Take Variable Numbers of Arguments
Recursion on Arbitrary Structured Lists
Pitfalls

Example: The World
How Big Is My Tree?
Mutual Recursion
Searching for a Datum in the Tree
Locating a Datum in the Tree
Representing Trees as Lists

327

340

343

VI Sequential Programming

Every
Map Every

Filter
Accumulate Reduce

Begin

19 Implementing Higher-Order Functions

20 Input and Output

315
317

323

327
329

330
331

331
333

334
335

336

343
345

348
348

349
350

351
352
353

355
356

358
360

362

Contents xi

Abstract Data Types
An Advanced Example: Parsing Arithmetic Expressions
Pitfalls

Generalizing Patterns
The Pattern Revisited
The Difference between and

and
Robustness
Higher-Order Functions for Structured Lists
The Zero-Trip Do Loop
Pitfalls

Printing
Side Effects and Sequencing
The Special Form
This Isn’t Functional Programming
Not Moving to the Next Line
Strings
A Higher-Order Procedure for Sequencing
Tic-Tac-Toe Revisited
Accepting User Input
Aesthetic Board Display
Reading and Writing Normal Text
Formatted Text
Sequential Programming and Order of Evaluation
Pitfalls

Functions 367

387

405

425

21 Example: The Program

22 Files

23 Vectors

24 Example: A Spreadsheet Program

367
368

369
370

373
374

376
378

387
389

390
391

394
396

397
399

401

405
406

408
409

410
413

414
415

417
418

428
428

429
430

xii Contents

The Main Loop
The Difference between a Procedure and Its Name
The Association List of Functions
Domain Checking
Intentionally Confusing a Function with Its Name
More on Higher-Order Functions
More Robustness
Complete Program Listing

Ports
Writing Files for People to Read
Using a File as a Database
Transforming the Lines of a File
Justifying Text
Preserving Spacing of Text from Files
Merging Two Files
Writing Files for Scheme to Read
Pitfalls

The Indy 500
Vectors
Using Vectors in Programs
Non-Functional Procedures and State
Shuffling a Deck
More Vector Tools
The Vector Pattern of Recursion
Vectors versus Lists
State, Sequence, and Effects
Pitfalls

Limitations of Our Spreadsheet
Spreadsheet Commands
Moving the Selection
Putting Values in Cells

Load
Put

439

477

498

501

VII Conclusion: Computer Science

25 Implementing the Spreadsheet Program

Project: A Database Program

26 What’s Next?

431
433

433
434

440
441
443

444
445

447
450

455
457

460
462

477
481

483
483

484
497

501
SICP 503

504
505

Contents xiii

Formulas
Displaying Formula Values
Loading Spreadsheet Commands from a File
Application Programs and Abstraction

Cells, Cell Names, and Cell IDs
The Command Processor
Cell Selection Commands
The Command
The Command
The Formula Translator
The Dependency Manager
The Expression Evaluator
The Screen Printer
The Cell Manager
Complete Program Listing

A Sample Session with Our Database
How Databases Are Stored Internally
The Current Database
Implementing the Database Program Commands
Additions to the Program
Extra Work for Hotshots

The Best Computer Science Book
Beyond
Standard Scheme
Last Words

Appendices

Lambda
Function

507

515

525

547

551

553

557

567

573

507
509

510
511

513
514

514

515
516

516
517

517
518

519
519

520
521

522
523

xiv Contents

A Running Scheme

B Common Lisp

C Scheme Initialization File

D GNU General Public License

Credits

Alphabetical Table of Scheme Primitives

Glossary

Index of Defined Procedures

General Index

The Program Development Cycle
Integrated Editing
Getting Our Programs
Tuning Our Programs for Your System
Loading Our Programs
Versions of Scheme
Scheme Standards

Why Common Lisp Exists
Defining Procedures and Variables
The Naming Convention for Predicates
No Words or Sentences
True and False
Files
Arrays
Equivalents to Scheme Primitives
A Separate Name Space for Procedures

More about
Writing Higher-Order Procedures

Foreword

Structure
and Interpretation of Computer Programs. SICP,

before

xv

* Since Hal wrote this Foreword, they’ve switched the AP exam to use C++, but the principle is
the same.

One of the best ways to stifle the growth of an idea is to enshrine it in an educational
curriculum. The textbook publishers, certification panels, professional organizations,
the folks who write the college entrance exams—once they’ve settled on an approach,
they become frozen in a straitjacket of interlocking constraints that thwarts the ability to
evolve. So it is common that students learn the “modern” geography of countries that
no longer exist and practice using logarithm tables when calculators have made tables
obsolete. And in computer science, beginning courses are trapped in an approach that
was already ten years out of date by the time it was canonized in the mid-1980s, when the
College Entrance Examination Board adopted an advanced placement exam based on
Pascal.*

This book points the way out of the trap. It emphasizes programming as a way to
express ideas, rather than just a way to get computers to perform tasks.

Julie and Gerry Sussman and I are flattered that Harvey and Wright characterize
their revolutionary introduction to computer science as a “prequel” to our text

When we were writing we often drew upon
the words of the great American computer scientist Alan Perlis (1922–1990). Perlis was
one of the designers of the Algol programming language, which, beginning in 1958,
established the tradition of formalism and precision that Pascal embodies. Here’s what
Perlis had to say about this tradition in 1975, nine years the start of the AP exam:

Algol is a blight. You can’t have fun with Algol. Algol is a code that now
belongs in a plumber’s union. It helps you design correct structures that

symbolic programming.

higher-order functions.
write programs that write programs,

xvi Foreword

don’t collapse, but it doesn’t have any fun in it. There are no pleasures in
writing Algol programs. It’s a labor of necessity, a preoccupation with the
details of tedium.

Harvey and Wright’s introduction to computing emerges from a different intellectual
heritage, one rooted in research in artificial intelligence and the programming language
Lisp. In approaching computing through this book, you’ll focus on two essential
techniques.

First is the notion of This means that you deal not only with
numbers and letters, but with structured collections of data—a word is a list of characters,
a sentence is a list of words, a paragraph is a list of sentences, a story is a list of paragraphs,
and so on. You assemble things in terms of natural parts, rather than always viewing data
in terms of its tiniest pieces. It’s the difference between saying “find the fifth character
of the third word in the sentence” and “scan the sentence until you pass two spaces, then
scan past four more characters, and return the next character.”

The second technique is to work with That means that you
don’t only write programs, but rather you so you can
bootstrap your methods into more powerful methods.

These two techniques belong at center stage in any beginning programming course,
which is exactly where Harvey and Wright put them. The underlying principle in both
cases is that you work with general parts that you extend and combine in flexible ways,
rather than tiny fragments that you fit together into rigid structures.

You should come to this introduction to computing ready to think about ideas rather
than details of syntax, ready to design your own languages rather than to memorize
the rules of languages other people have designed. This kind of activity changes your
outlook not only on programming, but on any area where design plays an important role,
because you learn to appreciate the relations among parts rather than always fixating on
the individual pieces. To quote Alan Perlis again,

You begin to think in terms of patterns and idioms and phrases, and no
longer pick up a trowel and some cement and lay things down brick by
brick. The Great Wall, standing for centuries, is a monument. But building
it must have been a bore.

Hal Abelson
Cambridge, MA

•

•

goto

Preface

The conservative view:

The radical view:

can

between
after

not
should not be allowed

to use computers,

xvii

There are two schools of thought about teaching computer science. We might caricature
the two views this way:

Computer programs have become too large and complex to
encompass in a human mind. Therefore, the job of computer science education
is to teach people how to discipline their work in such a way that 500 mediocre
programmers can join together and produce a program that correctly meets its
specification.

Computer programs have become too large and complex to
encompass in a human mind. Therefore, the job of computer science education is to
teach people how to expand their minds so that the programs fit, by learning to
think in a vocabulary of larger, more powerful, more flexible ideas than the obvious
ones. Each unit of programming thought must have a big payoff in the capabilities
of the program.

Of course nobody would admit to endorsing the first approach as we’ve described it.
Yet many introductory programming courses seem to spend half their time on obscure
rules of the programming language (semicolons go the instructions in Pascal, but

each instruction in C) and the other half on stylistic commandments (thou shalt
comment each procedure with its preconditions and postconditions; thou shalt not use

). In an article that was intended as a caricature, the noted computer scientist
Edsger Dijkstra argues that beginning computer science students

lest they learn to debug their programs interactively instead of writing

Communications of the ACM,

One Big Idea: Symbolic Programming

science

artificial intelligence—

ideas

xviii Preface

* “On the Cruelty of Really Teaching Computer Science,” vol. 32,
no. 12, December, 1989.

programs that can be proven correct by formal methods before testing.*

If you are about to be a student in an introductory computer science course, you may
already be an experienced programmer of your home computer, or instead you may have
only a vague idea of what you’re getting into. Perhaps you suspect that programming
a computer is like programming a VCR: entering endless obscure numeric codes. Even
if you’re already a computer programmer, you may not yet have a clear idea of what
computer means. In either case, what we want to do in this book is put our best
foot forward—introduce you to some new ideas, get you excited, rather than mold you
into a disciplined soldier of the programming army.

In order to understand the big ideas, though, we’ll also have to expend some effort
on technical details; studying computer science without writing computer programs is
like trying to study German grammar without learning any of the words in the language.
But we’ll try to keep the ideas in view while struggling with the details, and we hope you’ll
remember them too.

We said that our approach to teaching computer science emphasizes big ideas. Our
explanation of symbolic programming in the following paragraphs is in part just an
illustration of that approach. But we chose this particular example for another reason
also. Scheme, the programming language used in this book, is an unusual choice
for an introductory computer science course. You may wonder why we didn’t use a
more traditional language, such as Pascal, Modula-2, or C. Our discussion of symbolic
programming is the beginning of an answer to that question.

Originally computers were about numbers. Scientists used them to solve equations;
businesses used them to compute the payroll and the inventory. We were rescued from
this boring state of affairs mainly by researchers in people who
wanted to get computers to think more nearly the way people do, about ideas in general
rather than just numbers.

What does it mean to represent in a computer? Here’s a simple example:
We want to teach the computer to answer the question, “Was so-and-so a Beatle?” We
can’t quite ask the question in English; in this book we interact with the computer using
Scheme. Our interactions will look like this:

Lisp and Radical Computer Science

(beatle? ’paul)
#t

(beatle? ’elvis)
#f

sentence words.

abstraction,

the computer the programmer

Preface xix

* The left parenthesis is 40, for example, and the letter is 100. If it were a capital it would be
68.

(define (beatle? person)
(member? person ’(john paul george ringo)))

(john paul george ringo)

d D

You type:
Computer replies: (computerese for “true”)

You type:
Computer replies: (“false”)

Here’s the program that does the job:

If you examine this program with a (metaphoric) magnifying glass, you’ll find that it’s
really still full of numbers. In fact, each letter or punctuation character is represented in
the computer by its own unique number.* But the point of the example is that you don’t
have to know that! When you see

you don’t have to worry about the numbers that represent the letters inside the computer;
all you have to know is that you’re seeing a made up of four Our
programming language hides the underlying mechanism and lets us think in terms
more appropriate to the problem we’re trying to solve. That hiding of details is called

one of the big ideas in this book.

Programming with words and sentences is an example of symbolic programming.
In 1960 John McCarthy invented the Lisp programming language to handle symbolic
computations like this one. Our programming language, Scheme, is a modern dialect of
Lisp.

Symbolic programming is one aspect of the reason why we like to teach computer science
using Scheme instead of a more traditional language. More generally, Lisp (and therefore
Scheme) was designed to support what we’ve called the radical view of computer science.
In this view, computer science is about tools for expressing ideas. Symbolic programming
allows to express ideas; other aspects of Lisp’s design help

>

num
square

by mistake.

xx Preface

* Their own names for their approach are andstructured programming software engineering.

(define (square num)
(* num num))

> (square 4)
16
> (square 3.14)
9.8596
> (square -0.3)
0.09

function SquareOfWholeNumber(num: integer): integer;
begin
SquareOfWholeNumber := num * num

end;

function SquareOfDecimalNumber(num: real): real;
begin
SquareOfDecimalNumber := num * num

end;

express ideas conveniently. Sometimes that goal comes in conflict with the conservative
computer scientist’s goal of protection against errors.

Here’s an example. We want to tell our computer, “To square a number, multiply it
by itself.” In Scheme we can say

The asterisk represents multiplication, and is followed by the two operands—in this case,
both the same number. This short program works for any number, of course, as we can
see in the following dialogue. (The lines with in front are the ones you type.)

But the proponents of the 500-mediocre-programmer school* think this straightforward
approach is sinful. “What!” they cry. “You haven’t said whether is a whole number
or a number with a decimal fraction!” They’re afraid that you might write the
program with whole numbers in mind, and then apply it to a decimal fraction If
you’re on a team with 499 other programmers, it’s easy to have failures of communication
so that one programmer uses another’s program in unintended ways.

To avoid that danger, they want you to write these two separate programs:

your

SICP
SICP.

Scheme and the Art of Programming

force

Structure and Interpretation
of Computer Programs

SICP

SICP

SICP
prequel;

SICP,

Preface xxi

* Of course, teacher isn’t an uptight authoritarian, or you wouldn’t be using our book!

** Okay, we’re exaggerating. But even Professor Wirth himself has found Pascal so restrictive
that he had to design more flexible languages—although not flexible enough—called Modula and
Oberon.

*** As the ideas pioneered by have spread, we are starting to see other intellectually
respectable introductions to computer science that are meant as alternatives to In particular,
we should acknowledge (George Springer and Daniel P. Friedman,
MIT Press/McGraw-Hill, 1989) as a recognized classic. We believe our book will serve as preparation
for theirs, too.

Isn’t this silly? Why do they pick this particular distinction (whole numbers and decimals)
to worry about? Why not positive and negative numbers, for example? Why not odd and
even numbers?

That two-separate-program example is written in the Pascal language. Pascal was
designed by Niklaus Wirth, one of the leaders of the structured programming school,
specifically to programming students to write programs that fit conservative ideas
about programming style and technique; you can’t write a program in Pascal at all
unless you write it in the approved style. Naturally, this language has been very popular
with school teachers.* That’s why, as we write this in 1993, the overwhelming majority
of introductory computer science classes are taught using Pascal, even though no
professional programmer would be caught dead using it.**

For fourteen years after the introduction of Pascal in 1970, its hegemony in computer
science education was essentially unchallenged. But in 1984, two professors at the
Massachusetts Institute of Technology and a programmer at Bolt, Beranek and Newman
(a commercial research lab) published the Scheme-based

(Harold Abelson and Gerald Jay Sussman with Julie Sussman,
MIT Press/McGraw-Hill). That ground-breaking text brought the artificial intelligence
approach to a wide audience for the first time. We (Brian and Matt) have been teaching
their course together for several years. Each time, we learn something new.

The only trouble with is that it was written for MIT students, all of whom love
science and are quite comfortable with formal mathematics. Also, most of the students
who use at MIT have already learned to program computers before they begin. As a
result, many other schools have found the book too challenging for a beginning course.
We believe that everyone who is seriously interested in computer science must read
eventually. Our book is a it’s meant to teach you what you need to know in order
to read that book successfully.*** Generally speaking, our primary goal in Parts I–V has
been preparation for while the focus of Part VI is to connect the course with the

SICP.

use

xxii Preface

Who Should Read This Book

kinds of programming used in “real world” application programs like spreadsheets and
databases. (These are the last example and the last project in the book.)

This book is intended as an introduction to computer programming and to computer
science for two kinds of students.

For those whose main interest is in some other field, we provide a self-contained,
one-semester experience with computer programming in a language with a minimum of
complicated notation, so that students can quickly come in contact with high-level ideas
about algorithms, functions, and recursion. The book ends with the implementation of a
spreadsheet program and a database program, so it complements a computer application
course in which the commercial versions of such programs are used.

For those who intend to continue the study of computer science but who have
no prior programming experience, we offer a preparatory course, less intense than
a traditional CS 1 but not limited to programming technique; we give the flavor of
computer science ideas that will be studied in more depth later in the curriculum. We
also include an extensive discussion of recursion, which is a stumbling block for many
beginning students.

The course at Berkeley for which we wrote this book includes both categories of
students. About 90% of the first-year students who intend to major in computer science
have already had a programming course in high school, and most of them begin with
The other 10% are advised to take this course first. But many of the students in this course
aren’t computer science majors. A few other departments (business administration and
architecture are the main ones) have a specific computer course requirement, and all
students must meet a broader “quantitative reasoning” requirement; our course satisfies
these requirements. Finally, some students come just out of curiosity about computers.

We assume that you have never programmed a computer. On the other hand, we
do assume that you can a computer; we don’t talk about how to turn it on, how to
edit text, and so on, because those details are too different from one computer model to
another. If you’ve never used a computer before, you may wish to spend a few days with
a book written specifically for your machine that will introduce you to its operation. It
won’t take more than a few days, because you don’t have to be an expert before you read
our book. As long as you can start up the Scheme interpreter and correct your typing
mistakes, you’re ready.

How to Read This Book

SICP

tell

debug
process

invent

Preface xxiii

We assume that you’re not a mathematics lover. (If you are, you might be ready to
read right away.) The earlier example about squaring a number is about as advanced
as we get. And of course you don’t have to do any arithmetic at all; computers are good
at that. You’ll learn how to the computer to do arithmetic, but that’s no harder than
using a pocket calculator. Most of our programming examples are concerned with words
and sentences rather than with numbers. A typical example is to get Scheme to figure
out the plural form of a noun. Usually that means putting an “s” on the end, but not
quite always. (What’s the plural of “French fry”?)

Do the exercises! Whenever we teach programming, we always get students who say,
“When I read the book it all makes sense, but on the exams, when you ask me to write a
program, I never know where to start.” Computer science is two things: a bunch of big
ideas, as we’ve been saying, and also a skill. You can’t learn the skill by watching.

Do the exercises on a computer! It’s not good enough to solve the exercises on
paper, even if you feel sure your solution is correct. Maybe it’s 99% correct but there’s
some little detail you’ve overlooked. When you run such a program, you won’t get 99%
of the answer you wanted. By trying the exercise on the computer, you get unambiguous
feedback. If your program is correct, you get the response you expected. If not, not.

Don’t feel bad if you don’t get things right the first time. Even the most experienced
programmers have to their programs—that is, fix the parts that don’t work. In
fact, an important part of what you’ll learn from the exercises is the of debugging
your solutions. It would be too bad if all of your programs in this course worked the
first time, because that would let you avoid the practice in debugging that you’ll certainly
need when you write more complicated programs later. Also, don’t be afraid or ashamed
to ask for help if you get stuck. That, too, is part of the working style of professional
programmers.

In some of the chapters, we’ve divided the exercises into two categories, “boring”
and “real.” The boring exercises ask you to work through examples mechanically, to
make sure you understand the rules. The real exercises ask you to something,
usually a small computer program, but sometimes an explanation of some situation that
we present. (In some chapters, the exercises are just labeled “exercises,” which means
that they’re all considered “real.”) We don’t intend that the boring exercises be handed
in; the idea is for you to do as many of them as you need to make sure you understand
the mechanics of whatever topic you’re learning.

xxiv Preface

(define (something foo baz) ;; first version
)

Occasionally we introduce some idea with a simplified explanation, saving the whole
truth for later. We warn you when we do this. Also, we sometimes write preliminary,
partial, or incorrect example programs, and we always flag these with a comment like

. . .

When we introduce technical terms, we sometimes mention the origin of the word, if it’s
not obvious, to help prevent the terminology from seeming arbitrary.

This book starts easy but gets harder, in two different ways. One is that we spend
some time teaching you the basics of Scheme before we get to two hard big ideas, namely,
function as object and recursion. The earlier chapters are short and simple. You may get
the idea that the whole book will be trivial. You’ll change your mind in Parts III and IV.

The other kind of difficulty in the book is that it includes long programming
examples and projects. (“Examples” are programs we write and describe; “projects” are
programs we ask you to write.) Writing a long program is quite different from writing
a short one. Each small piece may be easy, but fitting them together and remembering
all of them at once is a challenge. The examples and projects get longer as the book
progresses, but even the first example, tic-tac-toe, is much longer and more complex than
anything that comes before it.

As the text explains more fully later, in this book we use some extensions to
the standard Scheme language—features that we implemented ourselves, as Scheme
programs. If you are using this book in a course, your instructor will provide our
programs for you, and you don’t have to worry about it. But if you’re reading the book
on your own, you’ll need to follow the instructions in Appendix A.

There are several reference documents at the end of the book. If you don’t
understand a technical term in the text, try the Glossary for a short definition, or the
General Index to find the more complete explanation in the text. If you’ve forgotten
how to use a particular Scheme primitive procedure, look in the Alphabetical Table of
Scheme Primitives, or in the General Index. If you’ve forgotten the name of the relevant
primitive, refer to the inside back cover, where all the primitive procedures are listed
by category. Some of our example programs make reference to procedures that were
defined earlier, either in another example or in an exercise. If you’re reading an example
program and it refers to some procedure that’s defined elsewhere, you can find that
other procedure in the Index of Defined Procedures.

such and such

xxv

To the Instructor

Lists and Sentences

The language that we use in this book isn’t exactly standard Scheme. We’ve provided
several extensions that may seem unusual to an experienced Scheme programmer. This
may make the book feel weird at first, but there’s a pedagogic reason for each extension.

Along with our slightly strange version of Scheme, our book has a slightly unusual
order of topics. Several ideas that are introduced very early in the typical Scheme-based
text are delayed in ours, most notably recursion. Quite a few people have looked at our
table of contents, noted some particular big idea of computer science, and remarked, “I
can’t believe you wait so long before getting to !”

In this preface for instructors, we describe and explain the unusual elements of
our approach. Other teaching issues, including the timing and ordering of topics, are
discussed in the Instructor’s Manual.

The chapter named “Lists” in this book is Chapter 17, about halfway through the book.
But really we use lists much earlier than that, almost from the beginning.

Teachers of Lisp have always had trouble deciding when and how to introduce
lists. The advantage of an early introduction is that students can then write interesting
symbolic programs instead of boring numeric ones. The disadvantage is that students
must struggle with the complexity of the implementation, such as the asymmetry between
the two ends of a list, while still also struggling with the idea of composition of functions
and Lisp’s prefix notation.

We prefer to have it both ways. We want to spare beginning students the risk of
accidentally constructing ill-formed lists such as

Sentences and Words

sentence

structured

word

xxvi To the Instructor

((((() . D) . C) . B) . A)

read-char read-line read-string

sentence

car cdr

plural
pig-latin

(like this) ("like" "this")

* Speaking of abstraction, even though that’s the name of Part V, we do make an occasion in
each of the earlier parts to talk about abstraction as examples come up.

** Even then, we take lists as a primitive data type. We don’t teach about pairs or improper lists,
except as a potential pitfall.

*** Scheme’s primitive I/O facility gives you the choice of expressions or characters. Instead of
using , we invent , which reads a line as a sentence, and ,
which returns the line as one long word.

but we also want to write natural-language programs from the beginning of the book.
Our solution is to borrow from Logo the idea of a abstract data type.* Sentences
are guaranteed to be flat, proper lists, and they appear to be symmetrical to the user of
the abstraction. (That is, it’s as easy to ask for the last word of a sentence as to ask for
the first word.) The constructor accepts either a word or a sentence in any
argument position.

We defer lists until we have higher-order functions and recursion, the
tools we need to be able to use the structure effectively.** A structured list can be
understood as a tree, and Lisp programmers generally use that understanding implicitly.
After introducing - recursion, we present an explicit abstract data type for trees,
without reference to its implementation. Then we make the connection between these
formal trees and the name “tree recursion” used for structured lists generally. But
Chapter 18 can be omitted, if the instructor finds the tree ADT unnecessary, and the
reader of Chapter 17 will still be able to use structured lists.

We haven’t said what a is. Scheme includes separate data types for characters,
symbols, strings, and numbers. We want to be able to dissect words into letters, just as
we can dissect sentences into words, so that we can write programs like and

. Orthodox Scheme style would use strings for such purposes, but we want
a sentence to look and not . We’ve arranged that in
most contexts symbols, strings, and numbers can be used interchangeably; our readers
never see Scheme characters at all.*** Although a word made of letters is represented
internally as a symbol, while a word made of digits is represented as a number, above
the abstraction line they’re both words. (A word that standard Scheme won’t accept as a
symbol nor as a number is represented as a string.)

To the Instructor xxvii

Overloading in the Text Abstraction

first last butfirst butlast

first

car
substring

word-first sentence-first

word-first sentence-first fixnum-+
bignum-+ +

first

explode

There is an efficiency cost to treating both words and sentences as abstract aggregates,
since it’s slow to disassemble a sentence from right to left and slow to disassemble a word in
either direction. Many simple procedures that seem linear actually behave quadratically.
Luckily, words aren’t usually very long, and the applications we undertake in the early
chapters don’t use large amounts of data in any form. We write our large projects as
efficiently as we can without making the programs unreadable, but we generally don’t
make a fuss about it. Near the end of the book we discuss explicitly the efficient use of
data structures.

Even though computers represent numbers internally in many different ways (fixed
point, bignum, floating point, exact rational, complex), when people visit mathland, they
expect to meet numbers there, and they expect that all the numbers will understand how
to add, subtract, multiply, and divide with each other. (The exception is dividing by zero,
but that’s because of the inherent rules of mathematics, not because of the separation of
numbers into categories by representation format.)

We feel the same way about visiting textland. We expect to meet English text there.
It takes the form of words and sentences. The operations that text understands include

, , , and to divide the text into its component parts. You
can’t divide an empty word or sentence into parts, but it’s just as natural to divide a word
into letters as to divide a sentence into words. (The ideas of mathland and textland, as
well as the details of the word and sentence procedures, come from Logo.)

Some people who are accustomed to Scheme’s view of data types consider
to be badly “overloaded”; they feel that a procedure that selects an element from a list
shouldn’t also extract a letter from a symbol. Some of them would prefer that we use
for lists, use for strings, and not disassemble symbols at all. Others want us
to define and .

To us, and sound no less awkward than
and . Everyone agrees that it’s reasonable to overload the name because
the purposes are so similar. Our students find it just as reasonable that works for
words as well as for sentences; they don’t get confused by this.

As for the inviolability of symbols—the wall between names and data—we are
following an older Lisp tradition, in which it was commonplace to symbols and
to construct new names within a program. Practically speaking, all that prevents us from
representing words as strings is that Scheme requires quotation marks around them. But

SICP.

xxviii To the Instructor

lambda
lambda

set!

vector-set!

Higher-Order Procedures, Lambda, and Recursion

Mutators and Environments

in any case, the abstraction we’re presenting is that the data we’re dissecting are neither
strings nor symbols, but words.

Scheme relies on procedure invocation as virtually its only control mechanism. In order
to write interesting programs, a Scheme user must understand at least one of two hard
ideas: recursion or procedure as object (in order to use higher-order procedures). We
believe that higher-order procedures are easier to learn, especially because we begin in
Chapter 8 by applying them only to named procedures. Using a named procedure as
an argument to another procedure is the way to use procedures as objects that’s least
upsetting to a beginner. After the reader is comfortable with higher-order procedures,
we introduce ; after that we introduce recursion. We do the tic-tac-toe example
with higher-order procedures and , but not recursion.

In this edition, however, we have made the necessary minor revisions so that an
instructor who prefers to begin with recursion can assign Part IV before Part III.

When we get to recursion, we begin with an example of embedded recursion. Many
books begin with the simplest possible recursive procedure, which turns out to be a
simple sequential recursion, or even a tail recursion. We feel that starting with such
examples allows students to invent the “go back” model of recursion as looping.

One of the most unusual characteristics of this book is that there is no assignment to
variables in it. The reason we avoid is that the environment model of evaluation is
very hard for most students. We use a pure substitution model throughout most of the
book. (With the background they get from this book, students should be ready for the
environment model when they see a rigorous presentation, as they will, for example, in
Chapter 3 of)

As the last topic in the book, we do introduce a form of mutation, namely
. Mutation of vectors is less problematic than mutation of lists, be-

cause lists naturally share storage. You really have to go out of your way to get two

eq?

To the Instructor xxix

* We don’t talk about at all. We’re careful to write our programs in such a way that the issue
of identity doesn’t arise for the reader.

pointers to the same vector.* Mutation of data structures is less problematic than assign-
ment to variables because it separates the issue of mutation from the issues of binding
and scope. Using vectors raises no new questions about the evaluation process, so we
present mutation without reference to any formal model of evaluation. We acknowledge
that we’re on thin ice here, but it seems to work for our students.

In effect, our model of mutation is the “shoebox” model that you’d find in a
mainstream programming language text. Before we get to mutation, we use input/output
programming to introduce the ideas of effect and sequence; assigning a value to a vector
element introduces the important idea of state. We use the sequential model to write
two more or less practical programs, a spreadsheet and a database system. A more
traditional approach to assignment in Scheme would be to build an object-oriented
language extension, but the use of local state variables would definitely force us to pay
attention to environments.

xxxi

Acknowledgments

* MIT Press, 1985.Computer Science Logo Style, volume 1: Intermediate Programming,

Obviously our greatest debt is to Harold Abelson, Gerald Jay Sussman, and Julie Sussman.
They have inspired us and taught us, and gave birth to the movement to which we
are minor contributors. Julie carefully read what we thought was the final draft, made
thousands of suggestions, both small and large, improved the book enormously, and set
us back two months. Hal encouraged us, read early drafts, and also made this a better
book than we could have created on our own.

Mike Clancy, Ed Dubinsky, Dan Friedman, Tessa Harvey, and Yehuda Katz also
read drafts and made detailed and very helpful suggestions for improvement. Mike
contributed many exercises. (We didn’t take their advice about everything, though, so
they get none of the blame for anything you don’t like here.)

Terry Ehling, Bob Prior, and everyone at the MIT Press have given this project the
benefit of their enthusiasm and their technical support. We’re happy to be working with
them.

The Computer Science Division at the University of California, Berkeley, allowed us
to teach a special section of the CS 3 course using the first draft of this book. The book
now in your hands is much better because of that experience. We thank Annika Rogers,
our teaching assistant in the course, and also the thirty students who served not merely
as guinea pigs but as collaborators in pinning down the weak points in our explanations.

Some of the ideas in this book, especially the different approaches to recursion, are
taken from Brian’s earlier Logo-based textbook.* Many of our explanatory metaphors,
especially the “little people” model, were invented by members of the Logo community.

Gödel, Escher, Bach.

xxxii Acknowledgments

We also took the word and sentence data types from Logo. Although this book doesn’t
use Logo itself, we tried to write it in the Logo spirit.

We wrote much of this book during the summer of 1992, while we were on the
faculty of the Institute for Secondary Mathematics and Computer Science Education, an
inservice teacher training program at Kent State University. Several of our IFSMACSE
colleagues contributed to our ideas both about computer science and about teaching; we
are especially indebted to Ed Dubinsky and Uri Leron.

We stole the idea of a “pitfalls” section at the end of each chapter from Dave Patterson
and John Hennessy.

We stole some of the ideas for illustrations from Douglas Hofstadter’s wonderful

David Zabel helped us get software ready for students, especially with compiling SCM
for the PC.

We conclude this list with an acknowledgment of each other. Because of the
difference in our ages, it may occur to some readers to suspect that we contributed
unequally to this book—either that Matt did all the work and Brian just lent his name
and status to impress publishers, or that Brian had all the ideas and Matt did the typing.
Neither of these is true. Almost everything in the book was written with both of us
in front of the computer, arguing out every paragraph. When we did split up to write
some sections separately, each of us read and criticized the other’s work. (We’re a little
surprised that we still like each other, after all the arguments!) Luckily we both like the
Beatles, Chinese food, and ice cream, so we had a common ground for programming
examples. But when you see an example about Bill Frisell, you can be pretty sure it’s
Matt’s writing, and when the example is about Dave Dee, Dozy, Beaky, Mick, and Tich,
it’s probably Brian’s.

Simply Scheme

functions

kinds

actions:
does

2

Part I
Introduction: Functions

The purpose of these introductory pages before each part of the book is to call attention
to a big idea that runs through all the work of several chapters. In the chapters themselves,
the big idea may sometimes be hidden from view because of the technical details that we
need to make the idea work. If you ever feel lost in the forest, you might want to refer
back here.

In these first two chapters, our goal is to introduce the Scheme programming
language and the idea of using as the building blocks of a computation.

The first chapter is a collection of short Scheme programs, presented to show off
what Scheme can do. We’ll try to explain enough of the mechanism so that you don’t
feel completely mystified, but we’ll defer the details until later. Our goal is not for you to
feel that you could re-create these programs, but rather that you get a sense of what
of programs we’ll be working with.

The second chapter explores functions in some detail. Traditionally, computer
programs are built out of First do this, then do that, and finally print the results.
Each step in the program something. Functional programming is different, in that
we are less concerned with actions and more concerned with values.

For example, if you have a pocket calculator with a square root button, you could
enter the number 3, push the button, and you’ll see something like 1.732050808 in the
display. How does the calculator know? There are several possible processes that the
calculator could carry out. One process, for example, is to make a guess, square it, see if
the result is too big or too small, and use that information to make a closer guess. That’s
a sequence of actions. But ordinarily you don’t care what actions the calculator takes;

function argument
value.

3

what interests you is that you want to apply the square root to the 3,
and get back a We’re going to focus on this business of functions, arguments, and
result values.

Don’t think that functions have to involve numbers. We’ll be working with functions
like “first name,” “plural,” and “acronym.” These functions have words and sentences as
their arguments and values.

Scheme-Brained Hare

simply.scm

Talking to Scheme

1 Showing Off Scheme

Welcome to XYZ Brand Scheme.
>

control of complexity—

name

abstraction,

5

We are going to use the programming language Scheme to teach you some big ideas in
computer science. The ideas are mostly about that is, about how to
develop a large computer program without being swamped in details.

For example, once you’ve solved part of the large problem, you can give that partial
solution a and then you can use the named subprogram as if it were an indivisible
operation, just like the ones that are built into the computer. Thereafter, you can forget
about the details of that subprogram. This is the beginning of the idea of
which we’ll discuss in more depth throughout the book.

The big ideas are what this book is about, but first we’re going to introduce you
to Scheme. (Scheme is a dialect of Lisp, a family of computer programming languages
invented for computing with words, sentences, and ideas instead of just numbers.)

The incantations to get Scheme running will be different for each model of computer.
Appendix A talks about these details; you can look up the particular version of Scheme
that you’re using. That appendix will also tell you how to load the file ,
which you need to make the examples in this book work.

When Scheme has started up and is ready for you to interact with it, you’ll see a
message on the screen, something like this:

boldface

>
6

>
11
>
18
>
26

>
COMPUTER

>

word simply.scm

lightface

6

(+ 4 7)

(- 23 5)

(+ 5 6 7 8)

(word ’comp ’uter)

prompt,
interactive

procedure.

arguments,

6 Part I Introduction: Functions

The is a Scheme’s way of telling you that it’s ready for you to type something.
Scheme is an programming language. In other words, you type a request to
Scheme, then Scheme prints the answer, and then you get another prompt. Try it out:

We just asked Scheme, “What is 6?” and Scheme told us that 6 is 6. Most of the time we
ask harder questions:

Whenever something you type to Scheme is enclosed in parentheses, it indicates a request
to carry out a (We’ll define “procedure” more formally later, but for now it
means something that Scheme knows how to do. A procedure tells Scheme how to
compute a particular function.) The first thing inside the parentheses indicates what
procedure to use; the others are i.e., values that are used as data by the
procedure.

Scheme has non-numeric procedures, too:

(If this last example gives an error message saying that Scheme doesn’t understand the
name , it means that you didn’t load the file . Consult Appendix A.)

In these first examples, we’ve shown what you type in and what the
computer responds in . Hereafter, we will rely on the prompt characters to
help you figure out who’s talking on which line.

For the most part, Scheme doesn’t care about whether you type in UPPER CASE or
lower case. For the examples in this book, we’ll assume that you always type in lower case
and that the computer prints in upper case. Your Scheme might print in lower case; it
doesn’t matter.

))))))
return enter

debugger

Chapter 1 Showing Off Scheme 7

Recovering from Typing Errors

Exiting Scheme

> (+ 2 a)

Unbound variable a
;Package: (user)

2 Error->

> (exit)

Don’t worry if you make a mistake typing these examples in; you can just try again. One
of the great things about interactive programming languages is that you can experiment
in them.

The parentheses and single quote marks are important; don’t leave them out. If
Scheme seems to be ignoring you, try typing a bunch of right parentheses, , and
hitting the or key. (That’s because Scheme doesn’t do anything until
you’ve closed all the parentheses you’ve opened, so if you have an extra left parenthesis,
you can keep typing forever with no response.)

Another problem you might encounter is seeing a long message that you don’t
understand and then finding yourself with something other than a Scheme prompt. This
happens when Scheme considers what you typed as an error. Here’s an example; for
now, never mind exactly why this is an error. We just want to talk about the result:

The exact form of the message you get will depend on the version of Scheme that
you’re using. For now, the important point is that some versions deal with errors by
leaving you talking to a instead of to Scheme itself. The debugger may have a
completely different language. It’s meant to help you figure out what’s wrong in a large
program you’ve written. For a beginner, though, it’s more likely to get in the way. Read
the documentation for your particular Scheme dialect to learn how to escape from the
debugger. (In some versions you don’t get trapped in a debugger when you make an
error, so this problem may not arise.)

Although there’s no official standard way to exit Scheme, most versions use the notation

first keep

print

+ - word

More Examples

Example: Acronyms

(define (acronym phrase)
(accumulate word (every first phrase)))

kinds

vocabulary

primitive
compound

8 Part I Introduction: Functions

for this purpose. If you type in some of the examples that follow and then exit from
Scheme, what you type won’t be remembered the next time you use Scheme. (Appendix
A talks about how to use a text editor along with Scheme to make a permanent record of
your work.)

We’re about to show you a few examples of (we hope) interesting programs in Scheme.
Play with them! Type them into your computer and try invoking them with different
data. Again, don’t worry too much if something doesn’t work—it probably just means
that you left out a parenthesis, or some such thing.

While you’re going through these examples, see how much you can figure out for
yourself about how they work. In particular, try guessing what the names of procedures,
such as and , mean. Some of them will probably be obvious, some of them
harder. The point isn’t to see how smart you are, but to get you thinking about the
of things you want to be able to do in a computer program. Later on we’ll go through
these examples in excruciating detail and tell you the official meanings of all the pieces.

Besides learning the of Scheme, another point of this activity is to give
you a feeling for the ways in which we put these names together in a program. Every
programming language has its own flavor. For example, if you’ve programmed before
in other languages, you may be surprised not to find anything that says in these
examples.

On the other hand, some of these examples are programs that we won’t expect you
to understand fully until most of the way through this book. So don’t worry if something
doesn’t make sense; just try to get some of the flavor of Scheme programming.

Here’s our first new program. So far we have just been using procedures built into
Scheme: , , and . When you first start up Scheme, it knows 100–200 procedures.
These are called procedures. Programming in Scheme means defining new
procedures, called procedures. Right now we’re going to invent one that finds
the acronym for a title:

acronym

acronym

Chapter 1 Showing Off Scheme 9

Did you have trouble figuring out what all the pieces do in the procedure?
Try these examples:

Notice that this simple program doesn’t always do exactly what you might
expect:

We can rewrite the program to leave out certain words:

> (acronym ’(american civil liberties union))
ACLU

> (acronym ’(reduced instruction set computer))
RISC

> (acronym ’(quod erat demonstrandum))
QED

> (first ’american)
A

> (every first ’(american civil liberties union))
(A C L U)

> (accumulate word ’(a c l u))
ACLU

> (acronym ’(united states of america))
USOA

(define (acronym phrase)
(accumulate word (every first (keep real-word? phrase))))

(define (real-word? wd)
(not (member? wd ’(a the an in of and for to with))))

> (acronym ’(united states of america))
USA

> (acronym ’(structure and interpretation of computer programs))
SICP

> (acronym ’(association for computing machinery))
ACM

> (real-word? ’structure)
#T

pigl

Example: Pig Latin

10 Part I Introduction: Functions

Our next example translates a word into Pig Latin.**

(By the way, if you’ve used other programming languages before, don’t fall into
the trap of thinking that each line of the definition is a “statement” and that the

> (real-word? ’of)
#F

> (keep real-word? ’(united network command for law and enforcement))
(UNITED NETWORK COMMAND LAW ENFORCEMENT)

(define (pigl wd)
(if (member? (first wd) ’aeiou)

(word wd ’ay)
(pigl (word (butfirst wd) (first wd)))))

> (pigl ’spaghetti)
AGHETTISPAY

> (pigl ’ok)
OKAY

() #F

*

* In some versions of Scheme you might see instead of .

** Pig Latin is a not-very-secret secret language that many little kids learn. Each word is translated
by moving all the initial consonants to the end of the word, and adding “ay” at the end. It’s usually
spoken rather than written, but that’s a little harder to do on a computer.

pigl

pigl ay

every acronym

Chapter 1 Showing Off Scheme 11

> (pigl ’elephant)
ELEPHANTAY

> (first ’spaghetti)
S

> (butfirst ’spaghetti)
PAGHETTI

> (word ’paghetti ’s)
PAGHETTIS

> (define (rotate wd)
(word (butfirst wd) (first wd)))

> (rotate ’spaghetti)
PAGHETTIS

> (rotate ’paghettis)
AGHETTISP

> (pigl ’aghettisp)
AGHETTISPAY

(every pigl ’(the ballad of john and yoko))

statements are executed one after the other. That’s not how it works in Scheme. The
entire thing is a single expression, and what counts is the grouping with parentheses.
Starting a new line is no different from a space between words as far as Scheme is
concerned. We could have defined on one humongous line and it would mean
the same thing. Also, Scheme doesn’t care about how we’ve indented the lines so that
subexpressions line up under each other. We do that only to make the program more
readable for human beings.)

The procedure follows one of two possible paths, depending on whether the first
letter of the given word is a vowel. If so, just adds the letters at the end:

The following examples might make it a little more clear how the starting-consonant
case works:

You’ve seen before, in the example, but we haven’t told you what
it does. Try to guess what Scheme will respond when you type this:

Example: Ice Cream Choices

12 Part I Introduction: Functions

Here’s a somewhat more complicated program, but still pretty short considering what it
accomplishes:

Notice that in writing the program we didn’t have to say how many menu categories
there are, or how many choices in each category. This one program will work with any
menu—try it out yourself.

(define (choices menu)
(if (null? menu)

’(())
(let ((smaller (choices (cdr menu))))
(reduce append

(map (lambda (item) (prepend-every item smaller))
(car menu))))))

(define (prepend-every item lst)
(map (lambda (choice) (se item choice)) lst))

> (choices ’((small medium large)
(vanilla (ultra chocolate) (rum raisin) ginger)
(cone cup)))

((SMALL VANILLA CONE)
(SMALL VANILLA CUP)
(SMALL ULTRA CHOCOLATE CONE)
(SMALL ULTRA CHOCOLATE CUP)
(SMALL RUM RAISIN CONE)
(SMALL RUM RAISIN CUP)
(SMALL GINGER CONE)
(SMALL GINGER CUP)
(MEDIUM VANILLA CONE)
(MEDIUM VANILLA CUP)
(MEDIUM ULTRA CHOCOLATE CONE)
(MEDIUM ULTRA CHOCOLATE CUP)
(MEDIUM RUM RAISIN CONE)
(MEDIUM RUM RAISIN CUP)
(MEDIUM GINGER CONE)
(MEDIUM GINGER CUP)
(LARGE VANILLA CONE)
(LARGE VANILLA CUP)
(LARGE ULTRA CHOCOLATE CONE)
(LARGE ULTRA CHOCOLATE CUP)
(LARGE RUM RAISIN CONE)
(LARGE RUM RAISIN CUP)
(LARGE GINGER CONE)
(LARGE GINGER CUP))

A
A

pigl acronym

algorithm

sequential

Chapter 1 Showing Off Scheme 13

Example: Combinations from a Set

* What’s an ? It’s a method for solving a problem. The usual analogy is to a recipe in
cooking, although you’ll see throughout this book that we want to get away from the aspect of that
analogy that emphasizes the nature of a recipe—first do this, then do that, etc. There
can be more than one algorithm to solve the same problem.

(define (combinations size set)
(cond ((= size 0) ’(()))

((empty? set) ’())
(else (append (prepend-every (first set)

(combinations (- size 1)
(butfirst set)))

(combinations size (butfirst set))))))

> (combinations 3 ’(a b c d e))
((A B C) (A B D) (A B E) (A C D) (A C E)
(A D E) (B C D) (B C E) (B D E) (C D E))

> (combinations 2 ’(john paul george ringo))
((JOHN PAUL) (JOHN GEORGE) (JOHN RINGO)
(PAUL GEORGE) (PAUL RINGO) (GEORGE RINGO))

Here’s a more mathematical example. We want to know all the possible combinations
of, let’s say, three things from a list of five possibilities. For example, we want to know all
the teams of three people that can be chosen from a group of five people. “Dozy, Beaky,
and Tich” counts as the same team as “Beaky, Tich, and Dozy”; the order within a team
doesn’t matter.

Although this will be a pretty short program, it’s more complicated than it looks. We
don’t expect you to be able to figure out the algorithm yet.* Instead, we just want you to
marvel at Scheme’s ability to express difficult techniques succinctly.

(If you’re trying to figure out the algorithm despite our warning, here’s a hint: All the
combinations of three letters shown above can be divided into two groups. The first
group consists of the ones that start with the letter and contain two more letters; the
second group has three letters not including . The procedure finds these two groups
separately and combines them into one. If you want to try to understand all the pieces,
try playing with them separately, as we encouraged you to do with the and
procedures.)

Example: Factorial

number

symbolic

n
n n

14 Part I Introduction: Functions

If you’ve taken a probability course, you know that there is a formula for the
of possible combinations. The most traditional use of computers is to work through
such formulas and compute numbers. However, not all problems are numeric. Lisp, the
programming language family of which Scheme is a member, is unusual in its emphasis
on computing. In this example, listing the actual combinations instead of
just counting them is part of the flavor of symbolic computing, along with our earlier
examples about manipulating words and phrases. We’ll try to avoid numeric problems
when possible, because symbolic computing is more fun for most people.

Scheme can handle numbers, too. The factorial of (usually written in mathematical
notation as !) is the product of all the numbers from 1 to :

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

> (factorial 4)
24

> (factorial 1000)
4023872600770937735437024339230039857193748642107146325437999104299385
1239862902059204420848696940480047998861019719605863166687299480855890
1323829669944590997424504087073759918823627727188732519779505950995276
1208749754624970436014182780946464962910563938874378864873371191810458
2578364784997701247663288983595573543251318532395846307555740911426241
7474349347553428646576611667797396668820291207379143853719588249808126
8678383745597317461360853795345242215865932019280908782973084313928444
0328123155861103697680135730421616874760967587134831202547858932076716
9132448426236131412508780208000261683151027341827977704784635868170164
3650241536913982812648102130927612448963599287051149649754199093422215
6683257208082133318611681155361583654698404670897560290095053761647584
7728421889679646244945160765353408198901385442487984959953319101723355
5566021394503997362807501378376153071277619268490343526252000158885351
4733161170210396817592151090778801939317811419454525722386554146106289
2187960223838971476088506276862967146674697562911234082439208160153780
8898939645182632436716167621791689097799119037540312746222899880051954
4441428201218736174599264295658174662830295557029902432415318161721046
5832036786906117260158783520751516284225540265170483304226143974286933
0616908979684825901254583271682264580665267699586526822728070757813918

1.1

1.2

1.3 acronym.scm

acronym.log

Play with the Procedures

Exercises

flavor

Chapter 1 Showing Off Scheme 15

If this doesn’t work because your computer is too small, try a more reasonably sized
example, such as the factorial of 200.

This chapter has introduced a lot of new ideas at once, leaving out all the details. Our
hope has been to convey the of Scheme programming, before we get into Chapter
2, which is full of those missing details. But you can’t absorb the flavor just by reading;
take some time out to play with these examples before you go on.

Do 20 push-ups.

Calculate 1000 factorial by hand and see if the computer got the right answer.

Create a file called containing our acronym program, using the text
editor provided for use with your version of Scheme. Load the file into Scheme and run
the program. Produce a transcript file called , showing your interaction
with Scheme as you test the program several times, and print it.

5817888965220816434834482599326604336766017699961283186078838615027946
5955131156552036093988180612138558600301435694527224206344631797460594
6825731037900840244324384656572450144028218852524709351906209290231364
9327349756551395872055965422874977401141334696271542284586237738753823
0483865688976461927383814900140767310446640259899490222221765904339901
8860185665264850617997023561938970178600408118897299183110211712298459
0164192106888438712185564612496079872290851929681937238864261483965738
2291123125024186649353143970137428531926649875337218940694281434118520
1580141233448280150513996942901534830776445690990731524332782882698646
0278986432113908350621709500259738986355427719674282224875758676575234
4220207573630569498825087968928162753848863396909959826280956121450994
8717012445164612603790293091208890869420285106401821543994571568059418
7274899809425474217358240106367740459574178516082923013535808184009699
6372524230560855903700624271243416909004153690105933983835777939410970
027753472000
00
00
00

f x y xyThe function (,) = sin plotted by computer

−

load

2 Functions

(load "functions.scm")

(functions)

functional
programming.

function.

f x x f
argument x

returns

not

17

Throughout most of this book we’re going to be using a technique called
We can’t give a complete definition of this term yet, but in this chapter we

introduce the building block of functional programming, the

Basically we mean by “function” the same thing that your high school algebra teacher
meant, except that our functions don’t necessarily relate to numbers. But the essential
idea is just like the kind of function described by () = 6 2. In that example, is
the name of a function; that function takes an called , which is a number, and

some other number.

In this chapter you are going to use the computer to explore functions, but you
are going to use the standard Scheme notation as in the rest of the book. That’s
because, in this chapter, we want to separate the idea of functions from the complexities
of programming language notation. For example, real Scheme notation lets you write
expressions that involve more than one function, but in this chapter you can only use
one at a time.

To get into this chapter’s special computer interface, first start running Scheme as
you did in the first chapter, then type

to tell Scheme to read the program you’ll be using. (If you have trouble loading the
program, look in Appendix A for further information about .) Then, to start the
program, type

boldface

Arithmetic

+
3
5

sqrt
144

you computer

18 Part I Introduction: Functions

lightface

functions exit

+ - * / sqrt quotient remainder
random round max expt

* If you get no response at all after you type , just press the Return or Enter key
again. Tell your instructor to read Appendix A to see how to fix this.

Function:
Argument:
Argument:

The result is: 8

Function:
Argument:

The result is: 12

Function: /
Argument: 1
Argument: 987654321987654321

Function: remainder
Argument: 12
Argument: -5

(functions)

You’ll then be able to carry out interactions like the following.* In the text below we’ve
printed what type in and what the types in printing:

As you can see, different functions can have different numbers of arguments. In these
examples we added two numbers, and we took the square root of one number. However,
every function gives exactly one result each time we use it.

To leave the program, type when it asks for a function.

Experiment with these arithmetic functions: , , , , , , ,
, , , and . Try different kinds of numbers, including integers

and numbers with decimal fractions. What if you try to divide by zero? Throughout this
chapter we are going to let you experiment with functions rather than just give you a
long, boring list of how each one works. (The boring list is available for reference on
page 553.)

Try these:

Words

word,

type.

ad hoc

Chapter 2 Functions 19

spaghetti xylophone
glo87rp
first butfirst last

butlast word count

count count

7

* Certain punctuation characters can also be used in words, but let’s defer the details until
you’ve gotten to know the word functions with simpler examples.

Function: round
Argument: 17.5

Function: butfirst
Argument: a

Function: count
Argument: 765432

Function: word
Argument: 3.14
Argument: 1592654

Function: +
Argument: 6
Argument: seven

These are just a few suggestions. Be creative; don’t just type in our examples.

Not all Scheme functions deal with numbers. A broader category of argument is the
including numbers but also including English words like or .
Even a meaningless sequence of letters and digits such as is considered a
word.* Try these functions that accept words as arguments: , , ,

, , and . What happens if you use a number as the argument to one
of these?

So far most of our functions fall into one of two categories: the arithmetic functions,
which require numbers as arguments and return a number as the result; and the word
functions, which accept words as arguments and return a word as the result. The one
exception we’ve seen is . What kind of argument does accept? What kind
of value does it return? The technical term for “a kind of data” is a

In principle you could think of almost anything as a type, such as “numbers that
contain the digit .” Such types are legitimate and sometimes useful, but there are
also official types that Scheme knows about. Types can overlap; for example, numbers
are also considered words.

−

−

Domain and Range

count count

cos
Cos

Remainder
remainder

+

domain
range.

set

20 Part I Introduction: Functions

Function: expt
Argument: -3
Argument: .5

Function: expt
Argument: -3
Argument: -3

Function: remainder
Argument: 5
Argument: 0

remainder

* Unless your version of Scheme has complex numbers.

** Real mathematicians say, “The domain of is the Cartesian cross product of the
integers and the integers.” In order to avoid that mouthful, we’ll just use the informal wording.

The technical term for “the things that a function accepts as an argument” is the
of the function. The name for “the things that a function returns” is its So the
domain of is words, and the range of is numbers (in fact, nonnegative
integers). This example shows that the range may not be exactly one of our standard
data types; there is no “nonnegative integer” type in Scheme.

How do you talk about the domain and range of a function? You could say, for
example, “The function has numbers as its domain and numbers between 1 and 1
as its range.” Or, informally, you may also say “ takes a number as its argument and
returns a number between 1 and 1.”*

For functions of two or more arguments, the language is a little less straightforward.
The informal version still works: “ takes two integers as arguments and
returns an integer.” But you can’t say “The domain of is two integers,”
because the domain of a function is the of all possible arguments, not just a statement
about the characteristics of legal arguments.**

(By the way, we’re making certain simplifications in this chapter. For example,
Scheme’s function can actually accept any number of arguments, not just two. But we
don’t want to go into all the bells and whistles at once, so we’ll start with adding two
numbers at a time.)

Here are examples that illustrate the domains of some functions:

sentence:

Booleans,

function

Chapter 2 Functions 21

sentence butfirst

= < > <= >= equal?
member?

and or not

if

More Types: Sentences and Booleans

Our Favorite Type: Functions

(all you need is love)

Function: sentence
Argument: (when i get)
Argument: home

Function: butfirst
Argument: (yer blues)

Function: butlast
Argument: ()

We’re going to introduce more data types, and more functions that include those types
in their domain or range. The next type is the a bunch of words enclosed in
parentheses, such as

(Don’t include any punctuation characters within the sentence.) Many of the functions
that accept words in their domain will also accept sentences. There is also a function

that accepts words and sentences. Try examples like of a sentence.

Other important functions are used to ask yes-or-no questions. That is, the range
of these functions contains only two values, one meaning “true” and the other meaning
“false.” Try the numeric comparisons , , , , and , and the functions and

that work on words and sentences. (The question mark is part of the name of
the function.) There are also functions , , and whose domain and range are
both true-false values. The two values “true” and “false” are called named after
George Boole (1815–1864), who developed the formal tools used for true-false values in
mathematics.

What good are these true-false values? Often a program must choose between two
options: If the number is positive, do this; if negative, do that. Scheme has functions to
make such choices based on true-false values. For now, you can experiment with the
function. Its first argument must be true or false; the others can be anything.

So far our data types include numbers, words, sentences, and Booleans. Scheme has
several more data types, but for now we’ll just consider one more. A can be used
as data. Here’s an example:

Play with It

Thinking about What You’ve Done

functions.

function

22 Part I Introduction: Functions

number-of-arguments

first
(the long and winding road) every

keep even? odd?
number?

Function: number-of-arguments
Argument: equal?

The result is: 2

Function: every
Argument: first
Argument: (the long and winding road)

Function: keep
Argument: vowel?
Argument: constantinople

The range of is nonnegative integers. But its domain is
For example, try using it as an argument to itself!

If you’ve used other computer programming languages, it may seem strange to use a
function—that is, a part of a computer program—as data. Most languages make a sharp
distinction between program and data. We’ll soon see that the ability to treat functions
as data helps make Scheme programming very powerful and convenient.

Try these examples:

Think carefully about these. You aren’t applying the function to the sentence
; you’re applying the function to a function

and a sentence.

Other functions that can be used with include and , whose
domains are the integers, and , whose domain is everything.

If you’ve been reading the book but not trying things out on the computer as you go
along, get to work! Spend some time getting used to these ideas and thinking about
them. When you’re done, read ahead.

The idea of is at the heart of both mathematics and computer science. For
example, when mathematicians want to think very formally about the system of numbers,
they use functions to create the integers. They say, let’s suppose we have one number,

first keep

expt

keep every

function f x x
f f

process
transformation

domain range

function as process.

function as object.

higher-order functions

Chapter 2 Functions 23

called zero; then let’s suppose we have the given by () = + 1. By applying that
function repeatedly, we can create 1 = (0), then 2 = (1), and so on.

Functions are important in computer science because they give us a way to think
about —in simple English, a way to think about something happening, something
changing. A function embodies a of information, taking in something
we know and returning something we didn’t know. That’s what computers do: They
transform information to produce new results.

A lot of the mathematics taught in school is about numbers, but we’ve seen
that functions don’t have to be about numbers. We’ve used functions of words and
sentences, such as , and even functions of functions, such as . You can
imagine functions that transform information of any kind at all, such as the function
French(window)=fenêtre or the function capital(California)=Sacramento.

You’ve done a lot of thinking about the and of functions. You can add
two numbers, but it doesn’t make sense to add two words that aren’t numbers. Some
two-argument functions have complicated domains because the acceptable values for one
argument depend on the specific value used for the other one. (The function is
an example; make sure you’ve tried both positive and negative numbers, and fractional
as well as whole-number powers.)

Part of the definition of a function is that you always get the same answer whenever
you call a function with the same argument(s). The value returned by the function,
in other words, shouldn’t change regardless of anything else you may have computed
meanwhile. One of the “functions” you’ve explored in this chapter isn’t a real function
according to this rule; which one? The rule may seem too restrictive, and indeed it’s
often convenient to use the name “function” loosely for processes that can give different
results in different circumstances. But we’ll see that sometimes it’s important to stick
with the strict definition and refrain from using processes that aren’t truly functions.

We’ve hinted at two different ways of thinking about functions. The first is called
Here, a function is a rule that tells us how to transform some

information into some other information. The function is just a rule, not a thing in
its own right. The actual “things” are the words or numbers or whatever the function
manipulates. The second way of thinking is called In this view, a function
is a perfectly good “thing” in itself. We can use a function as an argument to another
function, for example. Research with college math students shows that this second idea is
hard for most people, but it’s worth the effort because you’ll see that
(functions of functions) like and can make programs much easier to write.

2.1

2.2

Exercises

* Yes, there is an English word. It has to do with astronomy.

haven’t
composition

Use the program for all these exercises.

24 Part I Introduction: Functions

peel

functions

word now here
sentence now here
first blackbird
first (blackbird)

3 4 7
every (thank you girl) (hank ou irl)
member? e aardvark
member? the #t
keep vowel? (i will)
keep vowel? eieio
last ()

last (honey pie) (y e)
taxman aa

vowel?

As a homey analogy, think about a carrot peeler. If we focus our attention on the
carrots—which are, after all, what we want to eat—then the peeler just represents a
process. We are peeling carrots. We are applying the function to carrots. It’s the
carrot that counts. But we can also think about the peeler as a thing in its own right,
when we clean it, or worry about whether its blade is sharp enough.

The big idea that we explored in this chapter (although we used it a lot in
Chapter 1) is the of functions: using the result from one function as an argu-
ment to another function. It’s a crucial idea; we write large programs by defining a bunch
of small functions and then composing them with each other to produce the desired
result. We’ll start doing that in the next chapter, where we return to real Scheme notation.

In each line of the following table we’ve left out one piece of information. Fill in
the missing details.

function arg 1 arg 2 result

none
none

*
none

What is the domain of the function?

2.3

2.4

2.5

2.6

2.7

2.8

2.9

f commutative f a b f b a a b

f associative f f a b c f a f b c a
b c

Chapter 2 Functions 25

appearances

item

+ - / <= < = >= > and appearances
butfirst butlast cos count equal? every even? expt first if item
keep last max member? not number? number-of-arguments odd? or
quotient random remainder round sentence sqrt vowel? word

+ word

* /

One of the functions you can use is called . Experiment with it, and
then describe fully its domain and range, and what it does. (Make sure to try lots of cases.
Hint: Think about its name.)

One of the functions you can use is called . Experiment with it, and then
describe fully its domain and range, and what it does.

The following exercises ask for functions that meet certain criteria. For your conve-
nience, here are the functions in this chapter: , , , , , , , , , ,

, , , , , , , , , , ,
, , , , , , , , ,

, , , , , , , and .

List the one-argument functions in this chapter for which the type of the return
value is always different from the type of the argument.

List the one-argument functions in this chapter for which the type of the return
value is sometimes different from the type of the argument.

Mathematicians sometimes use the term “operator” to mean a function of two
arguments, both of the same type, that returns a result of the same type. Which of the
functions you’ve seen in this chapter satisfy that definition?

An operator is if (,) = (,) for all possible arguments and .
For example, is commutative, but isn’t. Which of the operators from Exercise 2.7
are commutative?

An operator is if ((,),) = (, (,)) for all possible arguments ,
, and . For example, is associative, but not . Which of the operators from Exercise

2.7 are associative?

Part II
Composition of Functions

s

run runs

day tripper day tripper

she

sing she sings

(define (third-person verb)
(sentence ’she (add-s verb)))

add-s

sentence

third-person sentence add-s

third-person

26

The big idea in this part of the book is deceptively simple. It’s that we can take the value
returned by one function and use it as an argument to another function. By “hooking
up” two functions in this way, we invent a new, third function. For example, let’s say we
have a function that adds the letter to the end of a word:

(“ ”) = “ ”

and another function that puts two words together into a sentence:

(“ ”, “ ”) = “ ”

We can combine these to create a new function that represents the third person singular
form of a verb:

(verb) = (“ ”, (verb))

That general formula looks like this when applied to a particular verb:

(“ ”) = “ ”

The way we say it in Scheme is

(When we give an example like this at the beginning of a part, don’t worry about the fact
that you don’t recognize the notation. The example is meant as a preview of what you’ll
learn in the coming chapters.)

27

We know that this idea probably doesn’t look like much of a big deal to you. It seems
obvious. Nevertheless, it will turn out that we can express a wide variety of computational
algorithms by linking functions together in this way. This linking is what we mean by
“functional programming.”

In a bucket brigade, each person hands a result to the next.

26 (+ 14 7)

+ 14 7

3 Expressions

evaluates

expression.

atom atomic expression
compound expression,

subexpressions.

call invoke
apply

29

* In other programming languages, the name for what you type might be a “command” or an
“instruction.” The name “expression” is meant to emphasize that we are talking about the notation
in which you ask the question, as distinct from the idea in your head, just as in English you express
an idea in words. Also, in Scheme we are more often asking questions rather than telling the
computer to take some action.

The interaction between you and Scheme is called the “read-eval-print loop.” Scheme
reads what you type, it, and prints the answer, and then does the same thing over
again. We’re emphasizing the word “evaluates” because the essence of understanding
Scheme is knowing what it means to evaluate something.

Each question you type is called an * The expression can be a single value,
such as , or something more complicated in parentheses, such as . The
first kind of expression is called an (or), while the second kind of
expression is called a because it’s made out of the smaller expressions

, , and . The metaphor is from chemistry, where atoms of single elements are
combined to form chemical compounds. We sometimes call the expressions within a
compound expression its

Compound expressions tell Scheme to “do” a procedure. This idea is so important
that it has a lot of names. You can a procedure; you can a procedure; or you
can a procedure to some numbers or other values. All of these mean the same
thing.

If you’ve programmed before in some other language, you’re probably accustomed
to the idea of several different types of statements for different purposes. For example,
a “print statement” may look very different from an “assignment statement.” In Scheme,

× ×

2 3 (+ 2 3)

* and again

Little People

(+ (+ 2 3) (+ 4 5))

(- (+ 5 8) (+ 2 4))

doesn’t

self-evaluating;

numbers, expressions that add up
those

expressions that add up

any

never

30 Part II Composition of Functions

everything is done by calling procedures, just as we’ve been doing here. Whatever you
want to do, there’s only one notation: the compound expression.

Notice that we said a compound expression contains expressions. This means
that you can’t understand what an expression is until you already understand what an
expression is. This sort of circularity comes up again and again and again and again* in
Scheme programming. How do you ever get a handle on this self-referential idea? The
secret is that there has to be some simple kind of expression that have smaller
expressions inside it—the atomic expressions.

It’s easy to understand an expression that just contains one number. Numbers are
that is, when you evaluate a number, you just get the same number back.

Once you understand you can understand numbers.
And once you understand expressions, you can use that knowledge to figure out

expressions-that-add-up-numbers. Then . . . and so on. In practice,
you don’t usually think about all these levels of complexity separately. You just think, “I
know what a number is, and I know what it means to add up expressions.”

So, for example, to understand the expression

you must first understand and as self-evaluating numbers, then understand
as an expression that adds those numbers, then understand how the sum, 5, contributes
to the overall expression.

By the way, in ordinary arithmetic you’ve gotten used to the idea that parentheses
can be optional; 3 + 4 5 means the same as 3 + (4 5). But in Scheme, parentheses are

optional. Every procedure call must be enclosed in parentheses.

You may not have realized it, but inside your computer there are thousands of little
people. Each of them is a specialist in one particular Scheme procedure. The head little
person, Alonzo, is in charge of the read-eval-print loop.

When you enter an expression, such as

•

•

•

•

•

•

•

7

- +
minus

(+ 5 8) (+ 2 4)

(+ 5 8)
5 8

5 8 13

(+ 2 4) 2 4
6

7

order of evaluation

parallel
processing is

Chapter 3 Expressions 31

Alonzo reads it, hires other little people to help him evaluate it, and finally prints , its
value. We’re going to focus on the evaluation step.

Three little people work together to evaluate the expression: a minus person and
two plus people. (To make this account easier to read, we’re using the ordinary English
words “minus” and “plus” to refer to the procedures whose Scheme names are and .
Don’t be confused by this and try to type to Scheme.)

Since the overall expression is a subtraction, Alonzo hires Alice, the first available
minus specialist. Here’s how the little people evaluate the expression:

Alice wants to be given some numbers, so before she can do any work, she complains
to Alonzo that she wants to know which numbers to subtract.

Alonzo looks at the subexpressions that should provide Alice’s arguments, namely,
and . Since both of these are addition problems, Alonzo hires two

plus specialists, Bernie and Cordelia, and tells them to report their results to Alice.

The first plus person, Bernie, also wants some numbers, so he asks Alonzo for them.

Alonzo looks at the subexpressions of that should provide Bernie’s arguments,
namely, and . Since these are both atomic, Alonzo can give them directly to Bernie.

Bernie adds his arguments, and , to get . He does this in his head—we don’t
have to worry about how he knows how to add; that’s his job.

The second plus person, Cordelia, wants some arguments; Alonzo looks at the
subexpressions of and gives the and to Cordelia. She adds them, getting

.

Bernie and Cordelia hand their results to the waiting Alice, who can now subtract them
to get . She hands that result to Alonzo, who prints it.

How does Alonzo know what’s the argument to what? That’s what the grouping of
subexpressions with parentheses is about. Since the plus expressions are inside the minus
expression, the plus people have to give their results to the minus person.

We’ve made it seem as if Bernie does his work before Cordelia does hers. In fact, the
of the argument subexpressions is not specified in Scheme; different

implementations may do it in different orders. In particular, Cordelia might do her work
before Bernie, or they might even do their work at the same time, if we’re using a

computer. However, it important that both Bernie and Cordelia finish their
work before Alice can do hers.

-

*

(+ 5 8)

32 Part II Composition of Functions

* We’ll explain this part in more detail later.

> (* (- (+ 5 8) (+ 2 4))
(/ 10 2))

35

> (+ (* 2 (/ 14 7) 3)
(/ (* (- (* 3 5) 3) (+ 1 1))

(- (* 4 3) (* 3 2)))
(- 15 18))

13

(+ ()
(; One of them takes two lines but you can tell by

) ; matching parentheses that they’re one expression.
())

The entire call to is itself a single expression; it could be a part of an even larger
expression:

This says to multiply the numbers 7 and 5, except that instead of saying 7 and 5
explicitly, we wrote expressions whose values are 7 and 5. (By the way, we would
say that the above expression has three subexpressions, the and the two arguments.
The argument subexpressions, in turn, have their own subexpressions. However, these
sub-subexpressions, such as , don’t count as subexpressions of the whole thing.)

We can express this organization of little people more formally. If an expression
is atomic, Scheme just knows the value.* Otherwise, it is a compound expression,
so Scheme first evaluates all the subexpressions (in some unspecified order) and then
applies the value of the first one, which had better be a procedure, to the values of the
rest of them. Those other subexpressions are the arguments.

We can use this rule to evaluate arbitrarily complex expressions, and Scheme
won’t get confused. No matter how long the expression is, it’s made up of smaller
subexpressions to which the same rule applies. Look at this long, messy example:

Scheme understands this by looking for the subexpressions of the overall expression,
like this:

. . .

. . .
. . .

. . .

(Scheme ignores everything to the right of a semicolon, so semicolons can be used to
indicate comments, as above.)

+ functions

+ *
word sentence

Result Replacement

Plumbing Diagrams

three

rewrite

several

Chapter 3 Expressions 33

(+ (* (- 10 7) (+ 4 1)) (- 15 (/ 12 3)) 17)
(+ (* 3 (+ 4 1)) (- 15 (/ 12 3)) 17)
(+ (* 3 5) (- 15 (/ 12 3)) 17)
(+ 15 (- 15 (/ 12 3)) 17)
(+ 15 (- 15 4) 17)
(+ 15 11 17)
43

(+ (* (- 10 7) (+ 4 1)) (- 15 (/ 12 3)) 17)
(+ (* 3 5) (- 15 4) 17)
(+ 15 11 17)
43

Notice that in the example above we asked to add numbers. In the
program of Chapter 2 we pretended that every Scheme function accepts a fixed number
of arguments, but actually, some functions can accept any number. These include , ,

, and .

Since a little person can’t do his or her job until all of the necessary subexpressions have
been evaluated by other little people, we can “fast forward” this process by skipping the
parts about “Alice waits for Bernie and Cordelia” and starting with the completion of the
smaller tasks by the lesser little people.

To keep track of which result goes into which larger computation, you can write
down a complicated expression and then it repeatedly, each time replacing some
small expression with a simpler expression that has the same value.

In each line of the diagram, the boxed expression is the one that will be replaced with its
value on the following line.

If you like, you can save some steps by evaluating small expressions from one
line to the next:

Some people find it helpful to look at a pictorial form of the connections among
subexpressions. You can think of each procedure as a machine, like the ones they drew
on the chalkboard in junior high school.

-

++

5 8 2 4

-

++

5 8 2 4

13 6

7

(- (+ 5 8) (+ 2 4))

34 Part II Composition of Functions

Each machine has some number of input hoppers on the top and one chute at the
bottom. You put something in each hopper, turn the crank, and something else comes
out the bottom. For a complicated expression, you hook up the output chute of one
machine to the input hopper of another. These combinations are called “plumbing
diagrams.” Let’s look at the plumbing diagram for :

You can annotate the diagram by indicating the actual information that flows through
each pipe. Here’s how that would look for this expression:

⇒

⇒

⇒

Pitfalls

doesn’t

Chapter 3 Expressions 35

square (cos 3)

+

* 3
(sqrt 49) (/ 12 4)
+

(square (cos 3))

(+ (* 2 (/ 14 7) 3) (/ (* (- (* 3 5) 3) (+ 1
1)) (- (* 4 3) (* 3 2))) (- 15 18))

(+ (* 2 (/ 14 7) 3)
(/ (* (- (* 3 5) 3) (+ 1 1))

(- (* 4 3) (* 3 2)))
(- 15 18))

(+ (* 3 (sqrt 49) ;; weirdly formatted
(/ 12 4)))

One of the biggest problems that beginning Lisp programmers have comes from
trying to read a program from left to right, rather than thinking about it in terms of
expressions and subexpressions. For example,

mean “square three, then take the cosine of the answer you get.” Instead, as you
know, it means that the argument to is the return value from .

Another big problem that people have is thinking that Scheme cares about the
spaces, tabs, line breaks, and other “white space” in their Scheme programs. We’ve been
indenting our expressions to illustrate the way that subexpressions line up underneath
each other. But to Scheme,

means the same thing as

So in this expression:

there aren’t two arguments to , even though it looks that way if you think about the
indenting. What Scheme does is look at the parentheses, and if you examine these
carefully, you’ll see that there are three arguments to : the atom , the compound
expression , and the compound expression . (And there’s only one
argument to .)

A consequence of Scheme’s not caring about white space is that when you hit the
return key, Scheme might not do anything. If you’re in the middle of an expression,
Scheme waits until you’re done typing the entire thing before it evaluates what you’ve
typed. This is fine if your program is correct, but if you type this in:

⇒

⇒

× ×3.1

3.2

+

"

return enter

Boring Exercises

nothing

string.

36 Part II Composition of Functions

(+ (* 3 4)
(/ 8 2) ; note missing right paren

(+ (* 3 " 4) ; note extra quote mark
(/ 8 2))

(+ 3 (* 4 5) (- 10 4))

(+ (* (- (/ 8 2) 1) 5) 2)

then will happen. Even if you type forever, until you close the open parenthesis
next to the sign, Scheme will still be reading an expression. So if Scheme seems to be
ignoring you, try typing a zillion close parentheses. (You’ll probably get an error message
about too many parentheses, but after that, Scheme should start paying attention again.)

You might get into the same sort of trouble if you have a double-quote mark () in
your program. Everything inside a pair of quotation marks is treated as one single
We’ll explain more about strings later. For now, if your program has a stray quotation
mark, like this:

then you can get into the same predicament of typing and having Scheme ignore you.
(Once you type the second quotation mark, you may still need some close parentheses,
since the ones you type inside a string don’t count.)

One other way that Scheme might seem to be ignoring you comes from the fact that
you don’t get a new Scheme prompt until you type in an expression and it’s evaluated.
So if you just hit the or key without typing anything, most versions of
Scheme won’t print a new prompt.

Translate the arithmetic expressions (3+4) 5 and 3+(4 5) into Scheme expressions,
and into plumbing diagrams.

How many little people does Alonzo hire in evaluating each of the following
expressions:

3.3

3.4

3.5

3.6

3.7

(+ 3 4)

(/ 1 3)
0.33333

1/3

Chapter 3 Expressions 37

(* (+ (- 3 (/ 4 2))
(sin (* 3 2))
(- 8 (sqrt 5)))

(- (/ 2 3)
4))

(* (- 1 (+ 3 4)) 8)

(+ (* 3 (- 4 7))
(- 8 (- 3 5)))

(sqrt (+ 6 (* 5 2)))

(+ (+ (+ 1 2) 3) 4)

(+ 3 4 5 6 7)

(+ (+ 3 4) (+ 5 6 7))

(+ (+ 3 (+ 4 5) 6) 7)

Each of the expressions in the previous exercise is compound. How many subex-
pressions (not including subexpressions of subexpressions) does each one have?

For example,

has three subexpressions; you wouldn’t count .

Five little people are hired in evaluating the following expression:

Give each little person a name and list her specialty, the argument values she receives,
her return value, and the name of the little person to whom she tells her result.

Evaluate each of the following expressions using the result replacement technique:

Draw a plumbing diagram for each of the following expressions:

What value is returned by in your version of Scheme? (Some Schemes
return a decimal fraction like , while others have exact fractional values like

built in.)

•

•

•

•

•

3.8

3.9 (+ 8 2) 10

Real Exercises

38 Part II Composition of Functions

Which of the functions that you explored in Chapter 2 will accept variable numbers
of arguments?

The expression has the value . It is a compound expression made up of
three atoms. For this problem, write five other Scheme expressions whose values are also
the number ten:

An atom

Another compound expression made up of three atoms

A compound expression made up of four atoms

A compound expression made up of an atom and two compound subexpressions

Any other kind of expression

In the old days, they “defined procedures” like this.

procedures.

41

How to Define a Procedure

4 Defining Your Own Procedures

define

define

square Square
square

(define (square x)
(* x x))

> (square 7)
49

> (+ 10 (square 2))
14

Until now we’ve been using procedures that Scheme already knows when you begin
working with it. In this chapter you’ll find out how to create new procedures.

A Scheme program consists of one or more A procedure is a description of
the process by which a computer can work out some result that we want. Here’s how to
define a procedure that returns the square of its argument:

(The value returned by may differ depending on the version of Scheme you’re
using. Many versions return the name of the procedure you’re defining, but others
return something else. It doesn’t matter, because when you use you aren’t
interested in the returned value, but rather in the fact that Scheme remembers the new
definition for later use.)

This is the definition of a procedure called . takes one argument, a
number, and it returns the square of that number. Once you have defined , you
can use it just the same way as you use primitive procedures:

argument
name

procedure
name

body

(define?(square?x)
??(*?x?x))

keyword

Special Forms

> (square (square 3))
81

(define (square x))
define

define

body:

special form,

doesn’t

42 Part II Composition of Functions

define

(square x)
(square 7)

Define

square
square x (* x x)

(square x) square

* Technically, the entire expression is the special form; the word
itself is called a . But in fact Lispians are almost always loose about this distinction

and say “ is a special form,” just as we’ve done here. The word “form” is an archaic synonym
for “expression,” so “special form” just means “special expression.”

This procedure definition has four parts. The first is the word , which
indicates that you are defining something. The second and third come together inside
parentheses: the name that you want to give the procedure and the name(s) you want to
use for its argument(s). This arrangement was chosen by the designers of Scheme because
it looks like the form in which the procedure will be invoked. That is, looks
like . The fourth part of the definition is the an expression whose
value provides the function’s return value.

is a an exception to the evaluation rule we’ve been going on about.*
Usually, an expression represents a procedure invocation, so the general rule is that
Scheme first evaluates all the subexpressions, and then applies the resulting procedure
to the resulting argument values. The specialness of special forms is that Scheme

evaluate all the subexpressions. Instead, each special form has its own particular
evaluation rule. For example, when we defined , no part of the definition was
evaluated: not , not , and not . It wouldn’t make sense to evaluate

because you can’t invoke the procedure before you define it!

. . .

Functions and Procedures

define
define

define
define define

define define
define define

remainder

> +
#<PRIMITIVE PROCEDURE +>

> define
ERROR -- INVALID CONTEXT FOR KEYWORD DEFINE

functions.
square

plural
argument.

process

f x x

g x x

f g

Chapter 4 Defining Your Own Procedures 43

It would be possible to describe special forms using the following model: “Certain
procedures want their arguments unevaluated, and Scheme recognizes them. After
refraining from evaluating ’s arguments, for example, Scheme invokes the

procedure with those unevaluated arguments.” But in fact the designers of
Scheme chose to think about it differently. The entire special form that starts with

is just a completely different kind of thing from a procedure call. In Scheme
there is no procedure named . In fact, is not the name of anything at
all:

Nevertheless, in this book, unless it’s really important to make the distinction, we’ll talk
as if there were a procedure called . For example, we’ll talk about “ ’s
arguments” and “the value returned by ” and “invoking .”

Throughout most of this book, our procedures will describe processes that compute
A function is a connection between some values you already know and a new

value you want to find out. For example, the function takes a number, such as 8,
as its input value and returns another number, 64 in this case, as its output value. The

function takes a noun, such as “computer,” and returns another word, “computers”
in this example. The technical term for the function’s input value is its A
function may take more than one argument; for example, the function takes
two arguments, such as 12 and 5. It returns one value, the remainder on dividing the
first argument by the second (in this case, 2).

We said earlier that a procedure is “a description of the process by which a computer
can work out some result that we want.” What do we mean by ? Consider these two
definitions:

() = 3 + 12

() = 3(+ 4)

The two definitions call for different arithmetic operations. For example, to compute
(8) we’d multiply 8 by 3, then add 12 to the result. To compute (8), we’d add 4 to

f g

f
f

f

(define (f x)
(+ (* 3 x) 12))

(define (g x)
(* 3 (+ x 4)))

processes, function.

table

graphs,

is represented by is

44 Part II Composition of Functions

* Also, we’ll sometimes use the terms “domain” and “range” when we’re talking about procedures,
although technically, only functions have domains and ranges.

8, then multiply the result by 3. But we get the same answer, 36, either way. These two
equations describe different but they compute the same The function
is just the association between the starting value(s) and the resulting value, no matter
how that result is computed. In Scheme we could say

and we’d say that and are two procedures that represent the same function.

In real life, functions are not always represented by procedures. We could represent
a function by a showing all its possible values, like this:

Alabama Montgomery
Alaska Juneau
Arizona Phoenix
Arkansas Little Rock
California Sacramento
.

This table represents the State Capital function; we haven’t shown all the lines of the
complete table, but we could. There are only a finite number of U.S. states. Numeric
functions can also be represented by as you probably learned in high school
algebra. In this book our focus is on the representation of functions by procedures. The
only reason for showing you this table example is to clarify what we mean when we say
that a function a procedure, rather than that a function the procedure.

We’ll say “the procedure ” when we want to discuss the operations we’re telling
Scheme to carry out. We’ll say “the function represented by ” when our attention
is focused on the value returned, rather than on the mechanism. (But we’ll often
abbreviate that lengthy second phrase with “the function ” unless the context is
especially confusing.)*

(square (+ 5 9))

Argument Names versus Argument Values

square x
square 7

x
square

square x

square

square
x

(+ 5 9)

very
tears

Haddock’s
Eyes.

called. The Aged Aged Man.
song

song Ways And
Means called,

is

A-sitting On A
Gate

Through the Looking-Glass, and What Alice Found There

defined name,
invoked value

that number that number.

formal parameter.

actual argument.

actual argument expression actual
argument value

Chapter 4 Defining Your Own Procedures 45

“It’s long,” said the Knight, “but it’s very, beautiful. Everybody that
hears me sing it—either it brings the into their eyes, or else—”

“Or else what?” said Alice, for the Knight had made a sudden pause.
“Or else it doesn’t, you know. The name of the song is called ‘

’ ”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.
“No, you don’t understand,” the Knight said, looking a little vexed. “That’s

what the name is The name really is ‘ ’ ”
“Then I ought to have said ‘That’s what the is called’?” Alice corrected

herself.
“No, you oughtn’t; that’s quite another thing! The is called ‘
’: but that’s only what it’s you know!”

“Well, what the song, then?” said Alice, who was by this time completely
bewildered.

“I was coming to that,” the Knight said. “The song really is ‘
’: and the tune’s my own invention.”

—Lewis Carroll,

Notice that when we the procedure we gave a , for its argument.
By contrast, when we we provided a for the argument (e.g.,).
The word is a “place holder” in the definition that stands for whatever value you use
when you call the procedure. So you can read the definition of as saying, “In
order to a number, multiply by ” The name holds the
place of the particular number that you mean.

Be sure you understand this distinction between defining a procedure and calling it.
A procedure represents a general technique that can be applied to many specific cases.
We don’t want to build any particular case into the procedure definition; we want the
definition to express the general nature of the technique. You wouldn’t want a procedure
that only knew how to take the square of 7. But when you actually get around to using

, you have to be specific about which number you’re squaring.

The name for the name of an argument (whew!) is In our
example, is the formal parameter. (You may hear people say either “formal” alone or
“parameter” alone when they’re feeling lazy.) The technical term for the actual value of
the argument is the In a case like

you may want to distinguish the from the
14. Most of the time it’s perfectly clear what you mean, and you just say

square

Procedure as Generalization

generalize

46 Part II Composition of Functions

(define (f a b)
(+ (* 3 a) b))

> (f 5 8)
23

> (f 8 5)
29

> (/ (+ 17 25) 2)
21

> (/ (+ 14 68) 2)
41

(/ (+) 2)

(define (average a b)
(/ (+ a b) 2))

“argument” for all of these things, but right now when you’re learning these ideas it’s
important to be able to talk more precisely.

The procedure takes one argument. If a procedure requires more than
one argument, then the question arises, which actual argument goes with which formal
parameter? The answer is that they go in the order in which you write them, like this:

What’s the average of 17 and 25? To answer this question you could add the two numbers,
getting 42, and divide that by two, getting 21. You could ask Scheme to do this for you:

What’s the average of 14 and 68?

Once you understand the technique, you could answer any such question by typing
an expression of the form

to Scheme.

But if you’re going to be faced with more such problems, an obvious next step is to
the technique by defining a procedure:

σ
−∑ ∑()

√√√√√ =1
2

=1

2

x

n

i i
n

i i

Composability

> (average 27 4)
15.5

x x

n

Chapter 4 Defining Your Own Procedures 47

standard-deviation

+
average standard-deviation

average
+

With this definition, you can think about the next problem that comes along in terms of
the problem itself, rather than in terms of the steps required for its solution:

This is an example of what we meant when we defined “abstraction” as noticing a pattern
and giving it a name. It’s not so different from the naming of such patterns in English;
when someone invented the name “average” it was, probably, after noticing that it was
often useful to find the value halfway between two other values.

This naming process is more important than it sounds, because once we have a
name for some idea, we can use that idea without thinking about its pieces. For example,
suppose that you want to know not only the average of some numbers but also a measure
of whether the numbers are clumped together close to the average, or widely spread
out. Statisticians have developed the “standard deviation” as a measure of this second
property. You’d rather not have to think about this mysterious formula:

=

but you’d be happy to use a procedure that you found in a
collection of statistical programs.

After all, there’s no law of nature that says computers automatically know how to add
or subtract. You could imagine having to instruct Scheme to compute the sum of two
large numbers digit by digit, the way you did in elementary school. But instead someone
has “taught” your computer how to add before you get to it, giving this technique the
name so that you can ask for the sum of two numbers without thinking about the
steps required. By inventing or we are extending the
repertoire of computations that you can ask for without concerning yourself with the
details.

We’ve suggested that a procedure you define, such as , is essentially similar to
one that’s built into Scheme, such as . In particular, the rules for building expressions
are the same whether the building blocks are primitive procedures or defined procedures.

The Substitution Model

sqrt

*

standard-deviation
square

model

substitution

48 Part II Composition of Functions

* You know, that’s when you wave your hands around in the air instead of explaining what you
mean.

> (average (+ 10 8) (* 3 5))
16.5

> (average (average 2 3) (average 4 5))
3.5

> (sqrt (average 143 145))
12

Any return value can be used as an end in itself, as the return value from was
used in the last of these examples, or it can provide an argument to another procedure,
as the return value from was used in the first of these examples.

These small examples may seem arbitrary, but the same idea, composition of
functions, is the basis for all Scheme programming. For example, the complicated
formula we gave for standard deviation requires computing the squares of several
numbers. So if we were to write a procedure, it would invoke

.

We’ve paid a lot of attention to the details of formal parameters and actual arguments,
but we’ve been a little handwavy* about how a procedure actually computes a value when
you invoke it.

We’re going to explain what happens when you invoke a user-defined procedure.
Every explanation is a story. No story tells the entire truth, because there are always some
details left out. A is a story that has just enough detail to help you understand
whatever it’s trying to explain but not so much detail that you can’t see the forest for the
trees.

Today’s story is about the model. When a procedure is invoked, the goal
is to carry out the computation described in its body. The problem is that the body is
written in terms of the formal parameters, while the computation has to use the actual
argument values. So what Scheme needs is a way to associate actual argument values with
formal parameters. It does this by making a new copy of the body of the procedure, in

(define (square x)
(* x x))

(* x x)

(* 5 5)

Chapter 4 Defining Your Own Procedures 49

square

square (* x x)
(square 5) x

(* x x)
x

square
+ *

square
(square 6) (* 6 6)

* You may be thinking that this is rather an inefficient way to do things—all this copying and
replacement before you can actually compute anything. Perhaps you’re afraid that your Scheme
programs will run very slowly as a result. Don’t worry. It really happens in a different way, but the
effect is the same except for the speed.

which it substitutes the argument values for every appearance of the formal parameters,
and then evaluating the resulting expression. So, if you’ve defined with

then the body of is . When you want to know the square of a particular
number, as in , Scheme substitutes the 5 for everywhere in the body of
square and evaluates the expression. In other words, Scheme takes

then does the substitution, getting

and then evaluates that expression, getting 25.

If you just type into Scheme, you will get an error message complaining
that doesn’t mean anything. Only after the substitution does this become a meaningful
expression.

By the way, when we talk about “substituting into the body,” we don’t mean that the
procedure’s definition is changed in any permanent way. The body of the procedure
doesn’t change; what happens, as we said before, is that Scheme constructs a new
expression that looks like the body, except for the substitutions.*

There are little people who specialize in , just as there are little people who
specialize in and . The difference is that the little people who do primitive procedures
can do the work “in their head,” all at once. The little people who carry out user-defined
procedures have to go through this substitution business we’re talking about here. Then
they hire other little people to help evaluate the resulting expression, just as Alonzo hires
people to help him evaluate the expressions you type directly to Scheme.

Let’s say Sam, a little person who specializes in , has been asked to compute
. Sam carries out the substitution, and is left with the expression to

reports to hired

50 Part II Composition of Functions

hypotenuse

sqrt +
square (square 5)

x square
x (square 12)

(define (hypotenuse a b)
(sqrt (+ (square a) (square b))))

> (hypotenuse 5 12)

(sqrt (+ (square 5) (square 12)))

(hypotenuse 5 12) ; substitute into HYPOTENUSE body
(sqrt (+ (square 5) (square 12))) ; substitute for (SQUARE 5)

(* 5 5)
25

(sqrt (+ 25 (square 12))) ; substitute for (SQUARE 12)
(* 12 12)
144

(sqrt (+ 25 144))
(+ 25 144) ; combine the results as before
169

(sqrt 169)
13

sqrt + square

* Until we started defining our own procedures in this chapter, all of the little people were hired
by Alonzo, because all expressions were typed directly to a Scheme prompt. Now expressions can
come from the bodies of procedures, and so the little people needed to compute those expressions
are hired by the little person who’s computing that procedure. Notice also that each little person

another little person, not necessarily the one who her. In this case, if Harry hires
Shari for , Paul for , and Slim and Sydney for the two s, then Slim reports to Paul,
not to Harry. Only Shari reports directly to Harry.

evaluate. Sam then hires Tessa, a multiplication specialist, to evaluate this new expression.
Tessa tells Sam that her answer is 36, and, because the multiplication is the entire problem
to be solved, this is Sam’s answer also.

Here’s another example:

Suppose Alonzo hires Harry to compute this expression. Harry must first substitute the
actual argument values (5 and 12) into the body of :

Now he evaluates that expression, just as Alonzo would evaluate it if you typed it at a
Scheme prompt. That is, Harry hires four little people: one expert, one expert,
and two experts.* In particular, some little person has to evaluate ,
by substituting 5 for in the body of , as in the earlier example. Similarly, we
substitute 12 for in order to evaluate :

⇒

⇒

⇒

Pitfalls

each compound procedure
composed

one

sum

f x x

x

Chapter 4 Defining Your Own Procedures 51

* This is especially problematic for people who used to program in a language like Pascal or
BASIC, where you say things like “ ” all the time.

(define (sum-of-squares x y) ;; wrong!
(square x)
(square y))

(define (sum-of-squares x y)
(+ (square x)

(square y)))

(define (f x) ;; wrong!
(* x 3)
(+ x 10))

X = X * 3

Don’t forget, in the heady rush of learning about the substitution model, what you already
knew from before: Each piece of this computation is done by a little person, and some
other little person is waiting for the result. In other words, the substitution model tells us
how is carried out, but doesn’t change our picture of the way in
which procedure invocations are into larger expressions.

Don’t forget that a function can have only return value. For example, here’s a
program that’s supposed to return the sum of the squares of its two arguments:

The problem is that the body of this procedure has two expressions, instead of just one.
As it turns out, Scheme just ignores the value of the first expression in cases like this, and
returns the value of the last one. What the programmer wants is the of these two
values, so the procedure should say

Another pitfall comes from thinking that a procedure call changes the value of a
parameter. Here’s a faulty program that’s supposed to compute the function described
by () = 3 + 10:

Again, the first expression has no effect and Scheme will just return the value + 10.*

A very common pitfall in Scheme comes from choosing the name of a procedure as
a parameter. It doesn’t come up very often with procedures like the ones in this chapter

⇒

⇒

(area 8) area 8 square
(8 8)

8 8 8

square

define

must

name
actual

52 Part II Composition of Functions

(define (square x)
(* x x))

(define (area square) ;; wrong!
(square square))

(define (f (+ 3 x) y) ;; wrong!
(* x y))

whose domains and ranges are both numbers, but it will be more likely later. If you have
a program like this:

then you’ll get in trouble when you invoke the procedure, for example, by saying
. The little person will substitute for everywhere in the

procedure definition, leaving you with the expression to evaluate. That expression
would mean to apply the procedure to the argument , but isn’t a procedure, so an
error message results.

It isn’t a problem if the formal parameter is the name of a procedure that you don’t
use inside the body. The problem arises when you try to use the same name, e.g., ,
with two meanings within a single procedure. But special forms are an exception; you
can never use the name of a special form as a parameter.

A similar problem about name conflicts comes up if you try to use a keyword (the
name of a special form, such as) as some other kind of name—either a formal
parameter or the name of a procedure you’re defining. We’re listing this separately
because the result is likely to be different. Instead of getting the wrong value substituted,
as above, you’ll probably see a special error message along the lines of “improper use of
keyword.”

Formal parameters be words. Some people try to write procedures that have
compound expressions as the formal parameters, like this:

Remember that the job of the procedure definition is only to provide a for
the argument. The argument isn’t pinned down until you invoke the procedure.
People who write programs like the one above are trying to make the procedure definition
do some of the job of the procedure invocation.

4.1

4.2

4.3

Boring Exercises

Chapter 4 Defining Your Own Procedures 53

(define (ho-hum x y)
(+ x (* 2 y)))

(ho-hum 8 12)

(define (yawn x)
(+ 3 (* x 2)))

(yawn (/ 8 2))

(define (f x y) (- y x))

(define (identity x) x)

(define (three x) 3)

(define (seven) 7)

(define (magic n)
(- (/ (+ (+ (* 3 n)

13)
(- n 1))

4)
3))

Consider this procedure:

Show the substitution that occurs when you evaluate

Given the following procedure:

list all the little people that are involved in evaluating

(Give their names, their specialties, their arguments, who hires them, and what they do
with their answers.)

Here are some procedure definitions. For each one, describe the function in
English, show a sample invocation, and show the result of that invocation.

−

−

×
×

9
5

5
9

7

9

Real Exercises

4.4

4.5

4.6

4.7

4.8

fourth
square

scientific

F C C F

54 Part II Composition of Functions

(define (sphere-volume r)
(* (/ 4 3) 3.141592654)
(* r r r))

(define (next x)
(x + 1))

(define (square)
(* x x))

(define (triangle-area triangle)
(* 0.5 base height))

(define (sum-of-squares (square x) (square y))
(+ (square x) (square y)))

> (scientific 7 3)
7000

Each of the following procedure definitions has an error of some kind. Say what’s
wrong and why, and fix it:

Write a procedure to convert a temperature from Fahrenheit to Celsius, and another
to convert in the other direction. The two formulas are = + 32 and = (32).

Define a procedure that computes the fourth power of its argument. Do
this two ways, first using the multiplication function, and then using and not
(directly) using multiplication.

Write a procedure that computes the absolute value of its argument by finding the
square root of the square of the argument.

“Scientific notation” is a way to represent very small or very large numbers by
combining a medium-sized number with a power of 10. For example, 5 10 represents
the number 50000000, while 3.26 10 represents 0.00000000326 in scientific notation.
Write a procedure that takes two arguments, a number and an exponent
of 10, and returns the corresponding value:

4.9

4.10

a b

Chapter 4 Defining Your Own Procedures 55

21/50000 4.2E-4
0.00042

log floor

discount

ceiling

> (scientific 42 -5)
0.00042

> (sci-coefficient 7000)
7

> (sci-exponent 7000)
3

> (discount 10 5)
9.50

> (discount 29.90 50)
14.95

> (tip 19.98)
3.02

> (tip 29.23)
4.77

> (tip 7.54)
1.46

Some versions of Scheme represent fractions in / form, and some use scientific
notation, so you might see or as the result of the last example instead
of , but these are the same value.

(A harder problem for hotshots: Can you write procedures that go in the other direction?
So you’d have

You might find the primitive procedures and helpful.)

Define a procedure that takes two arguments: an item’s initial price and
a percentage discount. It should return the new price:

Write a procedure to compute the tip you should leave at a restaurant. It should
take the total bill as its argument and return the amount of the tip. It should tip by 15%,
but it should know to round up so that the total amount of money you leave (tip plus
original bill) is a whole number of dollars. (Use the procedure to round up.)

itself,
value

57

5 Words and Sentences

square
square

square
quote

> square
#<PROCEDURE>

> (quote square)
SQUARE

> (quote (tomorrow never knows))
(TOMORROW NEVER KNOWS)

> (quote (things we said today))
(THINGS WE SAID TODAY)

We started out, in Part I, with examples about acronyms and so on, but since then
we’ve been working with numbery old numbers. That’s because the discussions about
evaluation and procedure definition were complicated enough without introducing extra
ideas at the same time. But now we’re ready to get back to symbolic programming.

As we mentioned in Chapter 3, everything that you type into Scheme is evaluated
and the resulting value is printed out. Let’s say you want to use “square” as a word in
your program. For example, you want your program to solve the problem, “Give me an
adjective that describes Barry Manilow.” If you just type into Scheme, you will
find out that is a procedure:

(Different versions of Scheme will have different ways of printing out procedures.)

What you need is a way to say that you want to use the word “ ” rather
than the of that word, as an expression. The way to do this is to use :

is

strings.

symbols.

58 Part II Composition of Functions

> ’("can’t" buy me love)
("can’t" BUY ME LOVE)

> ’square
SQUARE

> ’(old brown shoe)
(old brown shoe)

Quote

quote

quote

(can’t buy me love) (can (quote t) buy me
love)

* Actually, it possible to put punctuation inside words as long as the entire word is enclosed in
double-quote marks, like this:

Words like that are called We’re not going to use them in any examples until almost the end
of the book. Stay away from punctuation and you won’t get in trouble. However, question marks
and exclamation points are okay. (Ordinary words, the ones that are neither strings nor numbers,
are officially called)

is a special form, since its argument isn’t evaluated. Instead, it just returns
the argument as is.

Scheme programmers use a lot, so there is an abbreviation for it:

(Since Scheme uses the apostrophe as an abbreviation for , you can’t use one
as an ordinary punctuation mark in a sentence. That’s why we’ve been avoiding titles
like . To Scheme this would mean

!)*

This idea of quoting, although it may seem arbitrary in the context of computer
programming, is actually quite familiar from ordinary English. What is a book? It’s a
bunch of pieces of paper, with printing on them, bound together. What is “a book”? It’s
a noun phrase, made up of an article and a noun. See? Similarly, what’s 2 + 3? It’s five.
What’s “2 + 3”? It’s an arithmetic formula. When you see words inside quotation marks,
you understand that you’re supposed to think about the words themselves; you don’t
evaluate what they mean. Scheme is the same way.

(It’s no accident that kids who make jokes like

Matt: “Say your name.”

Brian: “Your name.”

grow up to be computer programmers. The difference between a thing and its name is
one of the important ideas that programmers need to understand.)

Selectors

selectors.

Chapter 5 Words and Sentences 59

> (first ’something)
S

> (first ’(eight days a week))
EIGHT

> (first 910)
9

> (last ’something)
G

> (last ’(eight days a week))
WEEK

> (last 910)
0

> (butfirst ’something)
OMETHING

> (butfirst ’(eight days a week))
(DAYS A WEEK)

> (butfirst 910)
10

> (butlast ’something)
SOMETHIN

So far all we’ve done with words and sentences is quote them. To do more interesting
work, we need tools for two kinds of operations: We have to be able to take them apart,
and we have to be able to put them together.* We’ll start with the take-apart tools; the
technical term for them is

* The procedures we’re about to show you are not part of standard, official Scheme. Scheme
does provide ways to do these things, but the regular ways are somewhat more complicated and
error-prone for beginners. We’ve provided a simpler way to do symbolic computing, using ideas
developed as part of the Logo programming language.

n
n

60 Part II Composition of Functions

first first

butfirst butfirst
last butlast

butfirst butlast
but first but last

item

> (butlast ’(eight days a week))
(EIGHT DAYS A)

> (butlast 910)
91

(define (second thing)
(first (butfirst thing)))

> (second ’(like dreamers do))
DREAMERS

> (second ’michelle)
I

> (item 4 ’(being for the benefit of mister kite!))
BENEFIT

> (item 4 ’benefit)
E

> (first ’because)
B

> (first ’(because))
BECAUSE

Notice that the of a sentence is a word, while the of a word is a letter. (But
there’s no separate data type called “letter”; a letter is the same as a one-letter word.)
The of a sentence is a sentence, and the of a word is a word. The
corresponding rules hold for and .

The names and aren’t meant to describe ways to sled; they
abbreviate “all the ” and “all the .”

You may be wondering why we’re given ways to find the first and last elements but
not the 42nd element. It turns out that the ones we have are enough, since we can use
these primitive selectors to define others:

There is, however, a primitive selector that takes two arguments, a number and a
word or sentence, and returns the th element of the second argument.

Don’t forget that a sentence containing exactly one word is different from the word
itself, and selectors operate on the two differently:

Constructors

butfirst

butfirst butlast bf
bl

word sentence Word

empty sentence.

empty word,

constructors.

Chapter 5 Words and Sentences 61

> (butfirst ’because)
ECAUSE

> (butfirst ’(because))
()

> (butfirst ’a)
""

> (butfirst 1024)
"024"

> 024
24

> "024"
"024"

> (word ’ses ’qui ’pe ’da ’lian ’ism)
SESQUIPEDALIANISM

The value of that last expression is the You can tell it’s a sentence because
of the parentheses, and you can tell it’s empty because there’s nothing between them.

As these examples show, sometimes returns a word that has to have double-
quote marks around it. The first example shows the while the second shows
a number that’s not in its ordinary form. (Its numeric value is 24, but you don’t usually
see a zero in front.)

We’re going to try to avoid printing these funny words. But don’t be surprised if you see
one as the return value from one of the selectors for words. (Notice that you don’t have
to put a single quote in front of the double quotes. Strings are self-evaluating, just as
numbers are.)

Since and are so hard to type, there are abbreviations and
. You can figure out which is which.

Functions for putting things together are called For now, we just have two of
them: and . takes any number of words as arguments and joins
them all together into one humongous word:

First-Class Words and Sentences

Sentence

Sentence se

makes 2
makes

makes

2

characters

machine language

62 Part II Composition of Functions

> (word ’now ’here)
NOWHERE

> (word 35 893)
35893

> (sentence ’carry ’that ’weight)
(CARRY THAT WEIGHT)

> (sentence ’(john paul) ’(george ringo))
(JOHN PAUL GEORGE RINGO)

> (se ’(one plus one) ’makes 2)
(ONE PLUS ONE MAKES 2)

is similar, but slightly different, since it can take both words and sentences
as arguments:

is also too hard to type, so there’s the abbreviation .

By the way, why did we have to quote in the last example, but not ? It’s
because numbers are self-evaluating, as we said in Chapter 3. We have to quote
because otherwise Scheme would look for something named instead of using the
word itself. But numbers can’t be the names of things; they represent themselves. (In
fact, you could quote the and it wouldn’t make any difference—do you see why?)

If Scheme isn’t your first programming language, you’re probably accustomed to dealing
with English text on a computer quite differently. Many other languages treat a sentence,
for example, as simply a collection (a “string”) of such as letters, spaces, and
punctuation. Those languages don’t help you maintain the two-level nature of English
text, in which a sentence is composed of words, and a word is composed of letters.

Historically, computers just dealt with numbers. You could add two numbers, move
a number from one place in the computer’s memory to another place, and so on. Since
each instruction in the computer’s native couldn’t process anything
larger than a number, programmers developed the attitude that a single number is a “real
thing” while anything more complicated has to be considered as a collection of things,
rather than as a single thing in itself.

⇒

⇒

Pitfalls

quote

word
sentence

your

first-class data

variables
lists

Chapter 5 Words and Sentences 63

(define (plural word) ;; wrong!
(word word ’s))

> (plural ’george)
ERROR: GEORGE isn’t a procedure

(word ’george ’s)

The computer represents a text character as a single number. In many programming
languages, therefore, a character is a “real thing,” but a word or sentence is understood
only as a collection of these character-code numbers.

But this isn’t the way in which human beings normally think about their own language.
To you, a word isn’t primarily a string of characters (although it may temporarily seem
like one if you’re competing in a spelling bee). It’s more like a single unit of meaning.
Similarly, a sentence is a linguistic structure whose parts are words, not letters and spaces.

A programming language should let you express your ideas in terms that match
way of thinking, not the computer’s way. Technically, we say that words and sentences
should be in our language. This means that a sentence, for example, can
be an argument to a procedure; it can be the value returned by a procedure; we can
give it a name; and we can build aggregates whose elements are sentences. So far we’ve
seen how to do the first two of these. We’ll finish the job in Chapter 7 (on) and
Chapter 17 (on).

We’ve been avoiding apostrophes in our words and sentences because they’re
abbreviations for the special form. You must also avoid periods, commas,
semicolons, quotation marks, vertical bars, and, of course, parentheses, since all of these
have special meanings in Scheme. You may, however, use question marks and exclamation
points.

Although we’ve already mentioned the need to avoid names of primitives when
choosing formal parameters, we want to remind you specifically about the names
and . These are often very tempting formal parameters, because many
procedures have words or sentences as their domains. Unfortunately, if you choose these
names for parameters, you won’t be able to use the corresponding procedures within
your definition.

The result of substitution was not, as you might think,

⇒

⇒

⇒

always

64 Part II Composition of Functions

wd sent word sentence

butfirst
(sexy sadie)

count

"6-of-hearts"
6-of-hearts

Quote

(good night)

(’george ’george ’s)

> (bf ’(sexy sadie))
(SADIE)

> (first (bf ’(sexy sadie)))
SADIE

> ’(good night)
(GOOD NIGHT)

> (bf ’(good night))
(NIGHT)

count* You met in Chapter 2. It takes a word or sentence as its argument, returning either the
number of letters in the word or the number of words in the sentence.

but rather

We’ve been using and as formal parameters instead of and ,
and we recommend that practice.

There’s a difference between a word and a single-word sentence. For example,
people often fall into the trap of thinking that the of a two-word sentence
such as is the second word, but it’s not. It’s a one-word-long sentence.
For example, its is one, not five.*

We mentioned earlier that sometimes Scheme has to put double-quote marks around
words. Just ignore them; don’t get upset if your procedure returns
instead of just .

doesn’t mean “print.” Some people look at interactions like this:

and think that the quotation mark was an instruction telling Scheme to print what
comes after it. Actually, Scheme prints the value of each expression you type, as
part of the read-eval-print loop. In this case, the value of the entire expression is the
subexpression that’s being quoted, namely, the sentence . That value
wouldn’t be printed if the quotation were part of some larger expression:

⇒

5.1

Boring Exercises

"075"
strings-are-numbers

#f

Chapter 5 Words and Sentences 65

* See Appendix A for a fuller explanation.

> (+ 3 (bf 1075))
ERROR: INVALID ARGUMENT TO +: "075"

> (strings-are-numbers #t)
OKAY

(sentence ’I ’(me mine))

(sentence ’() ’(is empty))

(word ’23 ’45)

(se ’23 ’45)

(bf ’a)

(bf ’(aye))

(count (first ’(maggie mae)))

(se "" ’() "" ’())

(count (se "" ’() "" ’()))

If you see an error message like

try entering the expression

and try again. (The extension to Scheme that allows arithmetic operations to work on
nonstandard numbers like makes ordinary arithmetic slower than usual. So we’ve
provided a way to turn the extension on and off. Invoking
with the argument turns off the extension.)*

What values are printed when you type these expressions to Scheme? (Figure it out
in your head before you try it on the computer.)

5.2

5.3

5.4

5.5

5.6

5.7

5.8

66 Part II Composition of Functions

(first ’mezzanine) (first
’(mezzanine))

(first (square 7))
(first ’(square 7))

(word ’a ’b ’c) (se ’a ’b ’c)

(bf ’zabadak) (butfirst ’zabadak)

(bf ’x) (butfirst ’(x))

> (f1 ’(a b c) ’(d e f))
(B C D E)

> (f2 ’(a b c) ’(d e f))
(B C D E AF)

> (f3 ’(a b c) ’(d e f))
(A B C A B C)

> (f4 ’(a b c) ’(d e f))
BE

(here, there and everywhere)
(help!)
(all i’ve got to do)
(you know my name (look up the number))

For each of the following examples, write a procedure of two arguments that, when
applied to the sample arguments, returns the sample result. Your procedures may not
include any quoted data.

Explain the difference in meaning between and
.

Explain the difference between the two expressions and
.

Explain the difference between and .

Explain the difference between and .

Explain the difference between and .

Which of the following are legal Scheme sentences?

Real Exercises

5.9

5.10

5.11

5.12

5.13

5.14

5.15

before

Chapter 5 Words and Sentences 67

butfirst

last

first last butfirst butlast

’’banana

(first ’’banana)

third

first-two

(se (word (bl (bl (first ’(make a))))
(bf (bf (last ’(baseball mitt)))))

(word (first ’with) (bl (bl (bl (bl ’rigidly))))
(first ’held) (first (bf ’stitches))))

(se (word (bl (bl ’bring)) ’a (last ’clean))
(word (bl (last ’(baseball hat))) (last ’for) (bl (bl ’very))

(last (first ’(sunny days)))))

> (first-two ’ambulatory)
AM

Figure out what values each of the following will return you try them on the
computer:

What kinds of argument can you give so that it returns a word? A
sentence?

What kinds of argument can you give so that it returns a word? A sentence?

Which of the functions , , , and can return an
empty word? For what arguments? What about returning an empty sentence?

What does stand for?

What is and why?

Write a procedure that selects the third letter of a word (or the third word
of a sentence).

Write a procedure that takes a word as its argument, returning a
two-letter word containing the first two letters of the argument.

5.16

5.17

5.18

5.19

68 Part II Composition of Functions

two-first

two-first-sent

knight

insert-and

> (two-first ’brian ’epstein)
BE

> (two-first-sent ’(brian epstein))
BE

> (knight ’(david wessel))
(SIR DAVID WESSEL)

(define (ends word)
(word (first word) (last word)))

> (ends ’john)

> (insert-and ’(john bill wayne fred joey))
(JOHN BILL WAYNE FRED AND JOEY)

Write a procedure that takes two words as arguments, returning a
two-letter word containing the first letters of the two arguments.

Now write a procedure that takes a two-word sentence as argument,
returning a two-letter word containing the first letters of the two words.

Write a procedure that takes a person’s name as its argument and returns
the name with “Sir” in front of it.

Try the following and explain the result:

Write a procedure that takes a sentence of items and returns a new
sentence with an “and” in the right place:

query

5.20

5.21

Chapter 5 Words and Sentences 69

Define a procedure to find somebody’s middle names:

Write a procedure that turns a statement into a question by swapping the
first two words and adding a question mark to the last word:

> (middle-names ’(james paul mccartney))
(PAUL)

> (middle-names ’(john ronald raoul tolkien))
(RONALD RAOUL)

> (middle-names ’(bugs bunny))
()

> (middle-names ’(peter blair denis bernard noone))
(BLAIR DENIS BERNARD)

> (query ’(you are experienced))
(ARE YOU EXPERIENCED?)

> (query ’(i should have known better))
(SHOULD I HAVE KNOWN BETTER?)

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so, it
would be; but as it isn’t, it ain’t. That’s logic.”

If

if

#t #f
Booleans

71

6 True and False

(define (greet name)
(if (equal? (first name) ’professor)

(se ’(i hope i am not bothering you) ’professor (last name))
(se ’(good to see you) (first name))))

> (greet ’(matt wright))
(GOOD TO SEE YOU MATT)

> (greet ’(professor harold abelson))
(I HOPE I AM NOT BOTHERING YOU PROFESSOR ABELSON)

We still need one more thing before we can write more interesting programs: the ability
to make decisions. Scheme has a way to say “if this is true, then do this thing, otherwise
do something else.”

Here’s a procedure that greets a person:

The program greets a person by checking to see if that person is a professor. If so, it
says, “I hope I am not bothering you” and then the professor’s name. But if it’s a regular
person, the program just says, “Good to see you,” and then the person’s first name.

takes three arguments. The first has to be either true or false. (We’ll talk in a
moment about exactly what true and false look like to Scheme.) In the above example,
the first word of the person’s name might or might not be equal to the word “Professor.”
The second and third arguments are expressions; one or the other of them is evaluated
depending on the first argument. The value of the entire expression is the value of
either the second or the third argument.

You learned in Chapter 2 that Scheme includes a special data type called
to represent true or false values. There are just two of them: for “true” and for

> (= 3 4)
()

Predicates

some

subject
predicate.

if

if
greet

#t #f
equal? #t

#f

predicate.

72 Part II Composition of Functions

> (if #t (+ 4 5) (* 2 7))
9

> (member? ’mick ’(dave dee dozy beaky mick and tich))
#T
> (member? ’mick ’(john paul george ringo))
#F
> (member? ’e ’truly)
#F

() #f

“false.”*

We said that the first argument to has to be true or false. Of course, it would be
silly to say

because what’s the point of using if we already know which branch will be followed?
Instead, as in the example, we call some procedure whose return value will be
either true or false, depending on the particular arguments we give it.

A function that returns either or is called a ** You’ve already seen the
predicate. It takes two arguments, which can be of any type, and returns if the

two arguments are the same value, or if they’re different. It’s a convention in Scheme
that the names of predicates end with a question mark, but that’s just a convention. Here
are some other useful predicates:

* In versions of Scheme, the empty sentence is considered false. That is, and may
be the same thing. The reason that we can’t be definite about this point is that older versions of
Scheme follow the traditional Lisp usage, in which the empty sentence is false, but since then a
standardization committee has come along and insisted that the two values should be different. In
this book we’ll consider them as different, but we’ll try to avoid examples in which it matters. The
main point is that you shouldn’t be surprised if you see something like this:

in the particular implementation of Scheme that you’re using.

** Why is it called that? Think about an English sentence, such as “Ringo is a drummer.” As you
may remember from elementary school, “Ringo” is the of that sentence, and “is a drummer”
is the That predicate could be truthfully attached to some subjects but not others. For
example, it’s true of “Neil Peart” but not of “George Harrison.” So the predicate “is a drummer”
can be thought of as a function whose value is true or false.

Chapter 6 True and False 73

Member?
= > < >= <=

Before? < Empty?

equal? =

equal?

> (member? ’y ’truly)
#T
> (= 3 4)
#F
> (= 67 67)
#T
> (> 98 97)
#T
> (before? ’zorn ’coleman)
#F
> (before? ’pete ’ringo)
#T
> (empty? ’(abbey road))
#F
> (empty? ’())
#T
> (empty? ’hi)
#F
> (empty? (bf (bf ’hi)))
#T
> (empty? "")
#T

> (number? ’three)
#F
> (number? 74)
#T
> (boolean? #f)
#T
> (boolean? ’(the beatles))
#F

takes two arguments; it checks to see if the first one is a member of the second.
The , , , , and functions take two numbers as arguments and do the obvious
comparisons. (By the way, these are exceptions to the convention about question marks.)

is like , but it compares two words alphabetically. checks to see if its
argument is either the empty word or the empty sentence.

Why do we have both and in Scheme? The first of these works on any
kind of Scheme data, while the second is defined only for numbers. You could get
away with always using , but the more specific form makes your program more
self-explanatory; people reading the program know right away that you’re comparing
numbers.

There are also several predicates that can be used to test the type of their argument:

-
abs

Using Predicates

74 Part II Composition of Functions

> (boolean? 234)
#F
> (boolean? #t)
#T
> (word? ’flying)
#T
> (word? ’(dig it))
#F
> (word? 87)
#T
> (sentence? ’wait)
#F
> (sentence? ’(what goes on))
#T

(define (vowel? letter)
(member? letter ’aeiou))

(define (positive? number)
(> number 0))

(define (abs num)
(if (< num 0)

(- num)
num))

(define (buzz num)
(if (or (divisible? num 7) (member? 7 num))

’buzz
num))

Of course, we can also define new predicates:

Here’s a procedure that returns the absolute value of a number:

(If you call with just one argument, it returns the negative of that argument.) Scheme
actually provides as a primitive procedure, but we can redefine it.

Do you remember how to play buzz? You’re all sitting around the campfire and
you go around the circle counting up from one. Each person says a number. If your
number is divisible by seven or if one of its digits is a seven, then instead of calling out
your number, you say “buzz.”

Or

Remainder

Or
And

not

buzz
divisible?

buzz-helper

or
or

and and

helper procedure

Chapter 6 True and False 75

(define (divisible? big little)
(= (remainder big little) 0))

(define (plural wd)
(word wd ’s))

> (plural ’beatle)
BEATLES

> (plural ’computer)
COMPUTERS

> (plural ’fly)
FLYS

(define (plural wd)
(if (equal? (last wd) ’y)

(word (bl wd) ’ies)
(word wd ’s)))

can take any number of arguments, each of which must be true or false. It returns
true if any of its arguments are true, that is, if the first argument is true the second
argument is true . . . (, as you know, takes two integers and tells you what
the remainder is when you divide the first by the second. If the remainder is zero, the
first number is divisible by the second.)

is one of three functions in Scheme that combine true or false values to produce
another true or false value. returns true if all of its arguments are true, that is, the
first second . . . Finally, there’s a function that takes exactly one argument,
returning true if that argument is false and vice versa.

In the last example, the procedure we really wanted to write was , but we found
it useful to define also. It’s quite common that the easiest way to solve
some problem is to write a to do part of the work. In this case the helper
procedure computes a function that’s meaningful in itself, but sometimes you’ll want to
write procedures with names like that are useful only in the context of
one particular problem.

Let’s write a program that takes a word as its argument and returns the plural of that
word. Our first version will just put an “s” on the end:

This works for most words, but not those that end in “y.” Here’s version two:

If

And Or

Is a Special Form

So Are and

if

if sure

if
if

if

And or
or

And

76 Part II Composition of Functions

(if (= 3 3)
’sure
(factorial 1000))

(define (divisible? big small)
(= (remainder big small) 0))

(define (num-divisible-by-4? x)
(and (number? x) (divisible? x 4)))

> (num-divisible-by-4? 16)
#T

* Since you can start a new line in the middle of an expression, in some cases the arguments
will be “top to bottom” rather than “left to right,” but don’t forget that Scheme doesn’t care about
line breaks. That’s why Lisp programmers always talk as if their programs were written on one
enormously long line.

This isn’t exactly right either; it thinks that the plural of “boy” is “boies.” We’ll ask you to
add some more rules in Exercise 6.12.

There are a few subtleties that we haven’t told you about yet. First of all, is a special
form. Remember that we’re going to need the value of only one of its last two arguments.
It would be wasteful for Scheme to evaluate the other one. So if you say

won’t compute the factorial of 1000 before returning .

The rule is that always evaluates its first argument. If the value of that argument
is true, then evaluates its second argument and returns its value. If the value of the
first argument is false, then evaluates its third argument and returns that value.

and are also special forms. They evaluate their arguments in order from left to
right* and stop as soon as they can. For , this means returning true as soon as any of
the arguments is true. returns false as soon as any argument is false. This turns out
to be useful in cases like the following:

Everything That Isn’t False Is True

every

semipredicates

Chapter 6 True and False 77

x 4
divisible? and

number? divisible?
x

#f 4

#T #f

#f

And or or
or

> (num-divisible-by-4? 6)
#F

> (num-divisible-by-4? ’aardvark)
#F

> (divisible? ’aardvark 4)
ERROR: AARDVARK IS NOT A NUMBER

> (if (+ 3 4) ’yes ’no)
YES

(define (integer-quotient big little)
(if (divisible? big little)

(/ big little)
#f))

> (integer-quotient 27 3)
9

> (integer-quotient 12 5)
#F

We want to see if is a number, and, if so, if it’s divisible by . It would be an error to
apply to a nonnumber. If were an ordinary procedure, the two tests
(and) would both be evaluated before we would have a chance
to pay attention to the result of the first one. Instead, if turns out not to be a number,
our procedure will return without trying to divide it by .

isn’t the only true value. In fact, value is considered true except for .

This allows us to have that give slightly more information than just true
or false. For example, we can write an integer quotient procedure. That is to say,
our procedure will divide its first argument by the second, but only if the first is evenly
divisible by the second. If not, our procedure will return .

and are also semipredicates. We’ve already explained that returns a true
result as soon as it evaluates a true argument. The particular true value that returns
is the value of that first true argument:

And

integer-quotient

If

cond

Decisions, Decisions, Decisions

78 Part II Composition of Functions

> (or #f 3 #f 4)
3

> (and 1 2 3 4 5)
5

(define (integer-quotient big little) ;; alternate version
(and (divisible? big little)

(/ big little)))

(define (roman-value letter)
(if (equal? letter ’i)

1
(if (equal? letter ’v)

5
(if (equal? letter ’x)

10
(if (equal? letter ’l)

50
(if (equal? letter ’c)

100
(if (equal? letter ’d)

500
(if (equal? letter ’m)

1000
’huh?))))))))

returns a true value only if all of its arguments are true. In that case, it returns the
value of the last argument:

As an example in which this behavior is useful, we can rewrite
more tersely:

is great for an either-or choice. But sometimes there are several possibilities to
consider:

That’s pretty hideous. Scheme provides a shorthand notation for situations like this in
which you have to choose from among several possibilities: the special form .

()
()
()
()
()
()
()
()

()

cond
cond

cond

Cond

if

cond

Cond cond
cond

cond

most some

two expressions
cond clause.

condition
consequent

Chapter 6 True and False 79

(define (roman-value letter)
(cond ((equal? letter ’i) 1)

((equal? letter ’v) 5)
((equal? letter ’x) 10)
((equal? letter ’l) 50)
((equal? letter ’c) 100)
((equal? letter ’d) 500)
((equal? letter ’m) 1000)
(else ’huh?)))

(define (roman-value letter)
(cond (equal? letter ’i) 1

(equal? letter ’v) 5
(equal? letter ’x) 10
(equal? letter ’l) 50
(equal? letter ’c) 100
(equal? letter ’d) 500
(equal? letter ’m) 1000
else ’huh?))

(equal? letter ’l) 50

The tricky thing about is that it doesn’t use parentheses in quite the same way
as the rest of Scheme. Ordinarily, parentheses mean procedure invocation. In ,

of the parentheses still mean that, but of them are used to group pairs of tests
and results. We’ve reproduced the same expression below, indicating the funny
ones in boldface.

takes any number of arguments, each of which is inside a pair
of parentheses. Each argument is called a In the example above, one typical
clause is

The outermost parentheses on that line enclose two expressions. The first of the two
expressions (the) is taken as true or false, just like the first argument to . The
second expression of each pair (the) is a candidate for the return value of the
entire invocation.

examines its arguments from left to right. Remember that since is a
special form, its arguments are not evaluated ahead of time. For each argument,
evaluates the first of the two expressions within the argument. If that value turns out to
be true, then evaluates the second expression in the same argument, and returns

cond

else
else

cond

cond

#t #f
true false

cond

not

most restrictive

is

80 Part II Composition of Functions

* What if you don’t use an clause at all? If none of the clauses has a true condition, then
the return value is unspecified. In other words, always use .

** Conditions are mutually exclusive if only one of them can be true at a time.

(define (truefalse value)
(cond (value ’true)

(else ’false)))

> (truefalse (= 2 (+ 1 1)))
TRUE

> (truefalse (= 5 (+ 2 2)))
FALSE

(cond ((number? (first sent))) ;; wrong
((empty? sent))

)

(cond ((empty? sent))
((and (not (empty? sent)) (number? (first sent))))

)

else
else

that value without examining any further arguments. But if the value is false, then
does evaluate the second expression; instead, it goes on to the next argument.

By convention, the last argument always starts with the word instead of an
expression. You can think of this as representing a true value, but doesn’t mean
true in any other context; you’re only allowed to use it as the condition of the last clause
of a .*

Don’t get into bad habits of thinking about the appearance of clauses in terms
of “two parentheses in a row.” That’s often the case, but not always. For example,
here is a procedure that translates Scheme true or false values (and) into more
human-readable words and .

When a tests several possible conditions, they might not be mutually exclu-
sive.** This can be either a source of error or an advantage in writing efficient programs.
The trick is to make the test first. For example, it would be an error to say

. . .
. . .

. . .

because the first test only makes sense once you’ve already established that there a first
word of the sentence. On the other hand, you don’t have to say

. . .
. . .

. . .

If

greet

if

if
if

Is Composable

Chapter 6 True and False 81

> (greet ’(brian epstein))
(PLEASED TO MEET YOU BRIAN -- HOW ARE YOU?)

> (greet ’(professor donald knuth))
(PLEASED TO MEET YOU PROFESSOR KNUTH -- HOW ARE YOU?)

(define (greet name)
(if (equal? (first name) ’professor)

(se ’(pleased to meet you)
’professor
(last name)
’(-- how are you?))

(se ’(pleased to meet you)
(first name)
’(-- how are you?))))

(define (greet name)
(se ’(pleased to meet you)

(if (equal? (first name) ’professor)
(se ’professor (last name))
(first name))

’(-- how are you?)))

because you’ve already established that the sentence is nonempty if you get as far as the
second clause.

Suppose we want to write a procedure that works like this:

The response of the program in these two cases is almost the same; the only difference is
in the form of the person’s name.

This procedure could be written in two ways:

The second version avoids repeating the common parts of the response by using
within a larger expression.

Some people find it counterintuitive to use as we did in the second version.
Perhaps the reason is that in some other programming languages, is a “command”
instead of a function like any other. A mechanism that selects one part of a program
to run, and leaves out another part, may seem too important to be a mere argument

⇒

⇒

⇒

Pitfalls

every

82 Part II Composition of Functions

(equal? argument (or ’yes ’no)) ; wrong!

if
if and

or

if
if

cond

cond

member?

member?

and or

yes no

argument equal yes or no
or

* Strictly speaking, since the argument expressions to a special form aren’t evaluated, is a
function whose domain is expressions, not their values. But many special forms, including , ,
and , are designed to act as if they were ordinary functions, the kind whose arguments Scheme
evaluates in advance. The only difference is that it is sometimes possible for Scheme to figure out
the correct return value after evaluating only some of the arguments. Most of the time we’ll just
talk about the domains and ranges of these special forms as if they were ordinary functions.

subexpression. But in Scheme, the value returned by function can be used as part
of a larger expression.*

We aren’t saying anything new here. We’ve already explained the idea of composition
of functions, and we’re just making the same point again about . But we’ve learned
that many students expect to be an exception, so we’re taking the opportunity to
emphasize the point: There are no exceptions to this rule.

The biggest pitfall in this chapter is the unusual notation of . Keeping track of
the parentheses that mean function invocation, as usual, and the parentheses that just
group the parts of a clause is tricky until you get accustomed to it.

Many people also have trouble with the asymmetry of the predicate. The
first argument is something small; the second is something big. (The order of arguments
is the same as the order of a typical English sentence about membership: “Is Mick a
member of the Beatles?”) It seems pretty obvious when you look at an example in which
both arguments are quoted constant values, but you can get in trouble when you define
a procedure and use its parameters as the arguments to . Compare writing a
procedure that says, “does the letter E appear in this word?” with one that says, “is this
letter a vowel?”

Many people try to use and with the full flexibility of the corresponding
English words. Alas, Scheme is not English. For example, suppose you want to know
whether the argument to a procedure is either the word or the word . You can’t
say

This sounds promising: “Is the to the word the word ?”
But the arguments to must be true-or-false values, not things you want to check for

⇒

6.1

Boring Exercises

Chapter 6 True and False 83

or
member?

(not (even? n)) #t #f

(or (equal? argument ’yes) (equal? argument ’no))

(member? argument ’(yes no))

(define (odd? n)
(if (not (even? n)) #t #f))

(define (odd? n)
(not (even? n)))

(cond ((= 3 4) ’(this boy))
((< 2 5) ’(nowhere man))
(else ’(two of us)))

(cond (empty? 3)
(square 7)
(else 9))

(define (third-person-singular verb)
(cond ((equal? verb ’be) ’is)

((equal? (last verb) ’o) (word verb ’es))
(else (word verb ’s))))

(third-person-singular ’go)

equality with something else. You have to make two separate equality tests:

In this particular case, you could also solve the problem by saying

but the question of trying to use as if it were English comes up in other cases for which
won’t help.

This isn’t exactly a pitfall, because it won’t stop your program from working, but
programs like

are redundant. Instead, you could just say

since the value of is already or .

What values are printed when you type these expressions to Scheme? (Figure it out
in your head before you try it on the computer.)

AM PM

6.2

6.3

6.4

6.5

Real Exercises

84 Part II Composition of Functions

cond if

if cond

european-time
american-time

(or #f #f #f #t)

(and #f #f #f #t)

(or (= 2 3) (= 4 3))

(not #f)

(or (not (= 2 3)) (= 4 3))

(or (and (= 2 3) (= 3 3)) (and (< 2 3) (< 3 4)))

(define (sign number)
(if (< number 0)

’negative
(if (= number 0)

’zero
’positive)))

(define (utensil meal)
(cond ((equal? meal ’chinese) ’chopsticks)

(else ’fork)))

> (european-time ’(8 am))
8

What values are printed when you type these expressions to Scheme? (Figure it out
in your head before you try it on the computer.)

Rewrite the following procedure using a instead of the s:

Rewrite the following procedure using an instead of the :

Note: Writing helper procedures may be useful in solving some of these problems.

Write a procedure to convert a time from American /
notation into European 24-hour notation. Also write , which does the
opposite:

6.6

6.7

6.8

Chapter 6 True and False 85

teen?

type-of
word sentence number boolean

number

indef-article

h hour

> (european-time ’(4 pm))
16

> (american-time 21)
(9 PM)

> (american-time 12)
(12 PM)

> (european-time ’(12 am))
24

> (type-of ’(getting better))
SENTENCE

> (type-of ’revolution)
WORD

> (type-of (= 3 3))
BOOLEAN

> (indef-article ’beatle)
(A BEATLE)

> (indef-article ’album)
(AN ALBUM)

Getting noon and midnight right is tricky.

Write a predicate that returns true if its argument is between 13 and 19.

Write a procedure that takes anything as its argument and returns one of
the words , , , or :

(Even though numbers are words, your procedure should return if its argument
is a number.)

Feel free to check for more specific types, such as “positive integer,” if you are so inclined.

Write a procedure that works like this:

Don’t worry about silent initial consonants like the in .

6.9

6.10

6.11

86 Part II Composition of Functions

1 book
2 books thismany

sort2

valid-date?
#t

> (thismany 1 ’partridge)
(1 PARTRIDGE)

> (thismany 3 ’french-hen)
(3 FRENCH-HENS)

> (sort2 ’(5 7))
(5 7)

> (sort2 ’(7 5))
(5 7)

> (valid-date? 10 4 1949)
#T

> (valid-date? 20 4 1776)
#F

> (valid-date? 5 0 1992)
#F

> (valid-date? 2 29 1900)
#F

> (valid-date? 2 29 2000)
#T

Sometimes you must choose the singular or the plural of a word: but
. Write a procedure that takes two arguments, a number and a

singular noun, and combines them appropriately:

Write a procedure that takes as its argument a sentence containing two
numbers. It should return a sentence containing the same two numbers, but in ascending
order:

Write a predicate that takes three numbers as arguments, repre-
senting a month, a day of the month, and a year. Your procedure should return if
the numbers represent a valid date (e.g., it isn’t the 31st of September). February has 29
days if the year is divisible by 4, except that if the year is divisible by 100 it must also be
divisible by 400.

6.12

6.13

6.14

Chapter 6 True and False 87

plural y y
boy x

greet

describe-time

Make handle correctly words that end in but have a vowel before the ,
such as . Then teach it about words that end in (box). What other special cases
can you find?

Write a better procedure that understands as many different kinds of names
as you can think of:

Write a procedure that takes a number of seconds as its argument
and returns a more useful description of that amount of time:

> (greet ’(john lennon))
(HELLO JOHN)

> (greet ’(dr marie curie))
(HELLO DR CURIE)

> (greet ’(dr martin luther king jr))
(HELLO DR KING)

> (greet ’(queen elizabeth))
(HELLO YOUR MAJESTY)

> (greet ’(david livingstone))
(DR LIVINGSTONE I PRESUME?)

> (describe-time 45)
(45 SECONDS)

> (describe-time 930)
(15.5 MINUTES)

> (describe-time 30000000000)
(9.506426344208686 CENTURIES)

Trombone players produce different pitches partly by varying the length of a tube.

−3

we

X = X + 1

7 Variables

variable

variable
x

x x
named constant! x

x

new

does

have

89

* The term “variable” is used by computer scientists to mean several subtly different things. For
example, some people use “variable” to mean just a holder for a value, without a name. But what
we said is what mean by “variable.”

A is a connection between a name and a value.* That sounds simple enough, but
some complexities arise in practice. To avoid confusion later, we’ll spend some time now
looking at the idea of “variable” in more detail.

The name comes from algebra. Many people are introduced to variables in
high school algebra classes, where the emphasis is on solving equations. “If 8 = 0,
what is the value of ?” In problems like these, although we call a variable, it’s really
a In this particular problem, has the value 2. In any such problem, at
first we don’t know the value of , but we understand that it does have some particular
value, and that value isn’t going to change in the middle of the problem.

In functional programming, what we mean by “variable” is like a named constant in
mathematics. Since a variable is the connection between a name and a value, a formal
parameter in a procedure definition isn’t a variable; it’s just a name. But when we invoke
the procedure with a particular argument, that name is associated with a value, and a
variable is created. If we invoke the procedure again, a variable is created, perhaps
with a different value.

There are two possible sources of confusion about this. One is that you may have
programmed before in a programming language like BASIC or Pascal, in which a variable
often get a new value, even after it’s already had a previous value assigned to it.
Programs in those languages tend to be full of things like “ .” Back in Chapter
2 we told you that this book is about something called “functional programming,” but
we haven’t yet explained exactly what that means. (Of course we introduced a lot

x x
x

(square 5)
x

square
x

How Little People Do Variables

change

90 Part II Composition of Functions

of functions, and that is an important part of it.) Part of what we mean by functional
programming is that once a variable exists, we aren’t going to the value of that
variable.

The other possible source of confusion is that in Scheme, unlike the situation in
algebra, we may have more than one variable with the same name at the same time.
That’s because we may invoke one procedure, and the body of that procedure may invoke
another procedure, and each of them might use the same formal parameter name. There
might be one variable named with the value 7, and another variable named with the
value 51, at the same time. The pitfall to avoid is thinking “ has changed its value from
7 to 51.”

As an analogy, imagine that you are at a party along with Mick Jagger, Mick Wilson,
Mick Avory, and Mick Dolenz. If you’re having a conversation with one of them, the
name “Mick” means a particular person to you. If you notice someone else talking with a
different Mick, you wouldn’t think “Mick has become a different person.” Instead, you’d
think “there are several people here all with the name Mick.”

You can understand variables in terms of the little-people model. A variable, in this
model, is the association in the little person’s mind between a formal parameter (name)
and the actual argument (value) she was given. When we want to know , we
hire Srini and tell him his argument is 5. Srini therefore substitutes 5 for in the body
of . Later, when we want to know the square of 6, we hire Samantha and tell her
that her argument is 6. Srini and Samantha have two different variables, both named .

Chapter 7 Variables 91

x

x y
x square

(square 3) x

(square 4)
x x

x x

x
x

(define (square x) (* x x))

(define (hypotenuse x y)
(sqrt (+ (square x) (square y))))

> (hypotenuse 3 4)
5

Srini and Samantha do their work separately, one after the other. But in a more
complicated example, there could even be more than one value called at the same
time:

Consider the situation when we’ve hired Hortense to evaluate that expression. Hortense
associates the name with the value 3 (and also the name with the value 4, but we’re
going to pay attention to). She has to compute two s. She hires Solomon to
compute . Solomon associates the name with the value 3. This happens
to be the same as Hortense’s value, but it’s still a separate variable that could have had a
different value—as we see when Hortense hires Sheba to compute . Now,
simultaneously, Hortense thinks is 3 and Sheba thinks is 4.

(Remember that we said a variable is a connection between a name and a value. So
isn’t a variable! The association of the name with the value 5 is a variable. The reason

we’re being so fussy about this terminology is that it helps clarify the case in which several
variables have the same name. But in practice people are generally sloppy about this fine
point; we can usually get away with saying “ is a variable” when we mean “there is some
variable whose name is .”)

(f 4) x (g 6)
y x

x 4

define

Global and Local Variables

usually

92 Part II Composition of Functions

(define (f x)
(g 6))

(define (g y)
(+ x y))

> (f 4)
ERROR -- VARIABLE X IS UNBOUND.

(define (f x)
(g x 6))

(define (g x y)
(+ x y))

> (f 4)
10

Another important point about the way little people do variables is that they can’t
read each others’ minds. In particular, they don’t know about the values of the local
variables that belong to the little people who hired them. For example, the following
attempt to compute the value 10 won’t work:

We hire Franz to compute . He associates with 4 and evaluates by hiring
Gloria. Gloria associates with 6, but she doesn’t have any value for , so she’s in trouble.
The solution is for Franz to tell Gloria that is :

Until now, we’ve been using two very different kinds of naming. We have names for
procedures, which are created permanently by and are usable throughout our
programs; and we have names for procedure arguments, which are associated with values
temporarily when we call a procedure and are usable only inside that procedure.

These two kinds of naming seem to be different in every way. One is for procedures,
one for data; the one for procedures makes a permanent, global name, while the one for
data makes a temporary, local name. That picture does reflect the way that procedures
and other data are used, but we’ll see that really there is only one kind of naming.
The boundaries can be crossed: Procedures can be arguments to other procedures, and
any kind of data can have a permanent, global name. Right now we’ll look at that last
point, about global variables.

define

pi last

define
Pi

foo
foo

every

local variable.

Chapter 7 Variables 93

> (define pi 3.141592654)

> (+ pi 5)
8.141592654

> (define song ’(I am the walrus))

> (last song)
WALRUS

Just as we’ve been using to associate names with procedures globally, we can
also use it for other kinds of data:

Once defined, a global variable can be used anywhere, just as a defined procedure
can be used anywhere. (In fact, defining a procedure creates a variable whose value is
the procedure. Just as is the name of a variable whose value is 3.141592654,
is the name of a variable whose value is a primitive procedure. We’ll come back to this
point in Chapter 9.) When the name of a global variable appears in an expression, the
corresponding value must be substituted, just as actual argument values are substituted
for formal parameters.

When a little person is hired to carry out a compound procedure, his or her first step
is to substitute actual argument values for formal parameters in the body. The same little
person substitutes values for global variable names also. (What if there is a global variable
whose name happens to be used as a formal parameter in this procedure? Scheme’s rule
is that the formal parameter takes precedence, but even though Scheme knows what to
do, conflicts like this make your program harder to read.)

How does this little person know what values to substitute for global variable names?
What makes a variable “global” in the little-people model is that little person knows
its value. You can imagine that there’s a big chalkboard, with all the global definitions
written on it, that all the little people can see. If you prefer, you could imagine that
whenever a global variable is defined, the specialist climbs up a huge ladder,
picks up a megaphone, and yells something like “Now hear this! is 3.141592654!”

The association of a formal parameter (a name) with an actual argument (a value)
is called a

It’s awkward to have to say “Harry associates the value 7 with the name ” all the
time. Most of the time we just say “ has the value 7,” paying no attention to whether
this association is in some particular little person’s head or if everybody knows it.

√
2

2

Let

− ± −

The Truth about Substitution

ax bx c x
b b ac

a

94 Part II Composition of Functions

(define (roots a b c)
(se (/ (+ (- b) (sqrt (- (* b b) (* 4 a c))))

(* 2 a))
(/ (- (- b) (sqrt (- (* b b) (* 4 a c))))

(* 2 a))))

X = X + 1

* The reason that all of our examples work with the substitution model is that this book uses only
functional programming, in the sense that we never change the value of a variable. If we started
doing the style of programming, we would need the more complicated chalkboard
model.

** That is, it works if the equation has real roots, or if your version of Scheme has complex

We said earlier in a footnote that Scheme doesn’t actually do all the copying and
substituting we’ve been talking about. What actually happens is more like our model
of global variables, in which there is a chalkboard somewhere that associates names
with values—except that instead of making a new copy of every expression with values
substituted for names, Scheme works with the original expression and looks up the value
for each name at the moment when that value is needed. To make local variables work,
there are several chalkboards: a global one and one for each little person.

The fully detailed model of variables using several chalkboards is what many people
find hardest about learning Scheme. That’s why we’ve chosen to use the simpler
substitution model.*

We’re going to write a procedure that solves quadratic equations. (We know this is the
prototypical boring programming problem, but it illustrates clearly the point we’re about
to make.)

We’ll use the quadratic formula that you learned in high school algebra class:

+ + = 0 when =
4

2

Since there are two possible solutions, we return a sentence containing two numbers.
This procedure works fine,** but it does have the disadvantage of repeating a lot of the

body

Chapter 7 Variables 95

discriminant roots1

roots1
roots1 roots

let

roots1
let

discriminant (sqrt)

Let

let

numbers. Also, the limited precision with which computers can represent irrational numbers can
make this particular algorithm give wrong answers in practice even though it’s correct in theory.

(define (roots a b c)
(roots1 a b c (sqrt (- (* b b) (* 4 a c)))))

(define (roots1 a b c discriminant)
(se (/ (+ (- b) discriminant) (* 2 a))

(/ (- (- b) discriminant) (* 2 a))))

(define (roots a b c)
(let ((discriminant (sqrt (- (* b b) (* 4 a c)))))
(se (/ (+ (- b) discriminant) (* 2 a))

(/ (- (- b) discriminant) (* 2 a)))))

work. It computes the square root part of the formula twice. We’d like to avoid that
inefficiency.

One thing we can do is to compute the square root and use that as the actual
argument to a helper procedure that does the rest of the job:

This version evaluates the square root only once. The resulting value is used as the
argument named in .

We’ve solved the problem we posed for ourselves initially: avoiding the redundant
computation of the discriminant (the square-root part of the formula). The cost, though,
is that we had to define an auxiliary procedure that doesn’t make much sense
on its own. (That is, you’d never invoke for its own sake; only uses it.)

Scheme provides a notation to express a computation of this kind more conveniently.
It’s called :

Our new program is just an abbreviation for the previous version: In effect, it creates
a temporary procedure just like , but without a name, and invokes it with the
specified argument value. But the notation rearranges things so that we can say, in
the right order, “let the variable have the value . . . and, using
that variable, compute the body.”

is a special form that takes two arguments. The first is a sequence of name-value
pairs enclosed in parentheses. (In this example, there is only one name-value pair.) The
second argument, the of the , is the expression to evaluate.

⇒

⇒

Pitfalls

let

cond let

let

change

permanent

96 Part II Composition of Functions

(define (roots a b c)
(let ((discriminant (sqrt (- (* b b) (* 4 a c))))

(minus-b (- b))
(two-a (* 2 a)))

(se (/ (+ minus-b discriminant) two-a)
(/ (- minus-b discriminant) two-a))))

(define (roots1 discriminant minus-b two-a) ...)

> (define x (+ x 3)) ;; no-no

> (let ((a (+ 4 7)) ;; wrong!
(b (* a 5)))

(+ a b))

Now that we have this notation, we can use it with more than one name-value
connection to eliminate even more redundant computation:

In this example, the first argument to includes three name-value pairs. It’s as if we’d
defined and invoked a procedure like the following:

Like , uses parentheses both with the usual meaning (invoking a proce-
dure) and to group sub-arguments that belong together. This grouping happens in two
ways. Parentheses are used to group a name and the expression that provides its value.
Also, an additional pair of parentheses surrounds the entire collection of name-value
pairs.

If you’ve programmed before in other languages, you may be accustomed to a style
of programming in which you the value of a variable by assigning it a new value.
You may be tempted to write

Although some versions of Scheme do allow such redefinitions, so that you can correct
errors in your procedures, they’re not strictly legal. A definition is meant to be

in functional programming. (Scheme does include other mechanisms for
non-functional programming, but we’re not studying them in this book because once
you allow reassignment you need a more complex model of the evaluation process.)

When you create more than one temporary variable at once using , all of the
expressions that provide the values are computed before any of the variables are created.
Therefore, you can’t have one expression depend on another:

⇒

(()
()
())

variables body

before
global

Chapter 7 Variables 97

a b let

(* a 5) a
a b

Let cond

let

Let let

name value

let

(define (helper a b)
(+ a b))

(helper (+ 4 7) (* a 5))

> (let ((a (+ 4 7)))
(let ((b (* a 5)))
(+ a b)))

66

(let)

((name1 value1) (name2 value2) (name3 value3))

(let name1 (fn1 arg1)
name2 (fn2 arg2)
name3 (fn3 arg3)

body)

Don’t think that gets the value 11 and therefore gets the value 55. That
expression is equivalent to defining a helper procedure

and then invoking it:

The argument expressions, as always, are evaluated the function is invoked. The
expression will be evaluated using the value of , if there is one. If not,
an error will result. If you want to use in computing , you must say

’s notation is tricky because, like , it uses parentheses that don’t mean
procedure invocation. Don’t teach yourself magic formulas like “two open parentheses
before the variable and three close parentheses at the end of its value.” Instead,
think about the overall structure:

takes exactly two arguments. The first argument to is one or more name-value
groupings, all in parentheses:

. . .

Each is a single word; each can be any expression, usually a procedure
invocation. If it’s a procedure invocation, then parentheses are used with their usual
meaning.

The second argument to is the expression to be evaluated using those variables.

Now put all the pieces together:

let

7.1

7.2

7.3

Boring Exercises

Real Exercises

98 Part II Composition of Functions

The following procedure does some redundant computation.

Use to avoid the redundant work.

Put in the missing parentheses:

The following program doesn’t work. Why not? Fix it.

It’s supposed to work like this:

(define (gertrude wd)
(se (if (vowel? (first wd)) ’an ’a)

wd
’is
(if (vowel? (first wd)) ’an ’a)
wd
’is
(if (vowel? (first wd)) ’an ’a)
wd))

> (gertrude ’rose)
(A ROSE IS A ROSE IS A ROSE)

> (gertrude ’iguana)
(AN IGUANA IS AN IGUANA IS AN IGUANA)

> (let pi 3.14159
pie ’lemon meringue

se ’pi is pi ’but pie is pie)
(PI IS 3.14159 BUT PIE IS LEMON MERINGUE)

(define (superlative adjective word)
(se (word adjective ’est) word))

> (superlative ’dumb ’exercise)
(DUMBEST EXERCISE)

7.4

Chapter 7 Variables 99

(define (sum-square a b)
(let ((+ *)

(* +))
(* (+ a a) (+ b b))))

What does this procedure do? Explain how it manages to work.

Part III
Functions as Data

to do, that is.

functions

the whole family

100

number-of-arguments
count

acronym

first first every
every

first

make-conjugator

By now you’re accustomed to the idea of expressing a computational process in terms
of the function whose value you want to compute, rather than in terms of a sequence
of actions. But you probably think of a function (or the procedure that embodies it) as
something very different from the words, sentences, numbers, or other data that serve as
arguments to the functions. It’s like the distinction between verbs and nouns in English:
A verb represents something while a noun represents something

In this part of the book our goal is to overturn that distinction.

Like many big ideas, this one seems simple at first. All we’re saying is that a function
can have as its domain or range. One artificially simple example that you’ve
seen earlier was the function in Chapter 2. That function
takes a function as argument and returns a number. It’s not so different from ,
which takes a word or sentence as argument and returns a number.

But you’ll see that this idea leads to an enormous rise in the length and complexity
of the processes you can express in a short procedure, because now a process can give
rise to several other processes. A typical example is the procedure that we
introduced in Chapter 1 and will examine now in more detail. Instead of applying the

procedure to a single word, we use as an argument to a procedure, ,
that automatically applies it to every word of a sentence. A single process gives
rise to several processes.

The same idea of function as data allows us to write procedures that create and return
new procedures. At the beginning of Part II we showed a Scheme representation of a
function that computes the third person singular of a verb. Now, to illustrate the idea of
function as data, we’ll show how to represent in Scheme a function
whose range is of verb-conjugation functions:

compilers interpreters,

101

make-conjugator third-person
Never mind the notation for now; the idea to think about is that we can use

to create many functions similar to the example of
the Part II introduction:

We’ll explore only a tiny fraction of the area opened up by the idea of allowing a
program as data. Further down the same road is the study of and the
programs that translate your programs into instructions that computers can carry out. A
Scheme compiler is essentially a function whose domain is Scheme programs.

(define (make-conjugator prefix ending)
(lambda (verb) (sentence prefix (word verb ending))))

> (define third-person (make-conjugator ’she ’s))

> (third-person ’program)
(SHE PROGRAMS)

> (define third-person-plural-past (make-conjugator ’they ’ed))

> (third-person-plural-past ’play)
(THEY PLAYED)

> (define second-person-future-perfect
(make-conjugator ’(you will have) ’ed))

> (second-person-future-perfect ’laugh)
(YOU WILL HAVE LAUGHED)

Turning function machines into plowshares

first

first

8 Higher-Order Functions

Note: If you read Part IV before this one, pretend you didn’t; we are going to develop a different
technique for solving similar problems.

103

(define (two-firsts sent)
(se (first (first sent))

(first (last sent))))

> (two-firsts ’(john lennon))
(J L)

> (two-firsts ’(george harrison))
(G H)

(define (three-firsts sent)
(se (first (first sent))

(first (first (bf sent)))
(first (last sent))))

> (three-firsts ’(james paul mccartney))
(J P M)

You can use the function to find the first letter of a word. What if you want
to find the first letters of several words? You did this in the first chapter, as part of the
process of finding acronyms.

To start with a simple case, suppose you have two words (that is, a sentence of length
two). You could apply the procedure to each of them and combine the results:

Similarly, here’s the version for three words:

Every

first

Every

every

procedure

104 Part III Functions as Data

(define (first-letters sent)
(cond ((= (count sent) 1) (one-first sent))

((= (count sent) 2) (two-firsts sent))
((= (count sent) 3) (three-firsts sent))

))

(define (first-letters sent)
(every first sent))

> (first-letters ’(here comes the sun))
(H C T S)

> (first-letters ’(lucy in the sky with diamonds))
(L I T S W D)

every

every
every every

and so on

* Like all the procedures in this book that deal with words and sentences, and the other
procedures in this chapter are part of our extensions to Scheme. Later, in Chapter 17, we’ll
introduce the standard Scheme equivalents.

** Talking about strains our resolve to distinguish functions from the procedures that
implement them. Is the argument to a function or a procedure? If we think of itself

But this approach would get tiresome if you had a sentence of five words—you’d have
to write a procedure specifically for the case of exactly five words, and that procedure
would have five separate subexpressions to extract the first word, the second word, and
so on. Also, you don’t want a separate procedure for every sentence length; you want one
function that works no matter how long the sentence is. Using the tools you’ve already
learned about, the only possible way to do that would be pretty hideous:

.

But even this won’t work because there’s no way to say “and so on” in Scheme. You could
write a version that works for all sentences up to, let’s say, length 23, but you’d be in
trouble if someone tried to use your procedure on a 24-word sentence.

To write a better any-length first-letter procedure, you need to be able to say “apply the
function to word in the sentence, no matter how long the sentence is.”
Scheme provides a way to do this:*

takes two arguments. The second argument is a sentence, but the first is
something new: a used as an argument to another procedure.** Notice that

procedure

functions

invocation

word,

Chapter 8 Higher-Order Functions 105

first first-letters

first first every

every
every

every

every
every

as a procedure—that is, if we’re focusing on how it does its job—then of course we must say that
it does its job by repeatedly invoking the that we supply as an argument. But it’s equally
valid for us to focus attention on the function that the procedure implements, and that
function takes as arguments.

> (every last ’(while my guitar gently weeps))
(E Y R Y S)

> (every - ’(4 5 7 8 9))
(-4 -5 -7 -8 -9)

(define (plural noun)
(if (equal? (last noun) ’y)

(word (bl noun) ’ies)
(word noun ’s)))

> (every plural ’(beatle turtle holly kink zombie))
(BEATLES TURTLES HOLLIES KINKS ZOMBIES)

(define (double letter) (word letter letter))

> (every double ’girl)
(GG II RR LL)

> (every square 547)
(25 16 49)

every

there are no parentheses around the word in the body of ! By
now you’ve gotten accustomed to seeing parentheses whenever you see the name of a
function. But parentheses indicate an of a function, and we aren’t invoking

here. We’re using , the procedure itself, as an argument to .

These examples use with primitive procedures, but of course you can also define
procedures of your own and apply them to word of a sentence:

You can also use a word as the second argument to . In this case, the
first-argument procedure is applied to every letter of the word. The results are collected
in a sentence.

In all these examples so far, the first argument to was a function that returned
a and the value returned by was a sentence containing all the returned

all

itself

A Pause for Reflection

every
every

every

every

every

sentence.

higher-order function.

higher-order procedure.

another function
machine!

106 Part III Functions as Data

(define (sent-of-first-two wd)
(se (first wd) (first (bf wd))))

> (every sent-of-first-two ’(the inner light))
(T H I N L I)

> (every sent-of-first-two ’(tell me what you see))
(T E M E W H Y O S E)

> (define (g wd)
(se (word ’with wd) ’you))

> (every g ’(in out))
(WITHIN YOU WITHOUT YOU)

* You can get in trouble mathematically by trying to define a function whose domain includes
functions, because applying such a function to itself can lead to a paradox. In programming, the
corresponding danger is that applying a higher-order procedure to might result in a program
that runs forever.

words. The first argument to can also be a function that returns a In this
case, returns one long sentence:

A function that takes another function as one of its arguments, as does, is
called a If we focus our attention on procedures, the mechanism
through which Scheme computes functions, we think of as a procedure that takes
another procedure as an argument—a

Earlier we used the metaphor of the “function machine,” with a hopper at the top into
which we throw data, and a chute at the bottom from which the result falls, like a meat
grinder. Well, is a function machine into whose hopper we throw

Instead of a meat grinder, we have a metal grinder.*

Do you see what an exciting idea this is? We are accustomed to thinking of numbers
and sentences as “real things,” while functions are less like things and more like activities.
As an analogy, think about cooking. The real foods are the meats, vegetables, ice cream,
and so on. You can’t eat a recipe, which is analogous to a function. A recipe has to be
applied to ingredients, and the result of carrying out the recipe is an edible meal. It

Keep

result

keep

Keep

Joy of Cooking.

Chapter 8 Higher-Order Functions 107

* Some recipes may seem to include other recipes, because they say things like “add pesto
(recipe on p. 12).” But this is just composition of functions; the of the pesto procedure is
used as an argument to this recipe. The pesto recipe itself is not an ingredient.

> (keep even? ’(1 2 3 4 5))
(2 4)

> (define (ends-e? word) (equal? (last word) ’e))

> (keep ends-e? ’(please put the salami above the blue elephant))
(PLEASE THE ABOVE THE BLUE)

> (keep number? ’(1 after 909))
(1 909)

> (keep number? ’zonk23hey9)
239

> (define (vowel? letter) (member? letter ’(a e i o u)))

> (keep vowel? ’piggies)
IIE

would seem weird if a recipe used other recipes as ingredients: “Preheat the oven to 350
and insert your ” But in Scheme we can do just that.*

Cooking your cookbook is unusual, but the general principle isn’t. In some contexts
we do treat recipes as things rather than as algorithms. For example, people write recipes
on cards and put them into a recipe file box. Then they perform operations such as
searching for a particular recipe, sorting the recipes by category (main dish, dessert,
etc.), copying a recipe for a friend, and so on. The same recipe is both a process (when
we’re cooking with it) and the object of a process (when we’re filing it).

Once we have this idea, we can use functions of functions to provide many different
capabilities.

For instance, the function takes a predicate and a sentence as arguments. It
returns a sentence containing only the words of the argument sentence for which the
predicate is true.

will also accept a word as its second argument. In this case, it applies the
predicate to every letter of the word and returns another word:

Accumulate

independently

108 Part III Functions as Data

every

every keep
every keep

accumulate Accumulate

(define (real-word? wd)
(not (member? wd ’(a the an in of and for to with))))

> (keep real-word? ’(lucy in the sky with diamonds))
(LUCY SKY DIAMONDS)

> (every first (keep real-word? ’(lucy in the sky with diamonds)))
(L S D)

> (accumulate + ’(6 3 4 -5 7 8 9))
32

> (accumulate word ’(a c l u))
ACLU

> (accumulate max ’(128 32 134 136))
136

> (define (hyphenate word1 word2)
(word word1 ’- word2))

> (accumulate hyphenate ’(ob la di ob la da))
OB-LA-DI-OB-LA-DA

When we used to select the first letters of words earlier, we found the first
letters even of uninteresting words such as “the.” We’re working toward an acronym
procedure, and for that purpose we’d like to be able to discard the boring words.

In and , each element of the second argument contributes to
the overall result. That is, and apply a procedure to a single element at a
time. The overall result is a collection of individual results, with no interaction between
elements of the argument. This doesn’t let us say things like “Add up all the numbers
in a sentence,” where the desired output is a function of the entire argument sentence
taken as a whole. We can do this with a procedure named .
takes a procedure and a sentence as its arguments. It applies that procedure to two of
the words of the sentence. Then it applies the procedure to the result we got back and
another element of the sentence, and so on. It ends when it’s combined all the words of
the sentence into a single result.

(In all of our examples in this section, the second argument contains at least two elements.
In the “pitfalls” section at the end of the chapter, we’ll discuss what happens with smaller
arguments.)

Combining Higher-Order Functions

Chapter 8 Higher-Order Functions 109

Accumulate

keep accumulate
+

count

always-one every
always-one

accumulate +

count

* We mean, of course, “We’ll invoke with the procedure and our argument
sentence as its two arguments.” After you’ve been programming computers for a while, this sort of
abuse of English will come naturally to you.

> (accumulate + 781)
16

> (accumulate sentence ’colin)
(C O L I N)

(define (add-numbers sent)
(accumulate + (keep number? sent)))

> (add-numbers ’(4 calling birds 3 french hens 2 turtle doves))
9

> (add-numbers ’(1 for the money 2 for the show 3 to get ready
and 4 to go))

10

(define (always-one arg)
1)

every always-one

can also take a word as its second argument, using the letters as
elements:

What if we want to add up all the numbers in a sentence but ignore the words that aren’t
numbers? First we the numbers in the sentence, then we the result
with . It’s easier to say in Scheme:

We also have enough tools to write a version of the procedure, which finds
the number of words in a sentence or the number of letters in a word. First, we’ll define
a procedure that returns 1 no matter what its argument is. We’ll

over our argument sentence,* which will result in a sentence of as many
ones as there were words in the original sentence. Then we can use with
to add up the ones. This is a slightly roundabout approach; later we’ll see a more natural
way to find the of a sentence.

()

()

Choosing the Right Tool

110 Part III Functions as Data

acronym

every keep accumulate

Every

* What we mean by “usually” is that is most often used with an argument function that
returns a single word. If the function returns a sentence whose length might not be one, then the
number of words in the overall result could be anything!

You can now understand the procedure from Chapter 1:

So far you’ve seen three higher-order functions: , , and . How
do you decide which one to use for a particular problem?

transforms each element of a word or sentence individually. The result
sentence usually contains as many elements as the argument.*

(define (count sent)
(accumulate + (every always-one sent)))

> (count ’(the continuing story of bungalow bill))
6

(define (acronym phrase)
(accumulate word (every first (keep real-word? phrase))))

> (acronym ’(reduced instruction set computer))
RISC

> (acronym ’(structure and interpretation of computer programs))
SICP

every

()

()

()

function purpose first argument is a ...

Keep

Accumulate

every
keep accumulate

every
keep
accumulate

transforming
predicate
combining

Chapter 8 Higher-Order Functions 111

selects certain elements of a word or sentence and discards the others. The
elements of the result are elements of the argument, without transformation, but the
result may be smaller than the original.

transforms the entire word or sentence into a single result by combin-
ing all of the elements in some way.

These three pictures represent graphically the differences in the meanings of ,
, and . In the pictures, we’re applying these higher-order procedures

to sentences, but don’t forget that we could have drawn similar pictures in which the
higher-order procedures process the letters of a word.

Here’s another way to compare these three higher-order functions:

transform one-argument function
select one-argument function
combine two-argument function

112 Part III Functions as Data

every

keep
keep

accumulate

word

accumulate

> (every double ’girl)
(GG II RR LL)

> (se (double ’g)
(double ’i)
(double ’r)
(double ’l))

(GG II RR LL)

> (keep even? ’(1 2 3 4 5))
(2 4)

> (se (if (even? 1) 1 ’())
(if (even? 2) 2 ’())
(if (even? 3) 3 ’())
(if (even? 4) 4 ’())
(if (even? 5) 5 ’()))

(2 4)

> (accumulate word ’(a c l u))
ACLU

> (word ’a (word ’c (word ’l ’u)))
ACLU

To help you understand these differences, we’ll look at specific examples using each
of them, with each example followed by an equivalent computation done without the
higher-order procedure. Here is an example for :

You can, if you like, think of the first of these expressions as abbreviating the second.
An expression using can also be replaced with an expression that performs the

same computation without using . This time it’s a little messier:

Here’s how an can be expressed the long way:

(Of course will accept any number of arguments, so we could have computed the
same result with all four letters as arguments to the same invocation. But the version
we’ve shown here indicates how actually works; it combines the elements
one by one.)

Repeated

First-Class Functions and First-Class Sentences

loop

generalize

other machines

Chapter 8 Higher-Order Functions 113

first-letters I
I=1 I=2 N

every first

pigl every

keep every
every

pigl-sent first-letters

repeated

> ((repeated bf 3) ’(she came in through the bathroom window))
(THROUGH THE BATHROOM WINDOW)

> ((repeated plural 4) ’computer)
COMPUTERSSSS

If Scheme (or any dialect of Lisp) is your first programming language, having procedures
that operate on entire sentences at once may not seem like a big deal. But if you used
to program in some lesser language, you’re probably accustomed to writing something
like as a in which you have some variable named and you carry
out some sequence of steps for , , and so on, until you get to , the number of
elements. The use of higher-order functions allows us to express this problem all at once,
rather than as a sequence of events. Once you’re accustomed to the Lisp way of thinking,
you can tell yourself “just take of the sentence,” and that feels like a single
step, not a complicated task.

Two aspects of Scheme combine to permit this mode of expression. One, which
we’ve mentioned earlier, is that sentences are first-class data. You can use an entire
sentence as an argument to a procedure. You can type a quoted sentence in, or you can
compute a sentence by putting words together.

The second point is that functions are also first-class. This lets us write a procedure
like that applies to a single word, and then combine that with to translate an
entire sentence to Pig Latin. If Scheme didn’t have first-class functions, we couldn’t have
general-purpose tools like and , because we couldn’t say which function to
extend to all of a sentence. You’ll see later that without it would still be possible
to write a specific procedure and separately write a
procedure. But the ability to use a procedure as argument to another procedure lets us

the idea of “apply this function to every word of the sentence.”

All the higher-order functions you’ve seen so far take functions as arguments, but none of
them have functions as return values. That is, we have machines that can take machines
in their input hoppers, but now we’d like to think about machines that drop
out of their output chutes—machine factories, so to speak.

In the following example, the procedure returns a procedure:

114 Part III Functions as Data

repeated

(repeated bf 3)

repeated

(repeated square 4) 2

repeated item

> ((repeated square 2) 3)
81

> (define (double sent)
(se sent sent))

> ((repeated double 3) ’(banana))
(BANANA BANANA BANANA BANANA BANANA BANANA BANANA BANANA)

> (repeated square 4)
#<PROCEDURE>

> ((repeated square 4) 2)
65536

The procedure takes two arguments, a procedure and a number, and
returns a new procedure. The returned procedure is one that invokes the original
procedure repeatedly. For example, returns a function that takes
the butfirst of the butfirst of the butfirst of its argument.

Notice that all our examples start with two open parentheses. If we just invoked
at the Scheme prompt, we would get back a procedure, like this:

The procedure that we get back isn’t very interesting by itself, so we invoke it, like this:

To understand this expression, you must think carefully about its two subexpressions.
Two subexpressions? Because there are two open parentheses next to each other, it
would be easy to ignore one of them and therefore think of the expression as having
four atomic subexpressions. But in fact it has only two. The first subexpression,

, has a procedure as its value. The second subexpression, ,
has a number as its value. The value of the entire expression comes from applying the
procedure to the number.

All along we’ve been saying that you evaluate a compound expression in two steps:
First, you evaluate all the subexpressions. Then you apply the first value, which has to be a
procedure, to the rest of the values. But until now the first subexpression has always been
just a single word, the name of a procedure. Now we see that the first expression might
be an invocation of a higher-order function, just as any of the argument subexpressions
might be function invocations.

We can use to define , which returns a particular element of a
sentence:

⇒

⇒

Pitfalls

Chapter 8 Higher-Order Functions 115

every
keep accumulate

every
keep

or
any-numbers?

every

* As we said in Chapter 4, special forms aren’t procedures, and aren’t first-class.

(define (item n sent)
(first ((repeated bf (- n 1)) sent)))

> (item 1 ’(a day in the life))
A

> (item 4 ’(a day in the life))
THE

(define (any-numbers? sent) ;; wrong!
(accumulate or (every number? sent)))

> (sentence #T #F)
ERROR: ARGUMENT TO SENTENCE NOT A WORD OR SENTENCE: #F

> (every number? ’(a b 2 c 6))
ERROR: ARGUMENT TO SENTENCE NOT A WORD OR SENTENCE: #T

(define (any-numbers? sent)
(not (empty? (keep number? sent))))

Some people seem to fall in love with and try to use it in all problems, even
when or would be more appropriate.

If you find yourself using a predicate function as the first argument to , you
almost certainly mean to use instead. For example, we want to write a procedure
that determines whether any of the words in its argument sentence are numbers:

This is wrong for two reasons. First, since Boolean values aren’t words, they can’t be
members of sentences:

Second, even if you could have a sentence of Booleans, Scheme doesn’t allow a
special form, such as , as the argument to a higher-order function.* Depending on
your version of Scheme, the incorrect procedure might give an error
message about either of these two problems.

Instead of using , select the numbers from the argument and count them:

⇒

⇒

is

116 Part III Functions as Data

keep

Every
every

accumulate word
every

every
every quotient

quotient

every every

every
(quotient 6)

quotient

(define (spell-digit digit)
(item (+ 1 digit)

’(zero one two three four five six seven eight nine)))

> (every spell-digit 1971)
(ONE NINE SEVEN ONE)

(every (quotient 6) ’(1 2 3)) ;; wrong!

(quotient 6 1)
(quotient 6 2)
(quotient 6 3)

The function always returns a result of the same type (i.e., word or sentence)
as its second argument. This makes sense because if you’re selecting a subset of the words
of a sentence, you want to end up with a sentence; but if you’re selecting a subset of the
letters of a word, you want a word. , on the other hand, always returns a sentence.
You might think that it would make more sense for to return a word when its
second argument is a word. Sometimes that what you want, but sometimes not. For
example:

In the cases where you do want a word, you can just the sentence
that returns.

Remember that expects its first argument to be a function of just one
argument. If you invoke with a function such as , which expects two
arguments, you will get an error message from , complaining that it only got
one argument and wanted to get two.

Some people try to get around this by saying things like

This is a sort of wishful thinking. The intent is that Scheme should interpret the first
argument to as a fill-in-the-blank template, so that will compute the values of

But of course what Scheme really does is the same thing it always does: It evaluates
the argument expressions, then invokes . So Scheme will try to compute

and will give an error message.

We picked for this example because it requires exactly two arguments.
Many Scheme primitives that ordinarily take two arguments, however, will accept only
one. Attempting the same wishful thinking with one of these procedures is still wrong,

⇒

Chapter 8 Higher-Order Functions 117

every
+ 3 (+ 3) 3

every

8 0 every

(PAUL RINGO JOHN)

(every (+ 3) ’(1 2 3)) ;; wrong!

(define (beatle-number n)
(if (or (< n 1) (> n 4))

’()
(item n ’(john paul george ringo))))

> (beatle-number 3)
GEORGE

> (beatle-number 5)
()

> (every beatle-number ’(2 8 4 0 1))
(PAUL RINGO JOHN)

(se (beatle-number 2) (beatle-number 8) (beatle-number 4)
(beatle-number 0) (beatle-number 1))

(se ’paul ’() ’ringo ’() ’john)

but the error message is different. For example, suppose you try to add 3 to each of
several numbers this way:

The first argument to in this case isn’t “the procedure that adds 3,” but the result
returned by invoking with the single argument . returns the number , which
isn’t a procedure. So you will get an error message like “Attempt to apply non-procedure
3.”

The idea behind this mistake—looking for a way to “specialize” a two-argument
procedure by supplying one of the arguments in advance—is actually a good one. In the
next chapter we’ll introduce a new mechanism that does allow such specialization.

If the procedure you use as the argument to returns an empty sentence, then
you may be surprised by the results:

What happened to the and the ? Pretend that didn’t exist, and you had to do
it the hard way:

Using result replacement, we would get

which is just .

⇒

⇒

⇒

word,

word

118 Part III Functions as Data

every

every eed ou

first
first

accumulate
+ max

one-word

accumulate Accumulate

+ * word
sentence Accumulate

accumulate

> (every bf ’(i need you))
("" EED OU)

(first ’(one two three four))

(every first ’(one two three four))

(accumulate se ’(one-word))

> (accumulate + ’())
0

> (accumulate max ’())
ERROR: CAN’T ACCUMULATE EMPTY INPUT WITH THAT COMBINER

On the other hand, if ’s argument procedure returns an empty it will
appear in the result.

The sentence returned by has three words in it: the empty word, , and .

Don’t confuse

with

In the first case, we’re applying the procedure to a sentence; in the second, we’re
applying four separate times, to each of the four words separately.

What happens if you use a one-word sentence or one-letter word as argument to
? It returns that word or that letter, without even invoking the given

procedure. This makes sense if you’re using something like or as the accumulator,
but it’s disconcerting that

returns the .

What happens if you give an empty sentence or word?
accepts empty arguments for some combiners, but not for others:

The combiners that can be used with an empty sentence or word are , , , and
. checks specifically for one of these combiners.

Why should these four procedures, and no others, be allowed to an
empty sentence or word? The difference between these and other combiners is that you

⇒

−∞

max

Accumulate

accumulate

accumulate

+
0 (+ 0)

word

any

identity element
anything anything.

Chapter 8 Higher-Order Functions 119

> (+)
0

> (max)
ERROR: NOT ENOUGH ARGUMENTS TO #<PROCEDURE>.

> (accumulate * ’())
1

((repeated bf 3) 987654)

max* PC Scheme returns zero for an invocation of with no arguments, but that’s the wrong
answer. If anything, the answer would have to be .

can invoke them with no arguments, whereas , for example, requires at least one
number:

actually invokes the combiner with no arguments in order to find out what
value to return for an empty sentence or word. We would have liked to implement

so that procedure that can be invoked with no arguments would be
accepted as a combiner to accumulate the empty sentence or word. Unfortunately,
Scheme does not provide a way for a program to ask, “How many arguments will this
procedure accept?” The best we could do was to build a particular set of zero-argument-
okay combiners into the definition of .

Don’t think that the returned value for an empty argument is always zero or empty.

The explanation for this behavior is that any function that works with no arguments
returns its in that case. What’s an identity element? The function has
the identity element because returns the Similarly, the empty
word is the identity element for . In general, a function’s identity element has the
property that when you invoke the function with the identity element and something
else as arguments, the return value is the something else. It’s a Scheme convention
that a procedure with an identity element returns that element when invoked with no
arguments.*

The use of two consecutive open parentheses to invoke the procedure returned by a
procedure is a strange-looking notation:

8.1

8.2

Boring Exercises

120 Part III Functions as Data

cond
cond

repeated
bf 3

bfthree
(bfthree 987654)

987654

repeated repeated

Repeated

(repeated bf 3 987654) ;; wrong

> (every last ’(algebra purple spaghetti tomato gnu))

> (keep number? ’(one two three four))

> (accumulate * ’(6 7 13 0 9 42 17))

> (member? ’h (keep vowel? ’(t h r o a t)))

> (every square (keep even? ’(87 4 7 12 0 5)))

> (accumulate word (keep vowel? (every first ’(and i love her))))

> ((repeated square 0) 25)

> (every (repeated bl 2) ’(good day sunshine))

> (vowel? ’birthday)
IA

Don’t confuse this with the similar-looking notation, in which the outer parentheses
have a special meaning (delimiting a clause). Here, the parentheses have their
usual meaning. The inner parentheses invoke the procedure with arguments

and . The value of that expression is a procedure. It doesn’t have a name, but for the
purposes of this paragraph let’s pretend it’s called . Then the outer parentheses
are basically saying ; they apply the unnamed procedure to the
argument .

In other words, there are two sets of parentheses because there are two functions
being invoked: and the function returned by . So don’t say

just because it looks more familiar. isn’t a function of three arguments.

What does Scheme return as the value of each of the following expressions? Figure
it out for yourself before you try it on the computer.

Fill in the blanks in the following Scheme interactions:

8.3

Chapter 8 Higher-Order Functions 121

Describe each of the following functions in English. Make sure to include a
description of the domain and range of each function. Be as precise as possible; for
example, “the argument must be a function of one numeric argument” is better than
“the argument must be a function.”

> (first ’(golden slumbers))
(G S)

> (’(golden slumbers))
GOLDEN

> (’(little child))
(E D)

> ((’(little child)))
ED

> (+ ’(2 3 4 5))
(2 3 4 5)

> (+ ’(2 3 4 5))
14

(define (f a)
(keep even? a))

(define (g b)
(every b ’(blue jay way)))

(define (h c d)
(c (c d)))

(define (i e)
(/ (accumulate + e) (count e)))

accumulate

sqrt

repeated

(repeated sqrt 3)

8.4

8.5

Real Exercises

choose-beatles

transform-beatles

If you
read Part IV before this, do not use recursion in solving these problems; use higher order functions
instead.

122 Part III Functions as Data

Note: Writing helper procedures may be useful in solving some of these problems.

Write a procedure that takes a predicate function as its argument
and returns a sentence of just those Beatles (John, Paul, George, and Ringo) that satisfy
the predicate. For example:

Write a procedure that takes a procedure as an argument,
applies it to each of the Beatles, and returns the results in a sentence:

(repeated even? 2)

(repeated first 2)

(repeated (repeated bf 3) 2)

(define (ends-vowel? wd) (vowel? (last wd)))

(define (even-count? wd) (even? (count wd)))

> (choose-beatles ends-vowel?)
(GEORGE RINGO)

> (choose-beatles even-count?)
(JOHN PAUL GEORGE)

(define (amazify name)
(word ’the-amazing- name))

> (transform-beatles amazify)
(THE-AMAZING-JOHN THE-AMAZING-PAUL THE-AMAZING-GEORGE
THE-AMAZING-RINGO)

> (transform-beatles butfirst)
(OHN AUL EORGE INGO)

8.6

8.7

8.8

words

letter-count

exaggerate

Chapter 8 Higher-Order Functions 123

> (words ’cab)
(CHARLIE ALPHA BRAVO)

> (letter-count ’(fixing a hole))
11

> (exaggerate ’(i ate 3 potstickers))
(I ATE 6 POTSTICKERS)

> (exaggerate ’(the chow fun is good here))
(THE CHOW FUN IS GREAT HERE)

* Exercise 14.5 in Part IV asks you to solve this same problem using recursion. Here we are
asking you to use higher-order functions. Whenever we pose the same problem in both parts, we’ll
cross-reference them in brackets as we did here. When you see the problem for the second time,
you might want to consult your first solution for ideas.

When you’re talking to someone over a noisy radio connection, you sometimes have
to spell out a word in order to get the other person to understand it. But names of letters
aren’t that easy to understand either, so there’s a standard code in which each letter is
represented by a particular word that starts with the letter. For example, instead of “B”
you say “bravo.”

Write a procedure that takes a word as its argument and returns a sentence of the
names of the letters in the word:

(You may make up your own names for the letters or look up the standard ones if you
want.)

Hint: Start by writing a helper procedure that figures out the name for a single letter.

[14.5]* Write a procedure that takes a sentence as its argument
and returns the total number of letters in the sentence:

[12.5] Write an procedure which exaggerates sentences:

It should double all the numbers in the sentence, and it should replace “good” with
“great,” “bad” with “terrible,” and anything else you can think of.

−

8.9

8.10

8.11

8.12

8.13

every

124 Part III Functions as Data

every
every

keep
keep

accumulate
accumulate

true-for-all?
#t

base-grade
grade-modifier

count-ums

phone-unspell
POPCORN 7672676

cond

> (true-for-all? even? ’(2 4 6 8))
#T

> (true-for-all? even? ’(2 6 3 4))
#F

> (gpa ’(A A+ B+ B))
3.67

> (count-ums
’(today um we are going to um talk about functional um programming))

3

What procedure can you use as the first argument to so that for any sentence
used as the second argument, returns that sentence?

What procedure can you use as the first argument to so that for any sentence used
as the second argument, returns that sentence?

What procedure can you use as the first argument to so that for any
sentence used as the second argument, returns that sentence?

Write a predicate that takes two arguments, a predicate proce-
dure and a sentence. It should return if the predicate argument returns true for
word in the sentence.

[12.6] Write a GPA procedure. It should take a sentence of grades as its argument
and return the corresponding grade point average:

Hint: write a helper procedure that takes a grade as argument and returns
0, 1, 2, 3, or 4, and another helper procedure that returns .33, 0, or
.33, depending on whether the grade has a minus, a plus, or neither.

[11.2] When you teach a class, people will get distracted if you say “um” too many
times. Write a that counts the number of times “um” appears in a sentence:

[11.3] Write a procedure that takes a spelled version of a phone
number, such as , and returns the real phone number, in this case .
You will need to write a helper procedure that uses an 8-way expression to translate
a single letter into a digit.

8.14 subword

> (subword ’polythene 5 8)
THEN

Chapter 8 Higher-Order Functions 125

Write the procedure that takes three arguments: a word, a starting
position number, and an ending position number. It should return the subword
containing only the letters between the specified positions:

Alonzo Church
inventor of lambda calculus

127

9 Lambda

add-three
every

Lambda

(lambda (number) (+ number 3))

(define (add-three number)
(+ number 3))

(define (add-three-to-each sent)
(every add-three sent))

> (add-three-to-each ’(1 9 9 2))
(4 12 12 5)

(define (add-three-to-each sent)
(every sent))

> (add-three-to-each ’(1 9 9 2))
(4 12 12 5)

Let’s say we want to add three to each of the numbers in a sentence. Using the tools from
Chapter 8, we would do it like this:

It’s slightly annoying to have to define a helper procedure just so we can use
it as the argument to . We’re never going to use that procedure again, but we still
have to come up with a name for it. We’d like a general way to say “here’s the function I
want you to use” without having to give the procedure a name. In other words, we want a
general-purpose procedure-generating procedure!

is the name of a special form that generates procedures. It takes some
information about the function you want to create as arguments and it returns the
procedure. It’ll be easier to explain the details after you see an example.

λ

the procedure
returned by

128 Part III Functions as Data

every
add-three

lambda every
lambda

lambda make-procedure
lambda

lambda define

define

lambda

lambda

lambda

lambda
lambda

> ((lambda (a b) (+ (* 2 a) b)) 5 6)
16

> ((lambda (wd) (word (last wd) (first wd))) ’impish)
HI

> (every (lambda (wd) (se (first wd) wd (last wd)))
’(only a northern song))

(O ONLY Y A A A N NORTHERN N S SONG G)

lambda

* It comes from a branch of mathematical logic called “lambda calculus” that’s about the
formal properties of functions. The inclusion of first-class functions in Lisp was inspired by this
mathematical work, so Lisp borrowed the name .

The first argument to is, in effect, the same procedure as the one we called
earlier, but now we can use it without giving it a name. (Don’t make the

mistake of thinking that is the argument to . The argument is
.)

Perhaps you’re wondering whether “lambda” spells something backward. Actually,
it’s the name of the Greek letter L, which looks like this: . It would probably be
more sensible if were named something like , but the name

is traditional.*

Creating a procedure by using is very much like creating one with ,
as we’ve done up to this point, except that we don’t specify a name. When we create
a procedure with , we have to indicate the procedure’s name, the names of its
arguments (i.e., the formal parameters), and the expression that it computes (its body).
With we still provide the last two of these three components.

As we said, is a special form. This means, as you remember, that its
arguments are not evaluated when you invoke it. The first argument is a sentence
containing the formal parameters; the second argument is the body. What
returns is an unnamed procedure. You can invoke that procedure:

In real life, though, you’re not likely to create a procedure with merely
to invoke it once. More often, we use as in the first example in this chapter,
to provide a procedure as argument to a higher-order function. Here are some more
examples:

procedure,

Chapter 9 Lambda 129

Procedures That Return Procedures

lambda

(make-adder 4)

make-adder 4 num
make-adder

An even more powerful use of is to provide the value returned by some procedure
that you write. Here’s the classic example:

The value of the expression is a not a number. That
unnamed procedure is the one that adds 4 to its argument. We can understand this by
applying the substitution model to . We substitute for in the body of

; we end up with

and then we evaluate that expression to get the desired procedure.

Here’s a procedure whose argument is a procedure:

> (keep (lambda (n) (member? 9 n)) ’(4 81 909 781 1969 1776))
(909 1969)

> (accumulate (lambda (this that)
(if (> (count this) (count that)) this that))

’(wild honey pie))
HONEY

> (keep (lambda (person) (member? person ’(john paul george ringo)))
’(mick smokey paul diana bill geddy john yoko keith reparata))

(PAUL JOHN)

> (keep (lambda (person) (member? ’e person))
’(mick smokey paul diana bill geddy john yoko keith reparata))

(SMOKEY GEDDY KEITH REPARATA)

(define (make-adder num)
(lambda (x) (+ x num)))

> ((make-adder 4) 7)
11

> (every (make-adder 6) ’(2 4 8))
(8 10 14)

(lambda (x) (+ x 4))

(define (same-arg-twice fn)
(lambda (arg) (fn arg arg)))

DefineThe Truth about

130 Part III Functions as Data

(same-arg-twice word) word
fn

lambda
define define

define

> ((same-arg-twice word) ’hello)
HELLOHELLO

> ((same-arg-twice *) 4)
16

(lambda (arg) (word arg arg))

(define (flip fn)
(lambda (a b) (fn b a)))

> ((flip -) 5 8)
3

> ((flip se) ’goodbye ’hello)
(HELLO GOODBYE)

> (define pi 3.141592654)

> (* pi 10)
31.41592654

> (define drummer ’(ringo starr))

> (first drummer)
RINGO

When we evaluate we substitute the procedure
for the formal parameter , and the result is

One more example:

Remember how we said that creating a procedure with was a lot like creating a
procedure with ? That’s because the notation we’ve been using with is
an abbreviation that combines two activities: creating a procedure and giving a name to
something.

As you saw in Chapter 7, ’s real job is to give a name to some value:

global,

that

Chapter 9 Lambda 131

lambda
define square

x *

* x
*

* pi
x square

define

frist frist

define

(define (square x) (* x x))

(define square (lambda (x) (* x x)))

(* x x)

> (define square (same-arg-twice *))

> (square 7)
49

When we say

it’s actually an abbreviation for

In this example, the job of is to create a procedure that multiplies its argument
by itself; the job of is to name that procedure .

In the past, without quite saying so, we’ve talked as if the name of a procedure were
understood differently from other names in a program. In thinking about an expression
such as

we’ve talked about substituting some actual value for the but took the for granted as
meaning the multiplication function.

The truth is that we have to substitute a value for the just as we do for the . It just
happens that has been predefined to have the multiplication procedure as its value.
This definition of is like the definition of above. “Global” means that it’s
not a formal parameter of a procedure, like in , but has a permanent value
established by .

When an expression is evaluated, every name in the expression must have some
value substituted for it. If the name is a formal parameter, then the corresponding actual
argument value is substituted. Otherwise, the name had better have a global definition,
and value is substituted. It just so happens that Scheme has predefined a zillion
names before you start working, and most of those are names of primitive procedures.

(By the way, this explains why when you make a typing mistake in the name of
a procedure you might see an error message that refers to variables, such as “variable

not bound.” You might expect it to say “ is not a procedure,” but the
problem is no different from that of any other name that has no associated value.)

Now that we know the whole truth about , we can use it in combination with
the function-creating functions in these past two chapters.

The Truth about Let

(

(sqrt (- (b b) (4 a c))))

132 Part III Functions as Data

let

let

define lambda let
lambda

> (define fourth-power (repeated square 2))

> (fourth-power 5)
625

(define (roots a b c)
(roots1 a b c (sqrt (- (* b b) (* 4 a c)))))

(define (roots1 a b c discriminant)
(se (/ (+ (- b) discriminant) (* 2 a))

(/ (- (- b) discriminant) (* 2 a))))

(define (roots a b c)
(let ((discriminant (sqrt (- (* b b) (* 4 a c)))))
(se (/ (+ (- b) discriminant) (* 2 a))

(/ (- (- b) discriminant) (* 2 a)))))

(define (roots a b c)
(lambda (discriminant)
(se (/ (+ (- b) discriminant) (* 2 a))

(/ (- (- b) discriminant) (* 2 a))))
* *)

In Chapter 7 we introduced as an abbreviation for the situation in which we would
otherwise define a helper procedure in order to give names to commonly-used values in
a calculation. We started with

and introduced the new notation

to avoid creating an otherwise-useless named procedure. But now that we know about
unnamed procedures, we can see that is merely an abbreviation for creating and
invoking an anonymous procedure:

What’s shown in boldface above is the part that invokes the procedure created by the
lambda, including the actual argument expression.

Just as the notation to define a procedure with parentheses around its name is an
abbreviation for a and a , the notation is an abbreviation for a

and an invocation.

→

x

x

first

unnamed
g x x g

x x

Chapter 9 Lambda 133

Name Conflicts

Named and Unnamed Functions

(define (f x)
(lambda (x) (+ x 3)))

> (define three 3)
> (define four 4)
> (+ three four)
7

* Professional mathematicians do have a notation for unnamed functions, by the way. They
write .

When a procedure is created inside another procedure, what happens if you use the same
formal parameter name in both?

Answer: Don’t do it.

What actually happens is that the inner wins; that’s the one that is substituted
into the body. But if you find yourself in this situation, you are almost certainly doing
something wrong, such as using nondescriptive names like for your variables.

Although you’ve been running across the idea of function since high school algebra,
you’ve probably never seen an function until now. The high school function
notation, () = 3 + 8, requires you to give the function a name (in this case) when
you create it. Most of the functions you know, both in math and in programming, have
names, such as logarithm or .*

When do you want to name a function, and when not? It may help to think about an
analogy with numbers. Imagine if every Scheme number had to have a name before you
could use it. You’d have to say

This is analogous to the way we’ve dealt with procedures until now, giving each one a
name. Sometimes it’s much easier to use a number directly, and it’s silly to have to give it
a name.

But sometimes it isn’t silly. A common example that we’ve seen earlier is

(3 + 8)

π

purpose,

134 Part III Functions as Data

define

Square
square

lambda

next-to-last

(define pi 3.141592654)

(define (circle-area radius)
(* pi radius radius))

(define (circumference radius)
(* 2 pi radius))

(define (sphere-surface-area radius)
(* 4 pi radius radius))

(define (sphere-volume radius)
(* (/ 4 3) pi radius radius radius))

(define (square x) (* x x))

> (every (lambda (x) (last (bl x))) ’(all together now))
(L E O)

If we couldn’t give a name to the number 3.141592654, then we’d have to type it over
and over again. Apart from the extra typing, our programs would be harder to read and
understand. Giving a name makes the procedures more self-documenting. (That is,
someone else who reads our procedures will have an easier time understanding what we
meant.)

It’s the same with procedures. If we’re going to use a procedure more than once,
and if there’s a meaningful name for it that will help clarify the program, then we define
the procedure with and give it a name.

deserves a name both because we use it often and because there is a good
traditional name for it that everyone understands. More important, by giving
a name, we are shifting attention from the process by which it works (invoking the
multiplication procedure) to its computing the square of a number. From now
on we can think about squaring as though it were a Scheme primitive. This idea of
naming something and forgetting the details of its implementation is what we’ve been
calling “abstraction.”

On the other hand, if we have an unimportant procedure that we’re using only once,
we might as well create it with and without a name.

We could have defined this procedure with the name , but if we’re never
going to use it again, why bother?

⇒

⇒

Pitfalls

procedure.

domain range

other

Chapter 9 Lambda 135

define
lambda

pi

lambda
lambda

lambda
repeated

lambda
lambda

every

h

(define (backwards wd) (accumulate (lambda (a b) (word b a)) wd))

> (backwards ’yesterday)
YADRETSEY

> (every backwards ’(i saw her standing there))
(I WAS REH GNIDNATS EREHT)

(define (pi) 3.141592654)

(* 2 pi)

Here’s an example in which we use an obscure unnamed function to help us define
one that’s worth naming:

It’s very convenient that has an abbreviated form to define a procedure
using a hidden , but because there are two notations that differ only subtly—one
has an extra set of parentheses—you could use the wrong one by mistake. If you say

you’re not defining a variable whose value is a number. Instead the value of will be a
It would then be an error to say

When should the body of your procedure be a expression? It’s easy to go
overboard and say “I’m writing a procedure so I guess I need ” even when the
procedure is supposed to return a word.

The secret is to remember the ideas of and that we talked about
in Chapter 2. What is the range of the function you’re writing? Should it return a
procedure? If so, its body might be a expression. (It might instead be an
invocation of a higher-order procedure, such as , that returns a procedure.)
If your procedure doesn’t return a procedure, its body won’t be a expression.
(Of course your procedure might still use a expression as an argument to some

procedure, such as .)

For example, here is a procedure to keep the words of a sentence that contain the
letter . The domain of the function is sentences, and its range is also sentences. (That
is, it takes a sentence as argument and returns a sentence as its value.)

⇒

9.1

Boring Exercises

keeper
keeper

keep-h keeper keep-h

Lambda

lambda

lambda x
6

procedure

returned by

creation invocation

name

names values

136 Part III Functions as Data

(define (keep-h sent)
(keep (lambda (wd) (member? ’h wd)) sent))

(define (keeper letter)
(lambda (sent)
(keep (lambda (wd) (member? letter wd)) sent)))

(define keep-h (keeper ’h))

((lambda (x) (+ x 3)) 6)

> (lambda (x) (+ (* x 3) 4))

> ((lambda (x) (+ (* x 3) 4)) 10)

> (every (lambda (wd) (word (last wd) (bl wd)))
’(any time at all))

By contrast, here is a function of a letter that returns a to keep words containing
that letter.

The procedure has letters as its domain and procedures as its range. The
procedure has sentences as its domain and as its range, just as

does. In fact, we can use to define :

Don’t confuse the of a procedure with the of one.
creates a procedure. The procedure is invoked in response to an expression whose
first subexpression represents that procedure. That is, the first subexpression could be
the of the procedure, or it could be a expression if you want to create a
procedure and invoke it right away:

In particular, when you create a procedure, you specify its formal parameters—the
for its arguments. When you invoke the procedure, you specify for those

arguments. (In this example, the expression includes the formal parameter ,
but the invocation provides the actual argument .)

What will Scheme print? Figure it out yourself before you try it on the computer.

9.2

9.3

9.4

9.5

Real Exercises

Chapter 9 Lambda 137

lambda

lambda

prepend-every

Rewrite the following definitions so as to make the implicit explicit.

What does this procedure do?

The following program doesn’t work. Why not? Fix it.

It’s supposed to work like this:

In each of the following exercises, write the procedure in terms of and
higher-order functions. Do not use named helper procedures. If you’ve read Part IV,
don’t use recursion, either.

Write :

> ((lambda (x) (+ x 3)) 10 15)

(define (second stuff)
(first (bf stuff)))

(define (make-adder num)
(lambda (x) (+ num x)))

(define (let-it-be sent)
(accumulate (lambda (x y) y) sent))

(define (who sent)
(every describe ’(pete roger john keith)))

(define (describe person)
(se person sent))

> (who ’(sells out))
(pete sells out roger sells out john sells out keith sells out)

> (prepend-every ’s ’(he aid he aid))
(SHE SAID SHE SAID)

> (prepend-every ’anti ’(dote pasto gone body))
(ANTIDOTE ANTIPASTO ANTIGONE ANTIBODY)

9.6

9.7

9.8

9.9

F
G F G

F

138 Part III Functions as Data

sentence-version

letterwords

common-words

> ((sentence-version first) ’(if i fell))
(I I F)

> ((sentence-version square) ’(8 2 4 6))
(64 4 16 36)

> (letterwords ’o ’(got to get you into my life))
(GOT TO YOU INTO)

> (hang ’potsticker ’etaoi)
OT TI E

(define (hang-letter letter guesses)
(if (member? letter guesses)

letter
’))

Write a procedure that takes a function as its argument
and returns a function . should take a single word as argument. should take a
sentence as argument and return the sentence formed by applying to each word of that
argument.

Write a procedure called that takes as its arguments a letter and a
sentence. It returns a sentence containing only those words from the argument sentence
that contain the argument letter:

Suppose we’re writing a program to play hangman. In this game one player has
to guess a secret word chosen by the other player, one letter at a time. You’re going
to write just one small part of this program: a procedure that takes as arguments the
secret word and the letters guessed so far, returning the word in which the guessing
progress is displayed by including all the guessed letters along with underscores for the
not-yet-guessed ones:

Hint: You’ll find it helpful to use the following procedure that determines how to display
a single letter:

Write a procedure that takes two sentences as arguments and
returns a sentence containing only those words that appear both in the first sentence and
in the second sentence.

9.10

9.11

9.12

9.13

9.14

f g

f g x x

Chapter 9 Lambda 139

appearances

appearances

unabbrev

2

6

first-last

compose

substitute

> (unabbrev ’(john 1 wayne fred 4) ’(bill hank kermit joey))
(JOHN BILL WAYNE FRED JOEY)

> (unabbrev ’(i 3 4 tell 2) ’(do you want to know a secret?))
(I WANT TO TELL YOU)

> (first-last ’(california ohio nebraska alabama alaska massachusetts))
(OHIO ALABAMA ALASKA)

> ((compose sqrt abs) -25)
5

> (define second (compose first bf))

> (second ’(higher order function))
ORDER

> (substitute ’maybe ’yeah ’(she loves you yeah yeah yeah))
(SHE LOVES YOU MAYBE MAYBE MAYBE)

In Chapter 2 we used a function called that returns the number
of times its first argument appears as a member of its second argument. Implement

.

Write a procedure that takes two sentences as arguments. It should
return a sentence that’s the same as the first sentence, except that any numbers in the
original sentence should be replaced with words from the second sentence. A number
in the first sentence should be replaced with the second word of the second sentence, a

with the sixth word, and so on.

Write a procedure whose argument will be a sentence. It should
return a sentence containing only those words in the argument sentence whose first and
last letters are the same:

Write a procedure that takes two functions and as arguments. It
should return a new function, the composition of its input functions, which computes
(()) when passed the argument .

Write a procedure that takes three arguments, two words and a
sentence. It should return a version of the sentence, but with every instance of the
second word replaced with the first word:

9.15

9.16

9.17

any

vector

140 Part III Functions as Data

sqrt

sqrt

type-check f
pred Type-check

pred
f pred

#f

sqrt
16 4 sqrt (16 49)

(4 7)

aplize

keep every accumulate

> (define safe-sqrt (type-check sqrt number?))

> (safe-sqrt 16)
4

> (safe-sqrt ’sarsaparilla)
#F

> (define apl-sqrt (aplize sqrt))

> (apl-sqrt 36)
6

> (apl-sqrt ’(1 100 25 16))
(1 10 5 4)

Many functions are applicable only to arguments in a certain domain and result in
error messages if given arguments outside that domain. For example, may require
a nonnegative argument in a version of Scheme that doesn’t include complex numbers.
(In version of Scheme, will complain if its argument isn’t a number at all!)
Once a program gets an error message, it’s impossible for that program to continue the
computation.

Write a procedure that takes as arguments a one-argument procedure
and a one-argument predicate procedure . should return a one-
argument procedure that first applies to its argument; if that result is true, the
procedure should return the value computed by applying to the argument; if
returns false, the new procedure should also return :

In the language APL, most arithmetic functions can be applied either to a number,
with the usual result, or to a —the APL name for a sentence of numbers—in which
case the result is a new vector in which each element is the result of applying the function
to the corresponding element of the argument. For example, the function applied
to returns as in Scheme, but can also be applied to a sentence such as
and it returns .

Write a procedure that takes as its argument a one-argument procedure whose
domain is numbers or words. It should return an APLized procedure that also accepts
sentences:

Write in terms of and .

5h

h5 dk

points.

141

Project: Scoring Bridge Hands

* Why not ? Scheme words that begin with a digit but aren’t numbers have to be surrounded
with double-quote marks. Putting the suit first avoids that.

At the beginning of a game of bridge, each player assigns a value to his or her hand
by counting Bridge players use these points in the first part of the game, the
“bidding,” to decide how high to bid. (A bid is a promise about how well you’ll do in the
rest of the game. If you succeed in meeting your bid you win, and if you don’t meet the
bid, you lose.) For example, if you have fewer than six points, you generally don’t bid
anything at all.

You’re going to write a computer program to look at a bridge hand and decide how
many points it’s worth. You won’t have to know anything about the rest of the game; we’ll
tell you the rules for counting points.

A bridge hand contains thirteen cards. Each ace in the hand is worth four points,
each king is worth three points, each queen two points, and each jack one. The other
cards, twos through tens, have no point value. So if your hand has two aces, a king, two
jacks, and eight other cards, it’s worth thirteen points.

A bridge hand might also have some “distribution” points, which are points having
to do with the distribution of the thirteen cards among the four suits. If your hand has
only two cards of a particular suit, then it is worth an extra point. If it has a “singleton,”
only one card of a particular suit, that’s worth two extra points. A “void,” no cards in a
particular suit, is worth three points.

In our program, we’ll represent a card by a word like (five of hearts) or (king
of diamonds).* A hand will be a sentence of cards, like this:

Card-val

High-card-points

first
butfirst last

card-val

high-card-points

bottom-up

top-down

not

142 Part III Functions as Data

(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3)

> (card-val ’cq)
2

> (card-val ’s7)
0

> (card-val ’ha)
4

This hand is worth 14 points: ace of spades (4), plus queen of hearts (2), plus jack
of hearts (1), plus king of clubs (3), plus king of diamonds (3), plus one more for having
only two clubs.

To find the suit of a card, we take its , and to find the rank, we take the
. (Why not the ?)

We have a particular program structure in mind. We’ll describe all of the procedures
you need to write; if you turn each description into a working procedure, then you
should have a complete program. In writing each procedure, take advantage of the ones
you’ve already written. Our descriptions are ordered , which means that for each
procedure you will already have written the helper procedures you need. (This ordering
will help you write the project, but it means that we’re beginning with small details. If
we were describing a project to help you understand its structure, we’d do it in
order, starting with the most general procedures. We’ll do that in the next chapter, in
which we present a tic-tac-toe program as a larger Scheme programming example.)

Write a procedure that takes a single card as its argument and returns the
value of that card.

Write a procedure that takes a hand as its argument and returns
the total number of points from high cards in the hand. (This procedure does count
distribution points.)

Project: Scoring Bridge Hands 143

count-suit

suit-counts

suit-dist-points

Count-suit

Suit-counts

Suit-dist-points

Write a procedure that takes a suit and a hand as arguments and returns
the number of cards in the hand with the given suit.

Write a procedure that takes a hand as its argument and returns a
sentence containing the number of spades, the number of hearts, the number of clubs,
and the number of diamonds in the hand.

Write that takes a number as its argument, interpreting it as the

> (high-card-points ’(sa s10 hq ck c4))
9

> (high-card-points ’(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
13

> (count-suit ’s ’(sa s10 hq ck c4))
2

> (count-suit ’c ’(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
2

> (count-suit ’d ’(h3 d7 sk s3 c10 dq d8 s9 s4 d10 c7 d4 s2))
5

> (suit-counts ’(sa s10 hq ck c4))
(2 1 2 0)

> (suit-counts ’(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
(5 3 2 3)

> (suit-counts ’(h3 d7 sk s3 c10 dq d8 s9 s4 d10 c7 d4 s2))
(5 1 2 5)

144 Part III Functions as Data

Hand-dist-points

Bridge-val

hand-dist-points

bridge-val

> (suit-dist-points 2)
1

> (suit-dist-points 7)
0

> (suit-dist-points 0)
3

> (hand-dist-points ’(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
1

> (hand-dist-points ’(h3 d7 sk s3 c10 dq d8 s9 s4 d10 c7 d4 s2))
3

> (bridge-val ’(sa s10 s7 s6 s2 hq hj h9 ck c4 dk d9 d3))
14

> (bridge-val ’(h3 d7 sk s3 c10 dq d8 s9 s4 d10 c7 d4 s2))
8

number of cards in a suit. The procedure should return the number of distribution
points your hand gets for having that number of cards in a particular suit.

Write , which takes a hand as its argument and returns the number
of distribution points the hand is worth.

Write a procedure that takes a hand as its argument and returns the total
number of points that the hand is worth.

This computer, built of Tinker-Toy parts, plays tic-tac-toe.

147

(load "ttt.scm")

10 Example: Tic-Tac-Toe

A Warning

Technical Terms in Tic-Tac-Toe

Now that you’ve learned about higher-order functions, we’re going to look at a large
example that uses them extensively. Using the techniques you’ve learned so far, we’re
going to write a program that plays perfect tic-tac-toe.

You can load our program into Scheme by typing

(See Appendix A if this doesn’t work for you.)

Programs don’t always come out right the first time. One of our goals in this chapter is to
show you how a program is developed, so we’re presenting early versions of procedures.
These include some mistakes that we made, and also some after-the-fact simplifications
to make our explanations easier. If you type in these early versions, they won’t work. We
will show you how we corrected these “bugs” and also will present a complete, correct
version at the end of the chapter.

To indicate the unfinished versions of procedures, we’ll use comments like “first
version” or “not really part of game.”

We’ll number the squares of the board this way:

1 2 3
4 5 6
7 8 9

o
x o

x x

o xox x

item

ttt

ttt

Thinking about the Program Structure

n

strategy

148 Part III Functions as Data

(ttt ’ o xox x ’o)

> (ttt ’ x ’o) ; Human goes first in square 5
1 ; Computer moves in square 1
> (ttt ’o xx ’o) ; Human moves in square 4
6 ; Computer blocks in square 6
> (ttt ’o xxxo ’o) ; Human moves in square 3
7 ; Computer blocks again
> (ttt ’o xxxoox ’o)
2

We’ll call a partially filled-in board a “position.”

To the computer, the same position will be represented by the word .
The nine letters of the word correspond to squares one through nine of the board.
(We’re thinking ahead to the possibility of using to extract the th square of a given
position.)

Our top-level procedure, , will return the computer’s next move given the current
position. It takes two arguments: the current position and whether the computer is
playing X or O. If the computer is O and the board looks like the one above, then we’d
invoke like this:

Here is a sample game:

This is not a complete game program! Later, when we talk about input and output,
you’ll see how to write an interactive program that displays the board pictorially, asks the
player where to move, and so on. For now, we’ll just write the procedure that
chooses the next move. As a paying customer, you wouldn’t be satisfied with this partial
program, but from the programmer’s point of view, this is the more interesting part.

you

data structures

Chapter 10 Example: Tic-Tac-Toe 149

cond

I-can-win?
choose-winning-move

Opponent-can-win?
Block-opponent-win

ttt

ttt i-can-win?

(define (ttt position me) ;; first version
(cond ((i-can-win?)

(choose-winning-move))
((opponent-can-win?)
(block-opponent-win))
((i-can-win-next-time?)
(prepare-win))
(else (whatever))))

Let’s plan the computer’s strategy in English before we start writing a computer
program. How do play tic-tac-toe? You have several strategy rules in your head,
some of which are more urgent than others. For example, if you can win on this move,
then you just do it without thinking about anything else. But if there isn’t anything that
immediate, you consider less urgent questions, such as how this move might affect what
happens two moves later.

So we’ll represent this set of rules by a giant expression:

We’re imagining many helper procedures. will look at the board and
tell if the computer has an immediate winning move. If so, will
find that particular move. returns true if the human player has
an immediate winning move. will return a move that prevents
the computer’s opponent from winning, and so on.

We didn’t actually start by writing this definition of . The particular names of
helper procedures are just guesses, because we haven’t yet planned the tic-tac-toe strategy
in detail. But we did know that this would be the overall structure of our program. This
big picture doesn’t automatically tell us what to do next; different programmers might
fill in the details differently. But it’s a framework to keep in mind during the rest of the
job.

Our first practical step was to think about the in our program. A
data structure is a way of organizing several pieces of information into a big chunk. For
example, a sentence is a data structure that combines several words in a sequence (that
is, in left-to-right order).

In the first, handwavy version of , the strategy procedures like are
called with no arguments, but of course we knew they would need some information
about the board position. We began by thinking about how to represent that information
within the program.

x o
x

o

x o
x

x o

x 9 x
x5x

x

The First Step: Triples

(1xo 4x6 o89 14o xx8 o69 1x9 oxo)

numbers

150 Part III Functions as Data

A person looking at a tic-tac-toe board looks at the rows, columns, and diagonals. The
question “do I have a winning move?” is equivalent to the question “are there three
squares in a line such that two of them are mine and the last one is blank?” In fact,
nothing else matters about the game besides these potential winning combinations.

There are eight potential winning combinations: three rows, three columns, and
two diagonals. Consider the combination containing the three squares 1, 5, and 9. If
it contains both an and an then nobody can win with this combination and there’s
nothing to think about. But if it contains two s and a free square, we’re very interested
in the combination. What we want to know in particular is which square is free, since we
want to move in that square to win or block.

More generally, the only squares whose we care about are the ones we might
want to move into, namely, the free ones. So the only interesting information about a
square is whether it has an or an , and if not, what its number is.

The information that 1, 5, 9 is a potential winning combination and the information
that square 1 contains an , square 5 is empty, and square contains another can be
combined into the single word . Looking at this word we can see immediately that
there are two s in this “triple” and that the free square is square 5. So when we want to
know about a three-square combination, we will turn it into a triple of that form.

Here’s a sample board position:

and here is a sentence of all of its triples:

Take a minute to convince yourself that this sentence really does tell you everything
you need to know about the corresponding board position. Once our strategy procedure
finds the triples for a board position, it’s never going to look at the original position
again.

This technique of converting data from one form to another so that it can be
manipulated more easily is an important idea in computer science. There are really three
representations of the same thing. There’s this picture:

1
3

7
3

x o
x

o

Finding the Triples

(123 456 789 147 258 369 159 357)

xo x o (1xo 4x6 o89 14o xx8 o69 1x9
oxo)

xo x o

Ttt
x

x

contents

inconvenient

Chapter 10 Example: Tic-Tac-Toe 151

as well as the word and the sentence
. All three of these formats have the same information but are convenient in

different ways. The pictorial form is convenient because it makes sense to the person
who’s playing tic-tac-toe. Unfortunately, you can’t type that picture into a computer, so
we need a different format, the word , which contains the of the
nine squares in the picture, but without the lines separating the squares and without the
two-dimensional shape.

The third format, the sentence, is quite for human beings. You’d never
want to think about a tic-tac-toe board that way yourself, because the sentence doesn’t
have the visual simplicity that lets you take in a tic-tac-toe position at a glance. But the
sentence of triples is the most convenient representation for our program. will
have to answer questions like “can win on the next move?” To do that, it will have
to consider an equivalent but more detailed question: “For each of the eight possible
winning combinations, can complete that combination on the next move?” It doesn’t
really matter whether a combination is a row or a column; what does matter is that each of
the eight combinations be readily available for inspection by the program. The sentence-
of-triples representation obscures part of the available information (which combination
is where) to emphasize another part (making the eight combinations explicit, instead of
implicit in the nine boxes of the diagram).

The representation of fractions as “mixed numerals,” such as 2 , and as “improper
fractions,” such as , is a non-programming example of this idea about multiple repre-
sentations. A mixed numeral makes it easier for a person to tell how big the number is,
but an improper fraction makes arithmetic easier.

We said that we would combine the current board position with the numbers of the
squares in the eight potential winning combinations in order to compute the things we’re
calling triples. That was our first task in writing the program.

Our program will start with this sentence of all the winning combinations:

152 Part III Functions as Data

xo x o

x o
every

substitute-triple
find-triples

substitute-triple 258
2x8

every substitute-letter

Every

258 2x8 every (2 x 8)
substitute-triple

Substitute-letter

item

(1xo 4x6 o89 14o xx8 o69 1x9 oxo)

(define (find-triples position) ;; first version
(every substitute-triple ’(123 456 789 147 258 369 159 357)))

(define (substitute-triple combination) ;; first version
(every substitute-letter combination))

(define (substitute-triple combination) ;; second version
(accumulate word (every substitute-letter combination)))

(define (substitute-letter square) ;; first version
(if (equal? ’ (item square position))

square
(item square position)))

and a position word such as ; it will return a sentence of triples such as

All that’s necessary is to replace some of the numbers with s and s. This kind of
word-by-word translation in a sentence is a good job for .

We’ve made up a name for a procedure we haven’t written
yet. This is perfectly OK, as long as we write it before we try to invoke .
The function will take three digits, such as , and return a
triple, such as :

This procedure uses to call on all three letters.

There’s a small problem, though. always returns a sentence, and we want
our triple to be a word. For example, we want to turn the potential winning combination

into the word , but would return the sentence . So here’s our
next version of :

knows that letter number 3 of the word that represents the
board corresponds to the contents of square 3 of the board. This means that it can just
call with the given square number and the board to find out what’s in that square.
If it’s empty, we return the square number itself; otherwise we return the contents of the
square.

Whoops! Do you see the problem?

EveryUsing with Two-Argument Procedures

Chapter 10 Example: Tic-Tac-Toe 153

square
substitute-letter

substitute-letter
substitute-triple substitute-letter

substitute-letter
substitute-triple

substitute-letter
every

lambda

> (substitute-letter 5)
ERROR: Variable POSITION is unbound.

(define (substitute-letter square position)
(if (equal? ’ (item square position))

square
(item square position)))

> (substitute-letter 5 ’ xo x o)
X

> (substitute-letter 8 ’ xo x o)
8

(define (substitute-triple combination) ;; second version again
(accumulate word (every substitute-letter combination)))

(lambda (square) (substitute-letter square position))

Our procedure only takes one argument, , but it needs to know the position so it
can find out what’s in the given square. So here’s the real :

Now can do its job, since it has access to the position. But
we’ll have to modify to invoke with two
arguments.

This is a little tricky. Let’s look again at the way we’re using
inside :

By giving another argument, we have made this formerly correct
procedure incorrect. The first argument to must be a function of one argument,
not two. This is exactly the kind of situation in which can help us: We have a
function of two arguments, and we need a function of one argument that does the same
thing, but with one of the arguments fixed.

The procedure returned by

does exactly the right thing; it takes a square as its argument and returns the contents of
the position at that square.

154 Part III Functions as Data

substitute-triple

substitute-letter substitute-triple

find-triples

Substitute-triple
lambda every

find-triples

(define (substitute-triple combination position)
(accumulate word

(every (lambda (square)
(substitute-letter square position))

combination)))

> (substitute-triple 456 ’ xo x o)
"4X6"

> (substitute-triple 147 ’ xo x o)
"14O"

> (substitute-triple 357 ’ xo x o)
OXO

(define (find-triples position)
(every (lambda (comb) (substitute-triple comb position))

’(123 456 789 147 258 369 159 357)))

> (find-triples ’ xo x o)
("1XO" "4X6" O89 "14O" XX8 O69 "1X9" OXO)

> (find-triples ’x oxo)
(X23 456 OXO X4O "25X" "36O" X5O "35O")

Here’s the final version of :

As you can see, Scheme prints some of these words with double-quote marks. The rule is
that a word that isn’t a number but begins with a digit must be double-quoted. But in the
finished program we’re not going to print such words at all; we’re just showing you the
working of a helper procedure. Similarly, in this chapter we’ll show direct invocations of
helper procedures in which some of the arguments are strings, but a user of the overall
program won’t have to use this notation.

We’ve fixed the problem by giving
an extra argument, so we’re going to have to go through the same process with

. Here’s the right version:

It’s the same trick. is a procedure of two arguments. We use
to transform it into a procedure of one argument for use with .

We’ve now finished , one of the most important procedures in the
game.

Can the Computer Win on This Move?

Chapter 10 Example: Tic-Tac-Toe 155

Substitute-letter
Substitute-triple
Find-triples

i-can-win? #t

x6x oo7

appearances

xxo

(define (ttt position me)
(ttt-choose (find-triples position) me))

(define (ttt-choose triples me) ;; first version
(cond ((i-can-win? triples me)

(choose-winning-move triples me))
((opponent-can-win? triples me)
(block-opponent-win triples me))
))

> (appearances ’o ’oo7)
2

> (appearances ’x ’oo7)
0

Here again are the jobs of all three procedures we’ve written so far:

finds the letter in a single square.
finds all three letters corresponding to three squares.
finds all the letters in all eight winning combinations.

We’ve done all this because we think that the rest of the program can use the
triples we’ve computed as data. So we’ll just compute the triples once for all the other
procedures to use:

. . .

The obvious next step is to write , a procedure that should return if the
computer can win on the current move—that is, if the computer already has two squares
of a triple whose third square is empty. The triples and are examples.

So we need a function that takes a word and a letter as arguments and counts how
many times that letter appears in the word. The primitive that we used in
Chapter 2 (and that you re-implemented in Exercise 9.10) will do the job:

The computer “owns” a triple if the computer’s letter appears twice and the
opponent’s letter doesn’t appear at all. (The second condition is necessary to exclude
cases like .)

156 Part III Functions as Data

opponent

lambda My-pair?

keep

Notice that we need a function that returns the opposite letter from ours.

Finally, the computer can win if it owns any of the triples:

By now you’re accustomed to this trick with . takes a triple and the
computer’s letter as arguments, but we want a function of one argument for use with

.

(define (my-pair? triple me)
(and (= (appearances me triple) 2)

(= (appearances (opponent me) triple) 0)))

(define (opponent letter)
(if (equal? letter ’x) ’o ’x))

> (opponent ’x)
O

> (opponent ’o)
X

> (my-pair? ’oo7 ’o)
#T

> (my-pair? ’xo7 ’o)
#F

> (my-pair? ’oox ’o)
#F

(define (i-can-win? triples me) ;; first version
(not (empty?

(keep (lambda (triple) (my-pair? triple me))
triples))))

> (i-can-win? ’("1xo" "4x6" o89 "14o" xx8 o69 "1x9" oxo) ’x)
#T

> (i-can-win? ’("1xo" "4x6" o89 "14o" xx8 o69 "1x9" oxo) ’o)
#F

If So, in Which Square?

Chapter 10 Example: Tic-Tac-Toe 157

i-can-win? #t

keep

#f

#f
cond

cond

cond i-can-win?

* A kludge is a programming trick that doesn’t follow the rules but works anyway somehow. It
doesn’t rhyme with “sludge”; it’s more like “clue” followed by “j” as in “Jim.”

(define (choose-winning-move triples me) ;; not really part of game
(keep number? (first (keep (lambda (triple) (my-pair? triple me))

triples))))

(define (ttt-choose triples me) ;; second version
(cond ((i-can-win? triples me))

((opponent-can-win? triples me))
))

(define (i-can-win? triples me)
(choose-win
(keep (lambda (triple) (my-pair? triple me))

triples)))

Suppose returns . We then have to find the particular square that will
win the game for us. This will involve a repetition of some of the same work we’ve already
done:

We again use to find the triples with two of the computer’s letter, but this time we
extract the number from the first such winning triple.

We’d like to avoid this inefficiency. As it turns out, generations of Lisp programmers
have been in just this bind in the past, and so they’ve invented a kludge* to get around it.

Remember we told you that everything other than counts as true? We’ll take
advantage of that by having a single procedure that returns the number of a winning
square if one is available, or otherwise. In Chapter 6 we called such a procedure
a “semipredicate.” The kludgy part is that accepts a clause containing a single
expression instead of the usual two expressions; if the expression has any true value, then

returns that value. So we can say

. . .

where each clause invokes a semipredicate. We then modify to have
the desired behavior:

158 Part III Functions as Data

Second Verse, Same as the First

i-can-win?
I-can-win?

#f
i-can-win?

(define (choose-win winning-triples)
(if (empty? winning-triples)

#f
(keep number? (first winning-triples))))

> (i-can-win? ’("1xo" "4x6" o89 "14o" xx8 o69 "1x9" oxo) ’x)
8

> (i-can-win? ’("1xo" "4x6" o89 "14o" xx8 o69 "1x9" oxo) ’o)
#F

(define (opponent-can-win? triples me)
(i-can-win? triples (opponent me)))

> (opponent-can-win? ’("1xo" "4x6" o89 "14o" xx8 o69 "1x9" oxo) ’x)
#F

> (opponent-can-win? ’("1xo" "4x6" o89 "14o" xx8 o69 "1x9" oxo) ’o)
8

By this point, we’re starting to see the structure of the overall program. There will
be several procedures, similar to , that will try to choose the next move.

checks to see if the computer can win on this turn, another procedure
will check to see if the computer should block the opponent’s win next turn, and other
procedures will check for other possibilities. Each of these procedures will be what we’ve
been calling “semipredicates.” That is to say, each will return the number of the square
where the computer should move next, or if it can’t decide. All that’s left is to figure
out the rest of the computer’s strategy and write more procedures like .

Now it’s time to deal with the second possible strategy case: The computer can’t win on
this move, but the opponent can win unless we block a triple right now.

(What if the computer and the opponent both have immediate winning triples? In
that case, we’ve already noticed the computer’s win, and by winning the game we avoid
having to think about blocking the opponent.)

Once again, we have to go through the complicated business of finding triples that
have two of the opponent’s letter and none of the computer’s letter—but it’s already
done!

Is that amazing or what?

x o
x

o

x o
x

x o

Now the Strategy Gets Complicated

two

two

Chapter 10 Example: Tic-Tac-Toe 159

x o x

x o
o

x
o

x47 3x7

i-can-fork?
pivots

pivots
(4 7) pivots i-can-fork?

(define (i-can-fork? triples me)
(first-if-any (pivots triples me)))

Since our goal here is to teach programming, rather than tic-tac-toe strategy, we’re just
going to explain the strategy we use and not give the history of how we developed it.

The third step, after we check to see if either player can win on the next move, is to
look for a situation in which a move that we make now will give rise to winning triples
next time. Here’s an example:

Neither nor can win on this move. But if the computer is playing , moving
in square 4 or square 7 will produce a situation with two winning triples. For example,
here’s what happens if we move in square 7:

From this position, can win by moving either in square 3 or in square 4. It’s ’s turn,
but can block only one of these two possibilities. By contrast, if (in the earlier position)

moves in square 3 or square 6, that would create a single winning triple for next time,
but could block it.

In other words, we want to find triples in which one square is taken by the
computer and the other two are free, with one free square shared between the two triples.
(In this example, we might find the two triples and ; that would lead us to move
in square 7, the one that these triples have in common.) We’ll call a situation like this a
“fork,” and we’ll call the common square the “pivot.” This isn’t standard terminology; we
just made up these terms to make it easier to talk about the strategy.

In order to write the strategy procedure we assume that we’ll need
a procedure that returns a sentence of all pivots of forks currently available
to the computer. In this board, 4 and 7 are the pivots, so the procedure
would return the sentence . If we assume , then writing is
straightforward:

Finding the Pivots

Pivots

keep x

Pivots

160 Part III Functions as Data

(define (first-if-any sent)
(if (empty? sent)

#f
(first sent)))

(xo3 4x6 78o x47 ox8 36o xxo 3x7)

(4x6 x47 3x7)

4x6x473x7

("" "" 3 44 "" 6 77 "" "")

(define (pivots triples me)
(repeated-numbers (keep (lambda (triple) (my-single? triple me))

triples)))

(define (my-single? triple me)
(and (= (appearances me triple) 1)

(= (appearances (opponent me) triple) 0)))

> (my-single? "4x6" ’x)
#T

should return a sentence containing the pivot numbers. Here’s the plan. We’ll
start with the triples:

We the ones that have an and two numbers:

We mash these into one huge word:

We sort the digits from this word into nine “buckets,” one for each digit:

We see that there are no ones or twos, one three, two fours, and so on. Now we can easily
see that four and seven are the pivot squares.

Let’s write the procedures to carry out that plan. has to find all the triples
with one computer-owned square and two free squares, and then it has to extract the
square numbers that appear in more than one triple.

Chapter 10 Example: Tic-Tac-Toe 161

My-single? my-pair?

Repeated-numbers

accumulate

accumulate word

> (my-single? ’xo3 ’x)
#F

> (keep (lambda (triple) (my-single? triple ’x))
(find-triples ’xo x o))

("4X6" X47 "3X7")

(define (repeated-numbers sent)
(every first

(keep (lambda (wd) (>= (count wd) 2))
(sort-digits (accumulate word sent)))))

> (accumulate word ’("4x6" x47 "3x7"))
"4X6X473X7"

(define (extract-digit desired-digit wd)
(keep (lambda (wd-digit) (equal? wd-digit desired-digit)) wd))

> (extract-digit 7 "4x6x473x7")
77

> (extract-digit 2 "4x6x473x7")
""

is just like except that it looks for one appearance of the letter
instead of two.

takes a sentence of triples as its argument and has to return a
sentence of all the numbers that appear in more than one triple.

We’re going to read this procedure inside-out, starting with the and working
outward.

Why is it okay to the sentence? Suppose that a number appears
in two triples. All we need to know is that number, not the particular triples through
which we found it. Therefore, instead of writing a program to look through several triples
separately, we can just as well combine the triples into one long word, keep only the digits
of that word, and simply look for the ones that appear more than once.

We now have one long word, and we’re looking for repeated digits. Since this is
a hard problem, let’s start with the subproblem of finding all the copies of a particular
digit.

162 Part III Functions as Data

1
2

every

Sort-digits

repeated-numbers

* Brian thinks this is a kludge, but Matt thinks it’s brilliant and elegant.

Now we want a sentence where the first word is all the s, the second word is all the
s, etc. We could do it like this:

. . .

but that wouldn’t be taking advantage of the power of computers to do that sort of
repetitious work for us. Instead, we’ll use :

takes a word full of numbers and returns a sentence whose first word
is all the ones, second word is all the twos, etc.*

Let’s look at again:

(se (extract-digit 1 "4x6x473x7")
(extract-digit 2 "4x6x473x7")
(extract-digit 3 "4x6x473x7")

)

(define (sort-digits number-word)
(every (lambda (digit) (extract-digit digit number-word))

’(1 2 3 4 5 6 7 8 9)))

> (sort-digits 123456789147258369159357)
(111 22 333 44 5555 66 777 88 999)

> (sort-digits "4x6x473x7")
("" "" 3 44 "" 6 77 "" "")

(define (repeated-numbers sent)
(every first

(keep (lambda (wd) (>= (count wd) 2))
(sort-digits (accumulate word sent)))))

> (repeated-numbers ’("4x6" x47 "3x7"))
(4 7)

> (keep (lambda (wd) (>= (count wd) 2))
’("" "" 3 44 "" 6 77 "" ""))

(44 77)

> (every first ’(44 77))
(4 7)

x o
x

o

Taking the Offensive

pivots i-can-fork?

ttt-choose

o

two
is

into

Chapter 10 Example: Tic-Tac-Toe 163

(define (ttt-choose triples me)
(cond ((i-can-win? triples me))

((opponent-can-win? triples me))
((i-can-fork? triples me))
((i-can-advance? triples me))
(else (best-free-square triples))))

(define (opponent-can-fork? triples me) ;; not really part of game
(i-can-fork? triples (opponent me)))

This concludes the explanation of . Remember that chooses
the first pivot, if any, as the computer’s move.

Here’s the final version of with all the clauses shown:

You already know about the first three possibilities.

Just as the second possibility was the “mirror image” of the first (blocking an
opponent’s move of the same sort the computer just attempted), it would make sense for
the fourth possibility to be blocking the creation of a fork by the opponent. That would
be easy to do:

Unfortunately, although the programming works, the strategy doesn’t. Maybe the
opponent has potential forks; we can block only one of them. (Why isn’t that a
concern when blocking the opponent’s wins? It a concern, but if we’ve allowed the
situation to reach the point where there are two ways the opponent can win on the next
move, it’s too late to do anything about it.)

Instead, our strategy is to go on the offensive. If we can get two in a row on this
move, then our opponent will be forced to block on the next move, instead of making a
fork. However, we want to make sure that we don’t accidentally force the opponent
making a fork.

Let’s look at this board position again, but from ’s point of view:

x o
x
o o

x o
x

x o o

shouldn’t

all

164 Part III Functions as Data

X o
369 789 o o

x
o

x

keep

Best-move first-if-any
best-square

best-move

best-square

(define (i-can-advance? triples me)
(best-move (keep (lambda (triple) (my-single? triple me)) triples)

triples
me))

(define (best-move my-triples all-triples me)
(if (empty? my-triples)

#f
(best-square (first my-triples) all-triples me)))

(define (best-square my-triple triples me)
(best-square-helper (pivots triples (opponent me))

(keep number? my-triple)))

’s pivots are 4 and 7, as we discussed earlier; couldn’t take both those squares. Instead,
look at the triples and , both of which are singles that belong to . So should
move in one of the squares 3, 6, 7, or 8, forcing to block instead of setting up the fork.
But move in square 8, like this:

because that would force to block in square 7, setting up a fork!

The structure of the algorithm is much like that of the other strategy possibilities.
We use to find the appropriate triples, take the first such triple if any, and then
decide which of the two empty squares in that triple to move into.

does the same job as , which we saw earlier, except that it
also invokes on the first triple if there is one.

Since we’ve already chosen the relevant triples before we get to , you
may be wondering why it needs the triples as an additional argument. The answer is
that is going to look at the board position from the opponent’s point of
view to look for forks.

keep

last

3o7
2o8

find-triples

both

last

Chapter 10 Example: Tic-Tac-Toe 165

x
o

x

* Matt thinks this is a kludge, but Brian thinks it’s brilliant and elegant.

(define (best-square-helper opponent-pivots pair)
(if (member? (first pair) opponent-pivots)

(first pair)
(last pair)))

> (best-square "78o" (find-triples ’xo x o) ’o)
7

> (best-square "36o" (find-triples ’xo x o) ’o)
6

> (best-move ’("78o" "36o") (find-triples ’xo x o) ’o)
7

> (i-can-advance? (find-triples ’xo x o) ’o)
7

We the two numbers of the triple that we’ve already selected. We also select
the opponent’s possible pivots from among all the triples. If one of our two possible
moves is a potential pivot for the opponent, that’s the one we should move into, to block
the fork. Otherwise, we arbitrarily pick the second () free square.

What if of the candidate squares are pivots for the opponent? In that case, we’ve
picked a bad triple; moving in either square will make us lose. As it turns out, this can
occur only in a situation like the following:

If we chose the triple , then either move will force the opponent to set up a fork, so
that we lose two moves later. Luckily, though, we can instead choose a triple like . We
can move in either of those squares and the game will end up a tie.

In principle, we should analyze a candidate triple to see if both free squares create
forks for the opponent. But since we happen to know that this situation arises only
on the diagonals, we can be lazier. We just list the diagonals in the procedure

. Since we take the first available triple, this ensures that we won’t take a
diagonal if there are any other choices.*

166 Part III Functions as Data

Leftovers

Complete Program Listing

If all else fails, we just pick a square. However, some squares are better than others. The
center square is part of four triples, the corner squares are each part of three, and the
edge squares each a mere two.

So we pick the center if it’s free, then a corner, then an edge.

(define (best-free-square triples)
(first-choice (accumulate word triples)

’(5 1 3 7 9 2 4 6 8)))

(define (first-choice possibilities preferences)
(first (keep (lambda (square) (member? square possibilities))

preferences)))

> (first-choice 123456789147258369159357 ’(5 1 3 7 9 2 4 6 8))
5

> (first-choice "1xo4x6o8914oxx8o691x9oxo" ’(5 1 3 7 9 2 4 6 8))
1

> (best-free-square (find-triples ’))
5

> (best-free-square (find-triples ’ x))
1

;;; ttt.scm
;;; Tic-Tac-Toe program

(define (ttt position me)
(ttt-choose (find-triples position) me))

(define (find-triples position)
(every (lambda (comb) (substitute-triple comb position))

’(123 456 789 147 258 369 159 357)))

(define (substitute-triple combination position)
(accumulate word

(every (lambda (square)
(substitute-letter square position))

combination)))

Chapter 10 Example: Tic-Tac-Toe 167

(define (substitute-letter square position)
(if (equal? ’_ (item square position))

square
(item square position)))

(define (ttt-choose triples me)
(cond ((i-can-win? triples me))

((opponent-can-win? triples me))
((i-can-fork? triples me))
((i-can-advance? triples me))
(else (best-free-square triples))))

(define (i-can-win? triples me)
(choose-win
(keep (lambda (triple) (my-pair? triple me))

triples)))

(define (my-pair? triple me)
(and (= (appearances me triple) 2)

(= (appearances (opponent me) triple) 0)))

(define (opponent letter)
(if (equal? letter ’x) ’o ’x))

(define (choose-win winning-triples)
(if (empty? winning-triples)

#f
(keep number? (first winning-triples))))

(define (opponent-can-win? triples me)
(i-can-win? triples (opponent me)))

(define (i-can-fork? triples me)
(first-if-any (pivots triples me)))

(define (first-if-any sent)
(if (empty? sent)

#f
(first sent)))

(define (pivots triples me)
(repeated-numbers (keep (lambda (triple) (my-single? triple me))

triples)))

168 Part III Functions as Data

(define (my-single? triple me)
(and (= (appearances me triple) 1)

(= (appearances (opponent me) triple) 0)))

(define (repeated-numbers sent)
(every first

(keep (lambda (wd) (>= (count wd) 2))
(sort-digits (accumulate word sent)))))

(define (sort-digits number-word)
(every (lambda (digit) (extract-digit digit number-word))

’(1 2 3 4 5 6 7 8 9)))

(define (extract-digit desired-digit wd)
(keep (lambda (wd-digit) (equal? wd-digit desired-digit)) wd))

(define (i-can-advance? triples me)
(best-move (keep (lambda (triple) (my-single? triple me)) triples)

triples
me))

(define (best-move my-triples all-triples me)
(if (empty? my-triples)

#f
(best-square (first my-triples) all-triples me)))

(define (best-square my-triple triples me)
(best-square-helper (pivots triples (opponent me))

(keep number? my-triple)))

(define (best-square-helper opponent-pivots pair)
(if (member? (first pair) opponent-pivots)

(first pair)
(last pair)))

(define (best-free-square triples)
(first-choice (accumulate word triples)

’(5 1 3 7 9 2 4 6 8)))

(define (first-choice possibilities preferences)
(first (keep (lambda (square) (member? square possibilities))

preferences)))

•

•

•

o x o
o x x
x o

Exercises

10.1

10.2

10.3

10.4

10.5

four

Chapter 10 Example: Tic-Tac-Toe 169

ttt
ttt

already-won? x o
#t

tie-game? #t

9 tie-game?
#t

find-triples

ttt

The procedure assumes that nobody has won the game yet. What happens
if you invoke with a board position in which some player has already won? Try to
figure it out by looking through the program before you run it.

A complete tic-tac-toe program would need to stop when one of the two players wins.
Write a predicate that takes a board position and a letter (or) as its
arguments and returns if that player has already won.

The program also doesn’t notice when the game has ended in a tie, that is, when all
nine squares are already filled. What happens now if you ask it to move in this situation?

Write a procedure that returns in this case.

A real human playing tic-tac-toe would look at a board like this:

and notice that it’s a tie, rather than moving in square . Modify from
Exercise 10.2 to notice this situation and return .

(Can you improve the program’s ability to recognize ties even further? What about
boards with two free squares?)

Here are some possible changes to the rules of tic-tac-toe:

What if you could win a game by having three squares forming an L shape in a corner,
such as squares 1, 2, and 4?

What if the diagonals didn’t win?

What if you could win by having squares in a corner, such as 1, 2, 4, and 5?

Answer the following questions for each of these modifications separately: What would
happen if we tried to implement the change merely by changing the quoted sentence
of potential winning combinations in ? Would the program successfully
follow the rules as modified?

Modify to play chess.

Part IV
Recursion

same

self-reference

170

By now you’re very familiar with the idea of implementing a function by composing other
functions. In effect we are breaking down a large problem into smaller parts. The idea of
recursion—as usual, it sounds simpler than it actually is—is that one of the smaller parts
can be the function we are trying to implement.

At clothes stores they have arrangements with three mirrors hinged together. If you
keep the side mirrors pointing outward, and you’re standing in the right position, what
you see is just three separate images of yourself, one face-on and two with profile views.
But if you turn the mirrors in toward each other, all of a sudden you see what looks
like infinitely many images of yourself. That’s because each mirror reflects a scene that
includes an image of the mirror itself. This gives rise to the multiple images.

Recursion is the idea of self-reference applied to computer programs. Here’s an
example:

“I’m thinking of a number between 1 and 20.”

(Her number is between 1 and 20. I’ll guess the halfway point.) “10.”

“Too low.”

(Hmm, her number is between 11 and 20. I’ll guess the halfway point.) “15.”

“Too high.”

(That means her number is between 11 and 14. I’ll guess the halfway point.) “12.”

“Got it!”

We can write a procedure to do this:

fractals

171

too-low? too-high?

(define (game low high)
(let ((guess (average low high)))
(cond ((too-low? guess) (game (+ guess 1) high))

((too-high? guess) (game low (- guess 1)))
(else ’(I win!)))))

This isn’t a complete program because we haven’t written and .
But it illustrates the idea of a problem that contains a version of itself as a subproblem:
We’re asked to find a secret number within a given range. We make a guess, and if it’s not
the answer, we use that guess to create another problem in which the same secret number
is known to be within a smaller range. The self-reference of the problem description is
expressed in Scheme by a procedure that invokes itself as a subprocedure.

Actually, this isn’t the first time we’ve seen self-reference in this book. We defined
“expression” in Chapter 3 self-referentially: An expression is either atomic or composed
of smaller expressions.

The idea of self-reference also comes up in some paradoxes: Is the sentence “This
sentence is false” true or false? (If it’s true, then it must also be false, since it says so; if
it’s false, then it must also be true, since that’s the opposite of what it says.) This idea
also appears in the self-referential shapes called that are used to produce realistic-
looking waves, clouds, mountains, and coastlines in computer-generated graphics.

Print Gallery, by M. C. Escher (lithograph, 1956)

. . .

173

11 Introduction to Recursion

I know an old lady who swallowed a fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a bird.
How absurd, to swallow a bird!
She swallowed the bird to catch the spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a cat.
Imagine that, to swallow a cat.

She swallowed the cat to catch the bird.
She swallowed the bird to catch the spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a dog.
What a hog, to swallow a dog!
She swallowed the dog to catch the cat.
She swallowed the cat to catch the bird.
She swallowed the bird to catch the spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a horse.
She’s dead of course!

100 bottles of beer on the wall,
100 bottles of beer.
If one of those bottles should happen to fall,
99 bottles of beer on the wall.

99 bottles of beer on the wall,
99 bottles of beer.
If one of those bottles should happen to fall,
98 bottles of beer on the wall.

98 bottles of beer on the wall,
98 bottles of beer.
If one of those bottles should happen to fall,
97 bottles of beer on the wall.

97 bottles of beer on the wall,
97 bottles of beer.
If one of those bottles should happen to fall,
96 bottles of beer on the wall

every

recursion:

bigger

lot

combining method.

174 Part IV Recursion

* If your instructor has asked you to read Part IV before Part III, ignore that sentence.

> (downup ’ringo)
(RINGO RING RIN RI R RI RIN RING RINGO)

> (downup ’marsupial)
(MARSUPIAL
MARSUPIA
MARSUPI
MARSUP
MARSU
MARS
MAR
MA
M
MA
MAR
MARS
MARSU
MARSUP
MARSUPI
MARSUPIA
MARSUPIAL)

In the next few chapters we’re going to talk about solving a big problem by
reducing it to a similar, smaller subproblem. Actually that’s a little backward from the
old lady in the song, who turned her little problem into a similar but problem! As
the song warns us, this can be fatal.

Here’s the first problem we’ll solve. We want a function that works like this:

None of the tools that we’ve used so far will handle this problem. It’s not a “compute
this function for each letter of the word” problem, for which we could use .*
Rather, we have to think about the entire word in a rather complicated way.

We’re going to solve this problem using recursion. It turns out that the idea of
recursion is both very powerful—we can solve a of problems using it—and rather
tricky to understand. That’s why we’re going to explain recursion several different ways
in the coming chapters. Even after you understand one of them, you’ll probably find
that thinking about recursion from another point of view enriches your ability to use this
idea. The explanation in this chapter is based on the

A Separate Procedure for Each Length

can

Chapter 11 Introduction to Recursion 175

downup
downup

downup4

downup downup83 downup
cond

(define (downup1 wd)
(se wd))

> (downup1 ’a)
(A)

(define (downup2 wd)
(se wd (first wd) wd))

> (downup2 ’be)
(BE B BE)

(define (downup3 wd)
(se wd

(bl wd)
(first wd)
(bl wd)
wd))

> (downup3 ’foo)
(FOO FO F FO FOO)

Since we don’t yet know how to solve the problem in general, let’s start with a
particular case that we solve. We’ll write a version of that works only for
one-letter words:

So far so good! This isn’t a very versatile program, but it does have the advantage of
being easy to write.

Now let’s see if we can do two-letter words:

Moving right along. . .

We could continue along these lines, writing procedures and so on. If we
knew that the longest word in English had 83 letters, we could write all of the single-length

s up to , and then write one overall procedure that would
consist of an enormous with 83 clauses, one for each length.

176 Part IV Recursion

(bl wd)
(first wd)
(bl wd)

Use What You Have to Get What You Need

downup83

(downup3 ’foo)
(downup2 ’fo)

downup3

downup2

downup4 downup2
downup3

downup4
downup3 downup

downup3

> (downup3 ’foo)
(FOO FO F FO FOO)

(downup2 ’fo)

(define (downup3 wd)
(se wd

wd))

(FOO FO F FO FOO)

(define (downup3 wd)
(se wd (downup2 (bl wd)) wd))

(define (downup4 wd)
(se wd (downup3 (bl wd)) wd))

> (downup4 ’paul)
(PAUL PAU PA P PA PAU PAUL)

But that’s a terrible idea. We’d get really bored, and start making a lot of mistakes, if we
tried to work up to this way.

The next trick is to notice that the middle part of what does is
just like :

So we can find the parts of that are responsible for those three words:

and replace them with an invocation of :

How about ? Once we’ve had this great idea about using to help
with , it’s not hard to continue the pattern:

The reason we can fit the body of on one line is that most of its work is done
for it by . If we continued writing each new procedure independently,
as we did in our first attempt at , our procedures would be getting longer and
longer. But this new way avoids that.

n
n 1

Chapter 11 Introduction to Recursion 177

downup2

downup59
downup58 downup57

downup

downup downup1

Notice That They’re All the Same

Notice That They’re Almost All the Same

(define (downup59 wd)
(se wd (downup58 (bl wd)) wd))

(define (downup2 wd)
(se wd (downup1 (bl wd)) wd))

(define (downup wd) ;; first version
(se wd (downup (bl wd)) wd))

> (downup ’toe)
ERROR: Invalid argument to BUTLAST: ""

(define (downup wd)
(se wd (downup - (bl wd)) wd))

(define (downup1 wd)
(se wd))

Also, although it may be harder to notice, we can even rewrite along the
same lines:

Although was easy to write, the problem is that it won’t work unless we also
define , which in turn depends on , and so on. This is a lot of
repetitive, duplicated, and redundant typing. Since these procedures are all basically the
same, what we’d like to do is combine them into a single procedure:

Isn’t this a great idea? We’ve written one short procedure that serves as a kind of
abbreviation for 59 other ones.

Unfortunately, it doesn’t work.

What’s gone wrong here? Not quite every numbered looks like

The only numbered that doesn’t follow the pattern is :

Base Cases and Recursive Calls

* It’s a disease. Coal miners get it.

recursive
base

around!

smaller

subproblems

178 Part IV Recursion

(define (downup wd)
(if (= (count wd) 1)

(se wd)
(se wd (downup (bl wd)) wd)))

> (downup ’toe)
(TOE TO T TO TOE)

> (downup ’banana)
(BANANA BANAN BANA BAN BA B BA BAN BANA BANAN BANANA)

downup

downup a pneumonoultra-
microscopicsilicovolcanoconinosis

Downup

downup
downup

downup downup

downup
downup

downup downup
downup

downup
downup happy downup happ hap ha

h

So if we collapse all the numbered s into a single procedure, we have to treat
one-letter words as a special case:

This version of will work for any length word, from to
* or beyond.

illustrates the structure of every recursive procedure. There is a choice among
expressions to evaluate: At least one is a case, in which the procedure (e.g.,

) itself is invoked with a smaller argument; at least one is a case, that is, one
that can be solved without calling the procedure recursively. For , the base case
is a single-letter argument.

How can this possibly work? We’re defining in terms of . In English
class, if the teacher asks you to define “around,” you’d better not say, “You know, ”
But we appear to be doing just that. We’re telling Scheme: “In order to find of
a word, find of another word.”

The secret is that it’s not just any old other word. The new word is than the
word we were originally asked to . So we’re saying, “In order to find of a
word, find of a shorter word.” We are posing a whole slew of asking
for the of words smaller than the one we started with. So if someone asks us the

of , along the way we have to compute the s of , , ,
and .

Pig Latin

rearrangement

Chapter 11 Introduction to Recursion 179

downup h

downup

downup pigl0
pigl1 downup

pigl0
pigl0 ay pigl1

pigl1 ay
pigl1 ay

(define (pigl0 wd)
(word wd ’ay))

> (pigl0 ’alabaster)
ALABASTERAY

(define (pigl1 wd) ;; obvious version
(word (bf wd) (first wd) ’ay))

> (pigl1 ’salami)
ALAMISAY

A recursive procedure doesn’t work unless every possible argument can eventually
be reduced to some base case. When we are asked for of , the procedure just
knows what to do without calling itself recursively.

We’ve just said that there has to be a base case. It’s also important that each recursive
call has to get us somehow closer to the base case. For , “closer” means that in the
recursive call we use a shorter word. If we were computing a numeric function, the base
case might be an argument of zero, and the recursive calls would use smaller numbers.

Let’s take another example; we’ll write the Pig Latin procedure that we showed off in
Chapter 1. We’re trying to take a word, move all the initial consonants to the end, and
add “ay.”

The simplest case is that there are no initial consonants to move:

(This will turn out to be the base case of our eventual recursive procedure.)

The next-simplest case is a word that starts with one consonant. The obvious way to
write this is

but, as in the example, we’d like to find a way to use in implementing
. This case isn’t exactly like , because there isn’t a piece of the return

value that we can draw a box around to indicate that returns that piece. Instead,
puts the letters at the end of some word, and so does . The difference

is that puts at the end of a of its argument word. To make this
point clearer, we’ll rewrite in a way that separates the rearrangement from the
addition:

something something

180 Part IV Recursion

pigl0
(word ’ay) (pigl0) pigl0
ay pigl1

pigl1 pigl2

pigl1

pigl2

(define (pigl1 wd)
(word (word (bf wd) (first wd))

’ay))

> (pigl1 ’pastrami)
ASTRAMIPAY

(define (pigl1 wd)
(pigl0 (word (bf wd) (first wd))))

(define (pigl2 wd)
(pigl1 (word (bf wd) (first wd))))

> (pigl2 ’trample)
AMPLETRAY

(define (pigl3 wd)
(pigl2 (word (bf wd) (first wd))))

> (pigl3 ’chrome)
OMECHRAY

pigl4 cond

Now we actually replace the -like part with an invocation. We want to replace
with . If we use to attach the

at the end, our new version of looks like this:

How about a word starting with two consonants? By now we know that we’re going
to try to use as a helper procedure, so let’s skip writing the long way. We
can just move the first consonant to the end of the word, and handle the result, a word
with only one consonant in front, with :

For a three-initial-consonant word we move one letter to the end and call :

So how about a version that will work for any word?* The recursive case will involve

* As it happens, there are no English words that start with more than four consonants. (There
are only a few even with four; “phthalate” is one, and some others are people’s names, such as
“Schneider.”) So we could solve the problem without recursion by writing the specific procedures
up to and then writing a five-way to choose the appropriate specific case. But as you
will see, it’s easier to solve the more general case! A single recursive procedure, which can handle
even nonexistent words with hundreds of initial consonants, is less effort than the conceptually
simpler four-consonant version.

Problems for You to Try

is

does

Chapter 11 Introduction to Recursion 181

(define (pigl wd)
(if (member? (first wd) ’aeiou)

(word wd ’ay)
(pigl (word (bf wd) (first wd)))))

> (explode ’dynamite)
(D Y N A M I T E)

> (letter-pairs ’george)
(GE EO OR RG GE)

pigl (word (bf wd) (first wd))
pigl1 pigl2 pigl3

ay pigl0

pigl
pigl scheme chemes

pigl scheme
chemes

Scheme
chemes

Chemes hemesc
pigl (pigl ’hemesc) (pigl ’emesch)

emesch pigl emeschay
(pigl ’emesch)

taking the of , to match the pattern we found in
, , and . The base case will be a word that begins with a vowel, for

which we’ll just add on the end, as does:

It’s an unusual sense in which ’s recursive call poses a “smaller” subproblem.
If we’re asked for the of , we construct a new word, , and ask for

of that. This doesn’t seem like much progress. We were asked to translate ,
a six-letter word, into Pig Latin, and in order to do this we need to translate ,
another six-letter word, into Pig Latin.

But actually this progress, because for Pig Latin the base case isn’t a one-letter
word, but rather a word that starts with a vowel. has three consonants before the
first vowel; has only two consonants before the first vowel.

doesn’t begin with a vowel either, so we construct the word and try
to that. In order to find we need to know .
Since begin with a vowel, returns . Once we know

, we’ve thereby found the answer to our original question.

You’ve now seen two examples of recursive procedures that we developed using the
combining method. We started by writing special-case procedures to handle small
problems of a particular size, then simplified the larger versions by using smaller versions
as helper procedures. Finally we combined all the nearly identical individual versions
into a single recursive procedure, taking care to handle the base case separately.

Here are a couple of problems that can be solved with recursive procedures. Try
them yourself before reading further. Then we’ll show you our solutions.

Our Solutions

two

182 Part IV Recursion

explode

explode3
explode2 explode3

Explode2
explode2

explode4 explode3

explode explode3

(define (explode0 wd)
’())

(define (explode1 wd)
(se wd))

(define (explode2 wd)
(se (first wd) (last wd)))

(define (explode3 wd)
(se (first wd) (first (bf wd)) (last wd)))

> (explode3 ’tnt)
(T N T)

(define (explode3 wd)
(se (first wd) (explode2 (bf wd))))

(define (explode4 wd)
(se (first wd) (explode3 (bf wd))))

What’s the smallest word we can ? There’s no reason we can’t explode an empty
word:

That wasn’t very interesting, though. It doesn’t suggest a pattern that will apply to larger
words. Let’s try a few larger cases:

With the procedure is starting to get complicated enough that we want
to find a way to use to help. What does is to pull three separate
letters out of its argument word, and collect the three letters in a sentence. Here’s a
sample:

pulls letters out of a word and collects them in a sentence. So we could
let deal with two of the letters of our three-letter argument, and handle the
remaining letter separately:

We can use similar reasoning to define in terms of :

Now that we see the pattern, what’s the base case? Our first three numbered
s are all different in shape from , but now that we know what the

Chapter 11 Introduction to Recursion 183

explode2 explode1
explode1 explode0

explode1
explode0 butfirst

letter-pairs

(define (explode2 wd)
(se (first wd) (explode1 (bf wd))))

(define (explode1 wd)
(se (first wd) (explode0 (bf wd))))

(define (explode wd)
(if (empty? wd)

’()
(se (first wd) (explode (bf wd)))))

(define (letter-pairs0 wd)
’())

(define (letter-pairs1 wd)
’())

(define (letter-pairs2 wd)
(se wd))

(define (letter-pairs3 wd)
(se (bl wd) (bf wd)))

(define (letter-pairs4 wd)
(se (bl (bl wd))

(bl (bf wd))
(bf (bf wd))))

pattern should be we’ll find that we can write in terms of , and
even in terms of :

We would never have thought to write in that roundabout way, especially
since pays no attention to its argument, so computing the doesn’t
contribute anything to the result, but by following the pattern we can let the recursive
case handle one-letter and two-letter words, so that only zero-letter words have to be
special:

Now for . What’s the smallest word we can use as its argument?
Empty and one-letter words have no letter pairs in them:

This pattern is not very helpful.

This does

184 Part IV Recursion

letter-pairs4 letter-pairs3
explode letter-pairs4

letter-pairs3

letter-pairs5 letter-pairs4

(bl (bl wd)) wd wd

letter-pairs4 letter-pairs5

> (letter-pairs4 ’nems)
(NE EM MS)

(define (letter-pairs4 wd)
(se (bl (bl wd))

(letter-pairs3 (bf wd))))

(define (letter-pairs5 wd) ;; wrong
(se (bl (bl wd))

(letter-pairs4 (bf wd))))

> (letter-pairs5 ’bagel)
(BAG AG GE EL)

(define (first-two wd)
(word (first wd) (first (bf wd))))

(define (letter-pairs4 wd)
(se (first-two wd) (letter-pairs3 (bf wd))))

(define (letter-pairs5 wd)
(se (first-two wd) (letter-pairs4 (bf wd))))

Again, we want to simplify by using to help. The
problem is similar to : The value returned by is a three-word
sentence, and we can use to generate two of those words.

This gives rise to the following procedure:

Does this pattern work for defining in terms of ?

The problem is that means “the first two letters of ” only when
has four letters. In order to be able to generalize the pattern, we need a way to ask for
the first two letters of a word that works no matter how long the word is. You wrote a
procedure to solve this problem in Exercise 5.15:

Now we can use this for and :

pattern generalize.

⇒

⇒

11.1

11.2

Pitfalls

Boring Exercises

Chapter 11 Introduction to Recursion 185

explode letter-pairs2
letter-pairs3

downup

letter-pairs

downup4

count-ums

(define (letter-pairs wd)
(if (<= (count wd) 1)

’()
(se (first-two wd)

(letter-pairs (bf wd)))))

(define (letter-pairs2 wd)
(se (first-two wd)

(letter-pairs1 (bf wd))))

(define (letter-pairs3 wd)
(se (first-two wd)

(letter-pairs2 (bf wd))))

* Exercise 8.12 in Part III asks you to solve this same problem using higher-order functions.
Here we are asking you to use recursion. Whenever we pose the same problem in both parts, we’ll
cross-reference them in brackets as we did here. When you see the problem for the second time,
you might want to consult your first solution for ideas.

Note that we treat two-letter and three-letter words as recursive cases and not as base cases.
Just as in the example of , we noticed that we could rewrite
and to follow the same pattern as the larger cases:

Every recursive procedure must include two parts: one or more recursive cases, in
which the recursion reduces the size of the problem, and one or more base cases, in
which the result is computable without recursion. For example, our first attempt at

fell into this pitfall because we had no base case.

Don’t be too eager to write the recursive procedure. As we showed in the
example, what looks like a generalizable pattern may not be.

Write using only the word and sentence primitive procedures.

[8.12]* When you teach a class, people will get distracted if you say “um” too many
times. Write a that counts the number of times “um” appears in a sentence:

11.3

186 Part IV Recursion

count-ums

count-ums

phone-unspell
POPCORN 7672676

phone-unspell

Here are some special-case procedures for sentences of particular lengths:

Write recursively.

[8.13] Write a procedure that takes a spelled version of a phone
number, such as , and returns the real phone number, in this case .
You will need a helper procedure that translates a single letter into a digit:

Here are some some special-case procedures:

> (count-ums
’(today um we are going to um talk about the combining um method))

3

(define (count-ums0 sent)
0)

(define (count-ums1 sent)
(if (equal? ’um (first sent))

1
0))

(define (count-ums2 sent)
(if (equal? ’um (first sent))

(+ 1 (count-ums1 (bf sent)))
(count-ums1 (bf sent))))

(define (count-ums3 sent)
(if (equal? ’um (first sent))

(+ 1 (count-ums2 (bf sent)))
(count-ums2 (bf sent))))

(define (unspell-letter letter)
(cond ((member? letter ’abc) 2)

((member? letter ’def) 3)
((member? letter ’ghi) 4)
((member? letter ’jkl) 5)
((member? letter ’mno) 6)
((member? letter ’prs) 7)
((member? letter ’tuv) 8)
((member? letter ’wxy) 9)
(else 0)))

Real Exercises

Chapter 11 Introduction to Recursion 187

phone-unspell

initials

countdown

copies

Use recursion to solve these problems, not higher order functions (Chapter 8)!

11.4

11.5

11.6

11.7

Write recursively.

Who first said “use what you have to get what you need”?

Write a procedure that takes a sentence as its argument and returns a
sentence of the first letters in each of the sentence’s words:

Write a procedure that works like this:

Write a procedure that takes a number and a word as arguments and
returns a sentence containing that many copies of the given word:

(define (phone-unspell1 wd)
(unspell-letter wd))

(define (phone-unspell2 wd)
(word (unspell-letter (first wd))

(unspell-letter (first (bf wd)))))

(define (phone-unspell3 wd)
(word (unspell-letter (first wd))

(unspell-letter (first (bf wd)))
(unspell-letter (first (bf (bf wd))))))

> (initials ’(if i needed someone))
(I I N S)

> (countdown 10)
(10 9 8 7 6 5 4 3 2 1 BLASTOFF!)

> (countdown 3)
(3 2 1 BLASTOFF!)

> (copies 8 ’spam)
(SPAM SPAM SPAM SPAM SPAM SPAM SPAM SPAM)

Drawing Hands, by M. C. Escher (lithograph, 1948)

•

•

•

•

12 The Leap of Faith

the leap of faith

189

From the Combining Method to the Leap of Faith

letter-pairs

letter-pairs4
letter-pairs3

letter-pairs4 letter-pairs5

letter-pairs

In the combining method, we build up to a recursive procedure by writing a number of
special-case nonrecursive procedures, starting with small arguments and working toward
larger ones. We find a generalizable way to use a smaller version in writing a larger one.
As a result, all our procedures end up looking nearly the same, so we combine them into
one procedure.

The combining method is a good way to begin thinking about recursion because
each step of a solution is clearly justified by earlier steps. The sequence of events by which
we get from a problem statement to a Scheme procedure is clear and straightforward.
The disadvantage of the combining method, though, is that it involves a lot of drudgery,
not all of which really helps toward the ultimate solution. In this chapter we’re going to
develop a new method called that overcomes this difficulty.

Let’s look again at the way we developed the procedure in the last
chapter. We went through several steps:

We wrote specific versions for zero-, one-, two-, and three-letter words.

We wrote , decided it was too complicated, and looked for a way to
use to help.

Having rewritten , we tried to write using the same
pattern. Since it didn’t quite work, we revised the pattern.

We generalized the pattern to write an unnumbered, recursive .

•

•

ReverseExample:

slightly

190 Part IV Recursion

> (reverse ’beatles)
SELTAEB

> (reverse ’beatle)
ELTAEB

reverse
LTA reverse ATL

letter-pairs7 letter-pairs6
reverse

beatles

reverse beatles
ELTAEB SELTAEB

S

We checked to make sure that the recursive pattern would work for two-letter and
three-letter words.

Since the pattern doesn’t work for zero- or one-letter words, we made those the base
cases.

Although we needed the lowest numbered procedures in order to make the entire
collection of numbered procedures work, those low-numbered ones didn’t contribute to
the critical step of finding a generalizable pattern. Once you understand the idea of
recursion, writing the individual procedures is wasted effort.

In the leap of faith method, we short-circuit this process in two ways. First, we don’t
bother thinking about small examples; we begin with, for example, a seven-letter word.
Second, we don’t use our example to write a particular numbered procedure; we write
the recursive version directly.

We’re going to write, using the leap of faith method, a recursive procedure to reverse the
letters of a word:

Is there a of a smaller argument lurking within that return value? Yes,
many of them. For example, is the of the word . But it will be most
helpful if we find a smaller subproblem that’s only smaller. (This idea corresponds
to writing using in the combining method.) The
closest smaller subproblem to our original problem is to find the of a word one
letter shorter than .

This result is pretty close to the answer we want for of . What’s the
relationship between , the answer to the smaller problem, and , the
answer to the entire problem? There’s one extra letter, , at the beginning. Where did

The Leap of Faith

runnable!
look

really

Chapter 12 The Leap of Faith 191

(define (reverse wd) ;; unfinished
(word (last wd)

(reverse (bl wd))))

(reverse ’eatles) (reverse ’beatles)
b

beatles

reverse reverse
butlast

reverse

reverse

reverse
(reverse ’paul) (reverse ’aul)

reverse

reverse1
reverse3

whatever3
whatever4

* There’s also a relationship between and , with
the extra letter at the end. We could take either of these subproblems as a starting point and end
up with a working procedure.

** Well, almost. It needs a base case.

the extra letter come from? Obviously, it’s the last letter of .*

This may seem like a sequence of trivial observations leading nowhere. But as a
result of this investigation, we can translate what we’ve learned directly into Scheme. In
English: “the of a word consists of its last letter followed by the of its

.” In Scheme:

If we think of this Scheme fragment merely as a statement of a true fact about ,
it’s not very remarkable. The amazing part is that this fragment is ** It doesn’t

runnable because it invokes itself as a helper procedure, and—if you haven’t already
been through the combining method—that looks as if it can’t work. “How can you use

when you haven’t written it yet?”

The leap of faith method is the assumption that the procedure we’re in the middle
of writing already works. That is, if we’re thinking about writing a procedure
that can compute , we assume that will work.

Of course it’s not a leap of faith, in the sense of something accepted as
miraculous but not understood. The assumption is justified by our understanding of the
combining method. For example, we understand that the four-letter is relying
on the three-letter version of the problem, not really on itself, so there’s no circular
reasoning involved. And we know that if we had to, we could write through

“by hand.”

The reason that our technique in this chapter may seem more mysterious than the
combining method is that this time we are thinking about the problem top-down. In
the combining method, we had already written before we even raised the
question of . Now we start by thinking about the larger problem and assume

Factorial

× × ⋅ ⋅ ⋅ ×
× × × ×

× × ⋅ ⋅ ⋅ × ×

×

The Base Case

Example:

n n

192 Part IV Recursion

reverse

reverse

reverse

> (reverse ’x)
X

(define (reverse wd)
(if (= (count wd) 1)

wd
(word (last wd)

(reverse (bl wd)))))

that we can rely on the smaller one. Again, we’re entitled to that assumption because
we’ve gone through the process from smaller to larger so many times already.

The leap of faith method, once you understand it, is faster than the combining
method for writing new recursive procedures, because we can write the recursive solution
immediately, without bothering with many individual cases. The reason we showed you
the combining method first is that the leap of faith method seems too much like magic, or
like “cheating,” until you’ve seen several believable recursive programs. The combining
method is the way to learn about recursion; the leap of faith method is the way to write
recursive procedures once you’ve learned.

Of course, our definition of isn’t finished yet: As always, we need a base case.
But base cases are the easy part. Base cases transform simple arguments into simple
answers, and you can do that transformation in your head.

For example, what’s the simplest argument to ? If you answered “a
one-letter word” then pick a one-letter word and decide what the result should be:

of a one-letter word should just be that same word:

We’ll use the leap of faith method to solve another problem that we haven’t already solved
with the combining method.

The factorial of a number is defined as 1 2 . So the factorial of 5 (written
“5!”) is 1 2 3 4 5. Suppose you want Scheme to figure out the factorial of some
large number, such as 843. You start from the definition: 843! is 1 2 842 843.
Now you have to look for another factorial problem whose answer will help us find the
answer to 843!. You might notice that 2!, that is, 1 2, is part of 843!, but that doesn’t

smaller

× ⋅ ⋅ ⋅ ×
× × −

−

× × × × ×

reverse
butfirst butlast
factorial

n n n

n

not

Chapter 12 The Leap of Faith 193

(define (factorial n) ;; first version
(* n (factorial (- n 1))))

(define (factorial1 n)
1)

(define (factorial2 n)
(* 2 (factorial1 (- n 1))))

(define (factorial3 n)
(* 3 (factorial2 (- n 1))))

;; ...

(define (factorial842 n)
(* 842 (factorial841 (- n 1))))

* What makes us confident? We imagine that we’ve worked on this problem using the combining
method, so that we’ve written procedures like these:

and therefore we’re entitled to use those lower-numbered versions in finding the factorial of 843.
We haven’t actually written them, but we could have, and that’s what justifies using them. The
reason we can take 842! on faith is that 842 is smaller than 843; it’s the smaller values that we’re
pretending we’ve already written.

** As it happens, the part in parentheses does equal the factorial of a number, 6 itself. But
expressing the solution for 6 in terms of the solution for 6 doesn’t lead to a recursive procedure;
we have to express this solution in terms of a one.

help very much because there’s no simple relationship between 2! and 843!. A more
fruitful observation would be that 842! is 1 842—that is, all but the last number in
the product we’re trying to compute. So 843! = 843 842!. In general, ! is (1)!.
We can embody this idea in a Scheme procedure:

Asking for (1)! is the leap of faith. We’re expressing an answer we don’t know, 843!,
in terms of another answer we don’t know, 842!. But since 842! is a smaller, similar
subproblem, we are confident that the same algorithm will find it.*

Remember that in the problem we mentioned that we could have chosen
either the or the of the argument as the smaller subproblem? In the
case of the problem we don’t have a similar choice. If we tried to subdivide
the problem as

6! = 1 (2 3 4 5 6)

then the part in parentheses would be the factorial of a smaller number.**

−

return
value

n

194 Part IV Recursion

Likely Guesses for Smaller Subproblems

(define (factorial n)
(if (= n 1)

1
(* n (factorial (- n 1)))))

factorial

reverse

beatles
SELTAEB
ELTAEB
beatle
beatle (bl ’beatles)
SELTAEB (word ’s ’ELTAEB)
(word (last arg)

(reverse (bl arg)))

butfirst butlast reverse

As the base case for , we’ll use 1! = 1.

To make the leap of faith method work, we have to find a smaller, similar subproblem
whose solution will help solve the given problem. How do we find such a smaller
subproblem?

In the examples so far, we’ve generally found it by finding a smaller, similar
within the return value we’re trying to achieve. Then we worked backward from

the smaller solution to figure out what smaller argument would give us that value. For
example, here’s how we solved the problem:

original argument
desired return value
smaller return value
corresponding argument
relationship of arguments is
relationship of return values is
Scheme expression

Similarly, we looked at the definition of 843! and noticed within it the factorial of a
smaller number, 842.

But a smaller return value won’t necessarily leap out at us in every case. If not, there
are some likely guesses we can try. For example, if the problem is about integers, it makes
sense to try 1 as a smaller argument. If the problem is about words or sentences,
try the or the . (Often, as in the example, either will
be helpful.) Once you’ve guessed at a smaller argument, see what the corresponding
return value should be, then compare that with the original desired return value as we’ve
described earlier.

In fact, these two argument-guessing techniques would have suggested the same
subproblems that we ended up using in our two examples so far. The reason we didn’t
teach these techniques from the beginning is that we don’t want you to think they’re

Downup

Evens

Example:

Example:

Chapter 12 The Leap of Faith 195

downup

butfirst
butlast

butfirst
butlast

butfirst butlast

> (downup ’paul)
(PAUL PAU PA P PA PAU PAUL)

> (downup ’aul)
(AUL AU A AU AUL)

> (downup ’pau)
(PAU PA P PA PAU)

(define (downup wd) ;; no base case
(se wd (downup (bl wd)) wd))

> (evens ’(i want to hold your hand))
(WANT HOLD HAND)

essential parts of the leap of faith method. These are just good guesses; they don’t always
work. When they don’t, you have to be prepared to think more flexibly.

Here’s how we might rewrite using the leap of faith method. Start by looking at
the desired return value for a medium-sized example:

Since this is a procedure whose argument is a word, we guess that the or the
might be helpful.

This is a case in which it matters which we choose; the solution for the
of the original argument doesn’t help, but the solution for the is most of the
solution for the original word. All we have to do is add the original word itself at the
beginning and end:

As before, this is missing the base case, but by now you know how to fill that in.

Here’s a case in which mindlessly guessing or doesn’t lead to a very
good solution. We want a procedure that takes a sentence as its argument and returns a
sentence of the even-numbered words of the original sentence:

196 Part IV Recursion

evens butfirst butlast

Butfirst Butlast
evens evens

evens

evens (i want to hold your hand) evens
(i want to hold your) hand evens
(i want to hold your)

evens (i want to hold) your your

evens

> (evens ’(want to hold your hand))
(TO YOUR)

> (evens ’(i want to hold your))
(WANT HOLD)

(define (losing-evens sent) ;; no base case
(se (losing-evens (bl sent))

(last sent)))

(define (losing-evens sent)
(if (empty? sent)

’()
(se (losing-evens (bl sent))

(last sent))))

> (losing-evens ’(i want to hold your hand))
(I WANT TO HOLD YOUR HAND)

> (evens ’(i want to hold your))
(WANT HOLD)

> (evens ’(i want to hold))
(WANT HOLD)

We look at of the and of this sentence:

is clearly not helpful; it gives all the wrong words. looks promising.
The relationship between of the bigger sentence and of the smaller
sentence is that the last word of the larger sentence is missing from of the smaller
sentence.

For a base case, we’ll take the empty sentence:

This isn’t quite right.

It’s true that of is the same as of
plus the word at the end. But what about of

? By the reasoning we’ve been using, we would expect that to
be of plus the word . But since the word is the
fifth word of the argument sentence, it shouldn’t be part of the result at all. Here’s how

should work:

evens evens
butlast

Simplifying Base Cases

Chapter 12 The Leap of Faith 197

(define (evens sent) ;; better version
(cond ((empty? sent) ’())

((odd? (count sent))
(evens (bl sent)))
(else (se (evens (bl sent))

(last sent)))))

(define (evens sent) ;; best version
(if (<= (count sent) 1)

’()
(se (first (bf sent))

(evens (bf (bf sent))))))

* It may feel strange that in the case of an odd-length sentence, the answer to the recursive
subproblem is the same as the answer to the original problem, rather than a smaller answer. But
remember that it’s the argument, not the return value, that has to get smaller in each recursive
step.

When the sentence has an odd number of words, its is the same as the of
its .* So here’s our new procedure:

This version works, but it’s more complicated than necessary. What makes it
complicated is that on each recursive call we switch between two kinds of problems:
even-length and odd-length sentences. If we dealt with the words two at a time, each
recursive call would see the same kind of problem.

Once we’ve decided to go through the sentence two words at a time, we can reopen
the question of whether to go right-to-left or left-to-right. It will turn out that the latter
gives us the simplest procedure:

Since we go through the sentence two words at a time, an odd-length argument sentence
always gives rise to an odd-length recursive subproblem. Therefore, it’s not good enough
to check for an empty sentence as the only base case. We need to treat both the empty
sentence and one-word sentences as base cases.

The leap of faith is mostly about recursive cases, not base cases. In the examples in this
chapter, we’ve picked base cases without talking about them much. How do you pick a
base case?

198 Part IV Recursion

reverse

m
wd

M (reverse
"")

(define (reverse wd)
(if (= (count wd) 1)

wd
(word (last wd)

(reverse (bl wd)))))

(word (last wd)
(reverse (bl wd)))

(word (last ’m)
(reverse (bl ’m)))

(word ’m
(reverse ""))

(define (reverse wd)
(if (empty? wd)

""
(word (last word)

(reverse (bl word)))))

In general, we recommend using the smallest possible base case argument, because
that usually leads to the simplest procedures. For example, consider using the empty
word, empty sentence, or zero instead of one-letter words, one-word sentences, or one.

How can you go about finding the simplest possible base case? Our first example in
this chapter was . We arbitrarily chose to use one-letter words as the base case:

Suppose we want to consider whether a smaller base case would work. One approach
is to pick an argument that would be handled by the current base case, and see what
would happen if we tried to let the recursive step handle it instead. (To go along with
this experiment, we pick a smaller base case, since the original base case should now be
handled by the recursive step.) In this example, we pick a one-letter word, let’s say , and
use that as the value of in the expression

The result is

which is the same as

We want this to have as its value the word . This will work out provided that
has the empty word as its value. So we could rewrite the procedure this way:

Chapter 12 The Leap of Faith 199

(reverse "")
reverse

reverse

downup

’a wd

A
downup

factorial 1

0
1 n

(define (downup wd)
(if (= (count wd) 1)

(se wd)
(se wd (downup (bl wd)) wd)))

> (downup ’a)
(A)

(se ’a (downup "") ’a)

(define (factorial n)
(if (= n 1)

1
(* n (factorial (- n 1)))))

(* 1 (factorial 0))

We were led to this empty-word base case by working downward from the needs of the
one-letter case. However, it’s also important to ensure that the return value used for the
empty word is the correct value, not only to make the recursion work, but for an empty
word in its own right. That is, we have to convince ourselves that should
return an empty word. But it should; the of any word is a word containing the
same letters as the original word. If the original has no letters, the must have
no letters also. This exemplifies a general principle: Although we choose a base case
argument for the sake of the recursive step, we must choose the corresponding return
value for the sake of the argument itself, not just for the sake of the recursion.

We’ll try the base case reduction technique on :

If we want to use the empty word as the base case, instead of one-letter words, then we
have to ensure that the recursive case can return a correct answer for a one-letter word.
The behavior we want is

But if we substitute for in the recursive-case expression we get

which will have two copies of the word in its value no matter what value we give to
of the empty word. We can’t avoid treating one-letter words as a base case.

In writing , we used as the base case.

Our principle of base case reduction suggests that we try for . To do this, we substitute
for in the recursive case expression:

200 Part IV Recursion

1

letter-pairs

(first (bf wd))

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

(define (letter-pairs wd)
(if (<= (count wd) 1)

’()
(se (first-two wd)

(letter-pairs (bf wd)))))

(define (first-two wd)
(word (first wd) (first (bf wd))))

(first-two ’a)

(word (first ’a) (first (bf ’a)))

We’d like this to have the value ; this will be true only if we define 0! = 1. Now we can say

In this case, the new procedure is no simpler than the previous version. Its only advantage
is that it handles a case, 0!, that mathematicians find useful.

Here’s another example in which we can’t reduce the base case to an empty word.
In Chapter 11 we used the combining method to write :

It might occur to you that one-letter words could be handled by the recursive case, and
the base case could then handle only the empty word. But if you try to evaluate the
expression for the recursive case as applied to a one-letter word, you find that

is equivalent to

which is an error. There is no second letter of a one-letter word. As soon as you see the
expression within this program, you know that one-letter words must
be part of the base case. The same kind of reasoning can be used in many problems; the
base case must handle anything that’s too small to fit the needs of the recursive case.

⇒

⇒

Pitfalls

down

first splat first first

down

that

Chapter 12 The Leap of Faith 201

> (down ’town)
(TOWN TOW TO T)

(define (down wd) ;; wrong!
(if (empty? wd)

’()
(se wd (down (first wd)))))

(define (down wd) ;; incomplete
(se wd))

(define (down wd) ;; wrong!
(se wd (bl wd)))

(define (down wd)
(if (empty? wd)

’()
(se wd (down (bl wd)))))

One possible pitfall is a recursive case that doesn’t make progress, that is, one that
doesn’t reduce the size of the problem in the recursive call. For example, let’s say we’re
trying to write the procedure that works this way:

Here’s an incorrect attempt:

The recursive call looks as if it reduces the size of the problem, but try it with an actual
example. What’s of the word ? What’s of that result? What’s
of result?

A pitfall that sounds unlikely in the abstract but is actually surprisingly common is to
try to do the second step of the procedure “by hand” instead of trusting the recursion to
do it. For example, here’s another attempt at that procedure:

. . .

You know the first word in the result has to be the argument word. Then what? The next
thing is the same word with its last letter missing:

. . .

Instead of taking care of the entire rest of the problem with a recursive call, it’s tempting
to take only one more step, figuring out how to include the second word of the required
solution. But that approach won’t get you to a general recursive solution. Just take the
first step and then trust the recursion for the rest:

⇒

⇒

202 Part IV Recursion

downup (se wd)

downup

(define (square-sent sent) ;; wrong
(if (empty? sent)

’()
(se (square (first sent))

(square (first (bf sent)))
(square-sent (bf sent)))))

> (square-sent ’(2 3))
ERROR: Invalid argument to FIRST: ()

(define (square-sent sent) ;; still wrong
(if (= (count sent) 1)

’()
(se (square (first sent))

(square (first (bf sent)))
(square-sent (bf sent)))))

> (square-sent ’(2 3))
(4 9)

> (square-sent ’(7))
()

The value returned in the base case of your procedure must be in the range of the
function you are representing. If your function is supposed to return a number, it must
return a number all the time, even in the base case. You can use this idea to help you
check the correctness of the base case expression.

For example, in , the base case returns for the base case argument
of a one-letter word. How did we think to enclose the word in a sentence? We know that
in the recursive cases always returns a sentence, so that suggests to us that it must
return a sentence in the base case also.

If your base case doesn’t make sense in its own right, it probably means that you’re
trying to compensate for a mistake in the recursive case.

For example, suppose you’ve fallen into the pitfall of trying to handle the second
word of a sentence by hand, and you’ve written the following procedure:

After some experimentation, you find that you can get this example to work by changing
the base case:

The trouble is that the base case doesn’t make sense on its own:

{

Boring Exercises

12.1

12.2

12.3

12.4

factorial 0 -1

sentence butfirst first

f

f sent
sent sent

f sent sent

f f

Chapter 12 The Leap of Faith 203

(define (addup nums)
(if (empty? (bf nums))

(first nums)
(+ (first nums) (addup (bf nums)))))

(define (acronym sent) ;; wrong
(if (= (count sent) 1)

(first sent)
(word (first (first sent))

(acronym (bf sent)))))

In fact, this procedure doesn’t work for any sentences of length other than two. The
moral is that it doesn’t work to correct an error in the recursive case by introducing an
absurd base case.

Here is a definition of a procedure that returns the sum of the numbers in its
argument sentence:

Although this works, it could be simplified by changing the base case. Do that.

Fix the bug in the following definition:

Can we reduce the base case argument from to ? If so, show the
resulting procedure. If not, why not?

Here’s the definition of a function :

() =
, if is empty;

((()), ()), otherwise.

Implement as a Scheme procedure. What does do?

−

Real Exercises

12.5

12.6

12.7

12.8

every keep accumulate

exaggerate

base-grade
grade-modifier

spell-number

numbers

Solve all of the following problems with recursive procedures. If you’ve read Part III, do not use any
higher-order functions such as , , or .

204 Part IV Recursion

> (exaggerate ’(i ate 3 potstickers))
(I ATE 6 POTSTICKERS)

> (exaggerate ’(the chow fun is good here))
(THE CHOW FUN IS GREAT HERE)

> (gpa ’(A A+ B+ B))
3.67

> (spell-number 1971)
(ONE NINE SEVEN ONE)

(define (spell-digit digit)
(item (+ 1 digit)

’(zero one two three four five six seven eight nine)))

[8.8] Write an procedure which exaggerates sentences:

It should double all the numbers in the sentence, and it should replace “good” with
“great,” “bad” with “terrible,” and anything else you can think of.

[8.11] Write a GPA procedure. It should take a sentence of grades as its argument
and return the corresponding grade point average:

Hint: write a helper procedure that takes a grade as argument and returns
0, 1, 2, 3, or 4, and another helper procedure that returns .33, 0, or
.33, depending on whether the grade has a minus, a plus, or neither.

Write a procedure that spells out the digits of a number:

Use this helper procedure:

Write a procedure that takes a sentence as its argument and returns
another sentence containing only the numbers in the argument:

12.9

12.10

12.11

12.12

12.13

reduce

Chapter 12 The Leap of Faith 205

real-words
real-word?

remove

count

arabic

roman-value

C MCM

describe-time

1 CENTURY 1 CENTURIES

> (numbers ’(76 trombones and 110 cornets))
(76 110)

> (remove ’the ’(the song love of the loved by the beatles))
(SONG LOVE OF LOVED BY BEATLES)

> (arabic ’MCMLXXI)
1971

> (arabic ’MLXVI)
1066

> (describe-time 22222)
(6 HOURS 10 MINUTES 22 SECONDS)

> (describe-time 4967189641)
(1 CENTURIES 57 YEARS 20 WEEKS 6 DAYS 8 HOURS 54 MINUTES 1 SECONDS)

Write a procedure that takes a sentence as argument and returns
all the “real” words of the sentence, using the same rule as the procedure
from Chapter 1.

Write a procedure that takes a word and a sentence as arguments and
returns the same sentence, but with all copies of the given word removed:

Write the procedure , which returns the number of words in a sentence or
the number of letters in a word.

Write a procedure which converts Roman numerals into Arabic numerals:

You will probably find the procedure from Chapter 6 helpful. Don’t
forget that a letter can the overall value if the letter that comes after it has a larger
value, such as the in .

Write a new version of the procedure from Exercise 6.14.
Instead of returning a decimal number, it should behave like this:

Can you make the program smart about saying instead of ?

What’s the base case?

13 How Recursion Works

Little People and Recursion

believe in

itself.

invocations,

207

(if (= (count ’smile) 1)
(se ’smile)
(se ’smile (downup (bl ’smile)) ’smile)))

(+ 2 (+ 3 4))

downup3 downup2 downup2 downup1
downup

downup

(downup ’smile)
downup smile wd downup

The last two chapters were about how to write recursive procedures. This chapter is about
how to recursive procedures, and about understanding the process by which
Scheme carries them out.

The crowning achievement of the little-people model is explaining recursion. Remember
that every time you call a procedure, a little person is hired to compute the result. If you
want to know , there are two separate plus specialists involved.

When we used the combining method, it was probably clear that it’s okay for
to invoke , and for to invoke . But it probably

felt like magic when we combined these numbered procedures into a single
procedure that calls You may have thought, ”How can do all the different
tasks at once without getting confused?” The little-people model answers this question
by showing that tasks are done by procedure not by procedures. Each little
person handles one task, even though several little people are carrying out the same
procedure. The procedure is just a set of instructions; someone has to carry out the
instructions.

So what happens when we want to know ? We hire Donna, a
specialist, and she substitutes for in the body of , leaving her

with

he

is

208 Part IV Recursion

if = count bl

(downup ’smil)
downup

wd smil smil wd downup

(downup ’smi)
downup

smi wd

(downup ’sm)

downup s
s

wd

Count s sentence (s)

(se ’smile (downup ’smil) ’smile)

(if (= (count ’smil) 1)
(se ’smil)
(se ’smil (downup (bl ’smil)) ’smil)))

(se ’smil (downup ’smi) ’smil)

(se ’smi (downup ’sm) ’smi)

(se ’sm (downup ’s) ’sm)

(if (= (count ’s) 1)
(se ’s)
(se ’s (downup (bl ’s)) ’s)))

We’ll leave out the details about hiring the , , , and specialists in this
example, so Donna ends up with

In order to evaluate this, Donna needs to know . She hires David,
another specialist, and waits for his answer.

David’s is . He substitutes for in the body of , and gets

After some uninteresting work, David has

and he hires Dennis to compute . There are now three little people, all
in the middle of some computation, and each of them is working on a different
word.

Dennis substitutes for , and ends up with

He hires Derek to compute . Derek needs to compute

Derek hires Dexter to find of . Now we have to think carefully about the
substitution again. Dexter substitutes his actual argument, , for his formal parameter

, and ends up with

of 1. So Dexter hires Simi, a specialist, who returns . Dexter
returns the same answer to Derek.

Derek, you will recall, is trying to compute

is

Chapter 13 How Recursion Works 209

(downup ’s)

(sm s sm)

(downup ’sm) (sm s sm) downup sm

(smi sm s sm smi)
(downup ’smi)

(se ’sm (downup ’s) ’sm)

(se ’sm ’(s) ’sm)

(se ’smi ’(sm s sm) ’smi)

(smil smi sm s sm smi smil)

and now he knows the value of . So he hires Savita to compute

and the answer is . Derek returns this answer to Dennis. By the way, do
you remember what question Derek was hired to answer? Dennis wanted to know

. The answer Derek gave him was , which of .
Pretty neat, huh?

Dennis hires Sigrid to compute

and returns to David. His answer is the correct value of
. David returns

Tracing

sentence

wd

sentence butlast

sequential

trace

210 Part IV Recursion

(se ’smile (downup ’smil) ’smile)

(smile smil smi sm s sm smi smil smile)

trace* Unfortunately, isn’t part of the Scheme standard, so it doesn’t behave the same way in
every version of Scheme.

** Even if tracing doesn’t help you with recursion, you’ll find that it’s a useful technique in
debugging any procedure.

to Donna, who has been waiting all this time to evaluate

Her waiting microseconds are over. She hires a specialist and returns

If you have a group of friends whose names all start with “D,” you can try this out
yourselves. The rules of the game are pretty simple. Remember that each one of you
can have only one single value for . Also, only one of you is in charge of the game at
any point. When you hire somebody, that new person is in charge of the game until he
or she tells you the answer to his or her question. If some of you have names that don’t
start with “D,” you can be specialists in or or something. Play hard,
play fair, nobody hurt.

The little-people model explains recursion very well, as long as you’re willing to focus your
attention on the job of one little person, taking the next little person’s subtask as a “black
box” that you assume is carried out correctly. Your willingness to make that assumption
is a necessary step in becoming truly comfortable with recursive programming.

Still, some people are very accustomed to a model of computing. In that
model, there’s only one computer, not a lot of little people, and that one computer has
to carry out one step at a time. If you’re one of those people, you may find it hard to take
the subtasks on faith. You want to know exactly what happens when! There’s nothing
wrong with such healthy scientific skepticism about recursion.

If you’re a sequential thinker, you can procedures to get detailed information
about the sequence of events.* But if you’re happy with the way we’ve been talking
about recursion up to now, and if you find that this section doesn’t contribute to your
understanding of recursion, don’t worry about it. Our experience shows that this way of
thinking helps some people but not everybody.** Before we get to recursive procedures,

Chapter 13 How Recursion Works 211

trace trace

double
double yum yumyum double

yumyum double

untrace

(double frozen)
frozenfrozen

(double yum)
yumyum
(double yumyum)
yumyumyumyum
(double yumyumyumyum)
yumyumyumyumyumyumyumyum

(define (double wd) (word wd wd))

> (trace double)
> (double ’frozen)

FROZENFROZEN

> (double (double (double ’yum)))

YUMYUMYUMYUMYUMYUMYUMYUM

> (untrace double)

* In this example the return value was printed twice, because the procedure we traced was
invoked directly at the Scheme prompt. Its return value would have been printed once anyway, just
because that’s what Scheme always does. It was printed another time because of the tracing. In this
book we’ve printed the trace-specific output in smaller type and lower-case to help you understand
which is what, but of course on the actual computer you’re on your own.

let’s just trace some nonrecursive ones:

The argument to specifies a procedure. When you invoke , that procedure
becomes “traced”; this means that every time you invoke the procedure, Scheme will
print out the name of the procedure and the actual arguments. When the procedure
returns a value, Scheme will print that value.*

Tracing isn’t very interesting if we’re just invoking a traced procedure once. But
look what happens when we trace a procedure that we’re using more than once:

This time, there were three separate invocations of , and we saw each one as it
happened. First we d , and the answer was . Then we d

, and so on. Finally, after we invoked for the last time, its result was
printed by the read-eval-print loop.

When you’re finished investigating a procedure, you can turn off tracing by invoking
with the procedure as argument:

212 Part IV Recursion

|

(downup ’trace)

downup
(t)

(define (downup wd)
(if (= (count wd) 1)

(se wd)
(se wd (downup (bl wd)) wd)))

> (trace downup)

> (downup ’trace)

(TRACE TRAC TRA TR T TR TRA TRAC TRACE)

(downup trace)
| (downup trac)
| | (downup tra)
| | | (downup tr)
| | | | (downup t)
| | | | (t)
| | | (tr t tr)
| | (tra tr t tr tra)
| (trac tra tr t tr tra trac)
(trace trac tra tr t tr tra trac trace)

* That’s computer science slang for “depending on a number of factors that I consider too
complicated to bother explaining” or “depending on a number of factors that I don’t understand
myself.” Some computer systems automatically print the phase of the moon on program listings
as an aid for programmers with “POM-dependent” programs. What we meant in this case is that it
depends both on your version of Scheme and on the exact form of your recursive procedure.

Let’s try tracing a recursive procedure:

When a procedure calls itself recursively, depending on the phase of the moon,* Scheme
may indent the trace display to show the levels of procedure calling, and draw a line of
vertical bars (“ ”) from a procedure’s invocation to its return value below. This is so you
can look at a procedure invocation and see what value it returned, or vice versa.

How does the trace help us understand what is going on in the recursion? First, by
reading the trace results from top to bottom, you can see the actual sequence of events
when the computer is carrying out your Scheme program. For example, you can see that
we start trying to figure out ; the first thing printed is the line that
says we’re starting that computation. But, before we get a result from that, four more

computations have to begin. The one that begins last finishes first, returning
; then another one returns a value; the one that started first is the last to return.

You can also read the trace horizontally instead of vertically, focusing on the levels of
indentation. If you do this, then instead of a sequence of independent events (such-and-

downup
downup

downup

+ fib
fib

downup

(fib 4)
| (fib 2)
| 1
| (fib 3)
| | (fib 1)
| | 1
| | (fib 2)
| | 1
| 2
3

(define (fib n)
(if (<= n 2)

1
(+ (fib (- n 1))

(fib (- n 2)))))

> (fib 4)

3

inclusion

that
Fibonacci numbers

n

Chapter 13 How Recursion Works 213

such starts, such-and-such returns a value) you see the of processes within other
ones. The smallest invocation is entirely inside the next-smallest one, and so on.
The initial invocation of includes all of the others.

Perhaps you’re thinking that ’s pattern of inclusion is the only one possible
for recursive procedures. That is, perhaps you’re thinking that every invocation includes
exactly one smaller invocation, and one includes a yet-smaller one, and so on. But
actually the pattern can be more complicated. Here’s an example. The
are a sequence of numbers in which the first two numbers are 1 and each number after
that is the sum of the two before it:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

(They’re named after Leonardo Pisano. You’d think they’d be called “Pisano numbers,”
but Leonardo had a kind of alias, Leonardo Fibonacci, just to confuse people.) Here’s a
procedure to compute the th Fibonacci number:

Here’s a trace of computing the fourth Fibonacci number:

(By the way, this trace demonstrates that in the dialect of Scheme we used, the argument
subexpressions of the expression in are evaluated from right to left, because the
smaller arguments come before the larger ones in the trace.)

As you can see, we still have invocations within other invocations, but the pattern
is not as simple as in the case. If you’re having trouble making sense of this
pattern, go back to thinking about the problem in terms of little people; who hires whom?

⇒

⇒

13.1

13.2

13.3

214 Part IV Recursion

Pitfalls

Boring Exercises

downup
(smi sm s sm smi)

trace

explode

trace

pigl

downup

(trace or)

(explode ’ape)

(pigl ’throughout)

(define (downup wd)
(se wd (downup (bl wd)) wd))

Whenever you catch yourself using the words “go back” or “goes back” in describing
how some procedure works, bite your tongue. A recursive invocation isn’t a going back;
it’s a separate process. The model behind “go back” is that the same little person starts
over again at the beginning of the procedure body. What actually happens is that a new
little person carries out the same procedure. It’s an important difference because when
the second little person finishes, the first may still have more work to do.

For example, when we used little people to show the working of , Dennis
computes the result and returns that value to David; at that point,
David still has work to do before returning his own result to Donna.

The mechanism doesn’t work for special forms. For example, you can’t say

although you can, and often will, trace primitive procedures that aren’t special forms.

Trace the procedure from page 183 and invoke

How many recursive calls were there? What were the arguments to each recursive call?
Turn in a transcript showing the listing.

How many -specialist little people are involved in evaluating the following
expression?

What are their arguments and return values, and to whom does each give her result?

Here is our first version of from Chapter 11. It doesn’t work because it
has no base case.

13.4

13.5

13.6

Real Exercises

invocation

does

Chapter 13 How Recursion Works 215

butlast

pigl

pigl
prawn

rawnp pigl
awnpr

ay awnpray

(factorial 6) (factorial 2)
2

> (downup ’toe)
ERROR: Invalid argument to BUTLAST: ""

(define (forever n)
(if (= n 0)

1
(+ 1 (forever n))))

> (pigl ’prawn)
AWNPRAY

(downup ’smile)

Explain what goes wrong to generate that error. In particular, why does Scheme try to
take the of an empty word?

Here is a Scheme procedure that never finishes its job:

Explain why it doesn’t give any result. (If you try to trace it, make sure you know how to
make your version of Scheme stop what it’s doing and give you another prompt.)

It may seem strange that there is one little person per of a procedure,
instead of just one little person per procedure. For certain problems, the person-per-
procedure model would work fine.

Consider, for example, this invocation of :

Suppose there were only one specialist in the computer, named Patricia. Alonzo
hires Patricia and gives her the argument . She sees that it doesn’t begin with a
vowel, so she moves the first letter to the end, gets , and tries to that. Again,
it doesn’t begin with a vowel, so she moves another letter to the end and gets .
That begin with a vowel, so she adds an , returning to Alonzo.

Nevertheless, this revised little-people model doesn’t always work. Show how it fails to
explain what happens in the evaluation of

As part of computing , Scheme computes and
gets the answer . After Scheme gets that answer, how does it know what to do next?

14 Common Patterns in Recursive Procedures

patterns, templates,

any

does

meaningful

higher-order

217

* That’s because there are two kinds of people: those who think there are two kinds of people,
and those who don’t.

There are two ideas about how to solve programming problems.* One idea is that
programmers work mostly by recognizing categories of problems that come up repeatedly
and remembering the solution that worked last time; therefore, programming students
should learn a lot of program or and fill in the blanks for each specific
problem. Another idea is that there are a few powerful principles in programming, and
that if a learner understands the principles, they can be applied to problem, even
one that doesn’t fit a familiar pattern.

Research suggests that an expert programmer, like an expert at any skill, work
mainly by recognizing patterns. Nevertheless, we lean toward the powerful-principle
idea. The expert’s memory is not full of arbitrary patterns; it’s full of patterns,
because the expert has gone through the process of struggling to reason out how each
procedure works and how to write new procedures.

Still, we think it’s worth pointing out a few patterns that are so common that you’ll
have seen several examples of each before you finish this book. Once you learn these
patterns, you can write similar procedures almost automatically. But there’s an irony in
learning patterns: In Scheme, once you’ve identified a pattern, you can write a general-
purpose procedure that handles all such cases without writing individual procedures
for each situation. Then you don’t have to use the pattern any more! Chapter 8
presents several general pattern-handling procedures, called procedures. In
this chapter we’ll consider the patterns corresponding to those higher-order procedures,
and we’ll use the names of those procedures to name the patterns.

EveryThe Pattern

almost

exactly

218 Part IV Recursion

first square pigl
butfirst

letter-pairs
every

letter-pairs

(define (square-sent sent)
(if (empty? sent)

’()
(se (square (first sent))

(square-sent (bf sent)))))

(define (pigl-sent sent)
(if (empty? sent)

’()
(se (pigl (first sent))

(pigl-sent (bf sent)))))

(define (letter-pairs wd)
(if (= (count wd) 1)

’()
(se (word (first wd) (first (bf wd)))

(letter-pairs (bf wd)))))

What’s the point of learning patterns if you can use higher-order procedures instead?
There are at least two points. The first, as you’ll see very soon, is that some problems
follow one of the patterns; in that case, you can’t use the corresponding higher-order
procedure, which works only for problems that follow the pattern. But you can
use your understanding of the pattern to help with these related problems. The second
point is that in Chapter 19 we’ll show how the higher-order functions are themselves
implemented using these recursive patterns.

This chapter isn’t an official list of all important patterns; as you gain programming
experience, you’ll certainly add more patterns to your repertoire.

Here’s a procedure to square every number in a sentence of numbers:

Here’s a procedure to translate every word of a sentence into Pig Latin:

The pattern here is pretty clear. Our recursive case will do something straightforward
to the of the sentence, such as ing it or ing it, and we’ll combine
that with the result of a recursive call on the of the sentence.

The procedure that we wrote in Chapter 11 is an example of a
procedure that follows the pattern pretty closely, but not exactly. The difference
is that looks at its argument sentence two words at a time.

KeepThe Pattern

square-sent
se butfirst

disjoint-pairs

every

non-overlapping

Chapter 14 Common Patterns in Recursive Procedures 219

* If you’ve read Chapter 8, you know that you could implement and
without recursion, using the higher order function. But try using to implement

; you’ll find that you can’t quite make it work.

> (disjoint-pairs ’tripoli) ;; the new problem
(TR IP OL I)

> (letter-pairs ’tripoli) ;; compare the old one
(TR RI IP PO OL LI)

(define (disjoint-pairs wd)
(cond ((empty? wd) ’())

((= (count wd) 1) (se wd))
(else (se (word (first wd) (first (bf wd)))

(disjoint-pairs (bf (bf wd)))))))

(define (keep-three-letter-words sent)
(cond ((empty? sent) ’())

((= (count (first sent)) 3)
(se (first sent) (keep-three-letter-words (bf sent))))
(else (keep-three-letter-words (bf sent)))))

square-sent pigl-sent
every every

letter-pairs

Compare this with the earlier definition of . The recursive case still uses
to combine one part of the result with a recursive call based on the of the

argument, but here both the first letter and the second letter of the argument contribute
to the first word of the result. That’s why the base case also has to be different; the
recursive case requires at least two letters, so the base case is a one-letter word.*

Let’s solve a slightly different problem. This time, we want to break the word down
into pairs of letters, like this:

The main difference between these two functions is that in we
eliminate two letters at once in the recursive call. A second difference is that we have to
deal with the special case of odd-length words.

In the pattern, we collect the results of transforming each element of a word
or sentence into something else. This time we’ll consider a different kind of problem:
choosing some of the elements and forgetting about the others. First, here is a procedure
to select the three-letter words from a sentence:

two

220 Part IV Recursion

every keep
keep

every every
keep

every keep

keep

evens doubles

> (keep-three-letter-words ’(one two three four five six seven))
(ONE TWO SIX)

(define (keep-vowels wd)
(cond ((empty? wd) "")

((vowel? (first wd))
(word (first wd) (keep-vowels (bf wd))))
(else (keep-vowels (bf wd)))))

> (keep-vowels ’napoleon)
AOEO

> (doubles ’bookkeeper)
OOKKEE

> (doubles ’mississippi)
SSSSPP

(define (doubles wd)
(cond ((= (count wd) 1) "")

((equal? (first wd) (first (bf wd)))
(word (first wd) (first (bf wd)) (doubles (bf (bf wd)))))
(else (doubles (bf wd)))))

Next, here is a procedure to select the vowels from a word:

Let’s look at the differences between the pattern and the pattern. First
of all, the procedures have three possible outcomes, instead of just two as in most

-like procedures. In the pattern, we only have to distinguish between the
base case and the recursive case. In the pattern, there is still a base case, but
there are recursive cases; we have to decide whether or not to keep the first available
element in the return value. When we do keep an element, we keep the element itself,
not some function of the element.

As with the pattern, there are situations that follow the pattern only
approximately. Suppose we want to look for doubled letters within a word:

This isn’t a pure pattern example because we can’t decide whether to keep the first
letter by looking at that letter alone; we have to examine two at a time. But we can write
a procedure using more or less the same pattern:

As in the example of Chapter 12, the base case of is unusual, and one
of the recursive calls chops off two letters at once in forming the smaller subproblem.

−∞

AccumulateThe Pattern

cond

+ word

max

Chapter 14 Common Patterns in Recursive Procedures 221

* Of course, if your version of Scheme has , you can use it as the return value for an empty
sentence, instead of changing the pattern.

(define (addup nums)
(if (empty? nums)

0
(+ (first nums) (addup (bf nums)))))

(define (scrunch-words sent)
(if (empty? sent)

""
(word (first sent) (scrunch-words (bf sent)))))

> (addup ’(8 3 6 1 10))
28

> (scrunch-words ’(ack now ledge able))
ACKNOWLEDGEABLE

(define (sent-max sent)
(if (= (count sent) 1)

(first sent)
(max (first sent)

(sent-max (bf sent)))))

But the structure of the with a base case clause, a clause for keeping letters, and a
clause for rejecting letters is maintained.

Here are two recursive procedures for functions that combine all of the elements of the
argument into a single result:

What’s the pattern? We’re using some combiner (or) to connect the word
we’re up to with the result of the recursive call. The base case tests for an empty argument,
but the base case return value must be the identity element of the combiner function.

If there is no identity element for the combiner, as in the case of , we modify the
pattern slightly:*

Combining Patterns

sum

222 Part IV Recursion

(define (add-numbers sent)
(accumulate + (keep number? sent)))

keep accumulate

keep Add-numbers
keep

accumulate

every keep

safe-pigl keep
every

(define (add-numbers sent)
(cond ((empty? sent) 0)

((number? (first sent))
(+ (first sent) (add-numbers (bf sent))))
(else (add-numbers (bf sent)))))

> (add-numbers ’(if 6 were 9))
15

(define (safe-pigl sent)
(cond ((empty? sent) ’())

((has-vowel? (first sent))
(se (pigl (first sent)) (safe-pigl (bf sent))))
(else (safe-pigl (bf sent)))))

(define (has-vowel? wd)
(not (empty? (keep-vowels wd))))

* Here’s the higher-order function version, from Chapter 8:

The higher-order function version is more self-documenting and easier to write. The recursive
version, however, is slightly more efficient, because it avoids building up a sentence as an
intermediate value only to discard it in the final result. If we were writing this program for our own
use, we’d probably choose the higher-order function version; but if we were dealing with sentences
of length 10,000 instead of length 10, we’d pay more attention to efficiency.

This procedure combines aspects of with aspects of . We want to do
two things at once: get rid of the words that aren’t numbers and compute the of those
that are numbers. (A simple would construct a sentence of them.)
looks exactly like the pattern, except that there’s a funny combiner and a funny
base case, which look more like .*

Here’s an example that combines and . We want a procedure that takes
a sentence as its argument and translates every word of the sentence into Pig Latin, but
leaves out words that have no vowels, because the Pig Latin translator doesn’t work for
such words. The procedure will be like a pattern in that it keeps only
words that contain vowels, but like an in that the result contains transformed
versions of the selected words, rather than the words themselves.

n

n

Helper Procedures

acronym
keep every

accumulate

every-nth

keep

n
every-nth

n
cond

n
n

original

Chapter 14 Common Patterns in Recursive Procedures 223

> (safe-pigl ’(my pet fly is named xyzzy))
(ETPAY ISAY AMEDNAY)

(define (acronym sent)
(cond ((empty? sent) "")

((real-word? (first sent))
(word (first (first sent))

(acronym (bf sent))))
(else (acronym (bf sent)))))

> (every-nth 3 ’(with a little help from my friends))
(LITTLE MY)

(define (every-nth n sent) ;; wrong!
(cond ((empty? sent) ’())

((= n 1)
(se (first sent) (every-nth (bf sent))))
(else (every-nth (- n 1) (bf sent)))))

Finally, here’s an example that combines all three patterns. In Chapter 1 we wrote
(using higher-order procedures) the procedure, which selects the “real” words
of a sentence (the pattern), takes the first letter of each word (the pattern),
and combines these initial letters into a single word (the pattern). In a
recursive procedure we can carry out all three steps at once:

Don’t become obsessed with trying to make every recursive problem fit one of the
three patterns we’ve shown here. As we said at the beginning of the chapter, what’s most
important is that you understand the principles of recursion in general, and understand
how versatile recursion is. The patterns are just special cases that happen to come up
fairly often.

Let’s say we want a procedure that takes a number and a sentence as
arguments and selects every th word from the sentence.

We get in trouble if we try to write this in the obvious way, as a sort of pattern.

The problem is with the that’s in boldface. We’re thinking that it’s going to be the
of the invocation of , that is, 3. But in fact, we’ve already counted

down so that in this invocation its value is 1. (Check out the first half of the same
clause.) This procedure will correctly skip the first two words but will keep all the

?

How to Use Recursive Patterns

original

initialization helper

224 Part IV Recursion

every-something

every-something

keep-if-something

keep-if-something
keep-if-something

every-nth

interval
remaining Remaining

every-nth-helper interval
n remaining

every keep accumulate

(define (every-nth n sent)
(every-nth-helper n n sent))

(define (every-nth-helper interval remaining sent)
(cond ((empty? sent) ’())

((= remaining 1)
(se (first sent)

(every-nth-helper interval interval (bf sent))))
(else (every-nth-helper interval (- remaining 1) (bf sent)))))

(define (sent)
(if (empty? sent)

’()
(se ((first sent))

((bf sent)))))

(define (sent)
(cond ((empty? sent) ’())

(((first sent))
(se (first sent) ((bf sent))))
(else ((bf sent)))))

words after that point. That’s because we’re trying to remember two different numbers:
the number we should always skip between kept words, and the number of words we still
need to skip this time.

If we’re trying to remember two numbers, we need two names for them. The way
to achieve this is to have our official procedure call a helper procedure that
takes an extra argument and does the real work:

This procedure always calls itself recursively with the same value of , but with
a different value of each time. keeps getting smaller by one in
each recursive call until it equals 1. On that call, a word is kept for the return value, and
we call recursively with the value of , that is, the
value of , as the new . If you like, you can think of this combination of an

procedure and a procedure as another pattern for your collection.

One way in which recursive patterns can be useful is if you think of them as templates
with empty slots to fill in for a particular problem. Here are template versions of the

, , and patterns as applied to sentences:

all

Chapter 14 Common Patterns in Recursive Procedures 225

accumulate-somehow

accumulate-somehow

’no-number

(first sent)

first-number

no-number

keep

number?

cond

sent
no-number

butfirst
else

(define (sent)
(if (empty? sent)

((first sent)
((bf sent)))))

(define (first-number sent) ;; first guess
(cond ((empty? sent) ’())

(((first sent))
(se (first sent) (first-number (bf sent))))
(else (first-number (bf sent)))))

((empty? sent))

((number? (first sent)))

(define (first-number sent)
(cond ((empty? sent) ’no-number)

((number? (first sent)) (first sent))
(else (first-number (bf sent)))))

Suppose you’re trying to write a procedure that takes a sentence
as its argument and returns the first number in that sentence, but returns the word

if there are no numbers in the argument. The first step is to make a guess
about which pattern will be most useful. In this case the program should start with an
entire sentence and select a portion of that sentence, namely one word. Therefore, we
start with the pattern.

The next step is to fill in the blank. Obviously, since we’re looking for a number,
goes in the blank.

The trouble is that this procedure returns the numbers in the given sentence.
Now our job is to see how the pattern must be modified to do what we want. The overall
structure of the pattern is a with three clauses; we’ll consider each clause separately.

What should the procedure return if is empty? In that case, there is no first
number in the sentence, so it should return :

What if the first word of the sentence is a number? The program should return just
that number, ignoring the rest of the sentence:

What if the first word of the sentence isn’t a number? The procedure must make a
recursive call for the , and whatever that recursive call returns is the answer.
So the clause does not have to be changed.

Here’s the whole procedure:

Problems That Don’t Follow Patterns

behavior

debugging

226 Part IV Recursion

keep

no-number

sent-before?
#t

every

keep
accumulate

accumulate

> (sent-before? ’(hold me tight) ’(sun king))
#T

> (sent-before? ’(lovely rita) ’(love you to))
#F

> (sent-before? ’(strawberry fields forever)
’(strawberry fields usually))

#T

* Dictionaries use a different ordering rule, in which the sentences are treated as if they were
single words, with the spaces removed. By the dictionary rule, “a c” is treated as if it were “ac” and
comes after “ab”; by our rule, “a c” comes before “ab” because we compare the first words (“a” and
“ab”).

After filling in the blank in the pattern, we solved this problem by focusing
on the details of the procedure definition. We examined each piece of the definition to
decide what changes were necessary. Instead, we could have focused on the of
the procedure. We would have found two ways in which the program didn’t do what it
was supposed to do: For an argument sentence containing numbers, it would return all
of the numbers instead of just one of them. For a sentence without numbers, it would
return the empty sentence instead of . We would then have finished the job
by the procedure to fix each of these problems. The final result would have
been the same.

We want to write the procedure , which takes two sentences as arguments
and returns if the first comes alphabetically before the second. The general idea is
to compare the sentences word by word. If the first words are different, then whichever
is alphabetically earlier determines which sentence comes before the other. If the first
words are equal, we go on to compare the second words.*

Does this problem follow any of the patterns we’ve seen? It’s not an , because
the result isn’t a sentence in which each word is a transformed version of a word in
the arguments. It’s not a , because the result isn’t a subset of the words in the
arguments. And it’s not exactly an . We do end up with a single true or
false result, rather than a sentence full of results. But in a typical problem,

⇒

Pitfalls

keep

keep se

keep
keep

empty?

Chapter 14 Common Patterns in Recursive Procedures 227

(define (sent-before? sent1 sent2)
(cond ((empty? sent1) #t)

((empty? sent2) #f)
((before? (first sent1) (first sent2)) #t)
((before? (first sent2) (first sent1)) #f)
(else (sent-before? (bf sent1) (bf sent2)))))

every word of the argument contributes to the solution. In this case only one word from
each sentence determines the overall result.

On the other hand, this problem does have something in common with the
pattern: We know that on each invocation there will be three possibilities. We might
reach a base case (an empty sentence); if not, the first words of the argument sentences
might or might not be relevant to the solution.

We’ll have a structure similar to the usual pattern, except that there’s no
involved; if we find unequal words, the problem is solved without further recursion. Also,
we have two arguments, and either of them might be empty.

Although thinking about the pattern helped us to work out this solution, the result
really doesn’t look much like a . We had to invent most of the details by thinking
about this particular problem, not by thinking about the pattern.

In the next chapter we’ll look at examples of recursive procedures that are quite
different from any of these patterns. Remember, the patterns are a shortcut for many
common problems, but don’t learn the shortcut at the expense of the general technique.

Review the pitfalls from Chapter 12; they’re still relevant.

How do you test for the base case? Most of the examples in this chapter have used
, and it’s easy to fall into the habit of using that test without thinking. But, for

example, if the argument is a number, that’s probably the wrong test. Even when the
argument is a sentence or a non-numeric word, it may not be empty in the base case, as
in the Pig Latin example.

⇒

⇒

⇒

doesn’t

228 Part IV Recursion

> (pairs ’toy)
(TT TO TY OT OO OY YT YO YY)

(define (copies num wd)
(if (= num 0)

’()
(se wd (copies (- num 1) wd))))

pairs

every-nth-helper every-nth

sent-before?
sent1 sent2

wd
(empty? wd)

every-nth-helper cond

remaining remaining

A serious pitfall is failing to recognize a situation in which you need an extra variable
and therefore need a helper procedure. If at each step you need the entire original
argument as well as the argument that’s getting closer to the base case, you probably
need a helper procedure. For example, write a procedure that takes a word as
argument and returns a sentence of all possible two-letter words made of letters from the
argument word, allowing duplicates, like this:

A simple pitfall, when using a helper procedure, is to write a recursive call in the
helper that calls the main procedure instead of calling the helper. (For example, what
would have happened if we’d had invoke instead of
invoking itself?)

Some recursive procedures with more than one argument require more than one
base case. But some don’t. One pitfall is to leave out a necessary base case; another is to
include something that looks like a base case but doesn’t fit the structure of the program.

For example, the reason needs two base cases is that on each
recursive call, both and get smaller. Either sentence might run out first,
and the procedure should return different values in those two cases.

On the other hand, Exercise 11.7 asked you to write a procedure that has two
arguments but needs only one base case:

In this example, the argument get smaller from one invocation to the next. It
would be silly to test for .

A noteworthy intermediate case is . It does have two
clauses that check for two different arguments reaching their smallest allowable values,
but the clause isn’t a base case. If has the value 1, the procedure
still invokes itself recursively.

The only general principle we can offer is that you have to think about what base
cases are appropriate, not just routinely copy whatever worked last time.

Exercises

14.1

14.2

14.3

14.4

14.5

14.6

Chapter 14 Common Patterns in Recursive Procedures 229

every keep accumulate

MORNING

(DI OB LA DA)

letter-count

member?

> (remove-once ’morning ’(good morning good morning))
(GOOD GOOD MORNING)

> (up ’town)
(T TO TOW TOWN)

> (remdup ’(ob la di ob la da)) ;; remove duplicates
(OB LA DI DA)

> (odds ’(i lost my little girl))
(I MY GIRL)

> (letter-count ’(fixing a hole))
11

Classify each of these problems as a pattern (, , or), if possible,
and then write the procedure recursively. In some cases we’ve given an example of
invoking the procedure we want you to write, instead of describing it.

(It’s okay if your solution removes the other instead, as long as it removes only
one of them.)

(It’s okay if your procedure returns instead, as long as it removes all but
one instance of each duplicated word.)

[8.7] Write a procedure that takes a sentence as its argument and
returns the total number of letters in the sentence:

Write .

230 Part IV Recursion

14.7

14.8

14.9

14.10

14.11

differences

expand

location

#f

count-adjacent-duplicates

remove-adjacent-duplicates

> (differences ’(4 23 9 87 6 12))
(19 -14 78 -81 6)

> (expand ’(4 calling birds 3 french hens))
(CALLING CALLING CALLING CALLING BIRDS FRENCH FRENCH FRENCH HENS)

> (expand ’(the 7 samurai))
(THE SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI)

> (location ’me ’(you never give me your money))
4

> (count-adjacent-duplicates ’(y a b b a d a b b a d o o))
3

> (count-adjacent-duplicates ’(yeah yeah yeah))
2

Write , which takes a sentence of numbers as its argument and
returns a sentence containing the differences between adjacent elements. (The length
of the returned sentence is one less than that of the argument.)

Write , which takes a sentence as its argument. It returns a sentence similar
to the argument, except that if a number appears in the argument, then the return value
contains that many copies of the following word:

Write a procedure called that takes two arguments, a word and a
sentence. It should return a number indicating where in the sentence that word can be
found. If the word isn’t in the sentence, return . If the word appears more than once,
return the location of the first appearance.

Write the procedure that takes a sentence as
an argument and returns the number of words in the sentence that are immediately
followed by the same word:

Write the procedure that takes a sentence as
argument and returns the same sentence but with any word that’s immediately followed
by the same word removed:

14.12

14.13

14.14

14.15

Chapter 14 Common Patterns in Recursive Procedures 231

progressive-squares?
#t

pigl

same-shape?
#t

merge
Merge

> (remove-adjacent-duplicates ’(y a b b a d a b b a d o o))
(Y A B A D A B A D O)

> (remove-adjacent-duplicates ’(yeah yeah yeah))
(YEAH)

> (progressive-squares? ’(3 9 81 6561))
#T

> (progressive-squares? ’(25 36 49 64))
#F

> (same-shape? ’(the fool on the hill) ’(you like me too much))
#T

> (same-shape? ’(the fool on the hill) ’(and your bird can sing))
#F

> (merge ’(4 7 18 40 99) ’(3 6 9 12 24 36 50))
(3 4 6 7 9 12 18 24 36 40 50 99)

Write a procedure that takes a sentence of numbers
as its argument. It should return if each number (other than the first) is the square
of the number before it:

What does the procedure from Chapter 11 do if you invoke it with a word
like “frzzmlpt” that has no vowels? Fix it so that it returns “frzzmlptay.”

Write a predicate that takes two sentences as arguments. It should
return if two conditions are met: The two sentences must have the same number of
words, and each word of the first sentence must have the same number of letters as the
word in the corresponding position in the second sentence.

Write , a procedure that takes two sentences of numbers as arguments.
Each sentence must consist of numbers in increasing order. should return a single
sentence containing all of the numbers, in order. (We’ll use this in the next chapter as
part of a sorting algorithm.)

14.16 syllables

232 Part IV Recursion

Write a procedure that takes a word as its argument and returns the
number of syllables in the word, counted according to the following rule: the number
of syllables is the number of vowels, except that a group of consecutive vowels counts as
one. For example, in the word “soaring,” the group “oa” represents one syllable and the
vowel “i” represents a second one.

Be sure to choose test cases that expose likely failures of your procedure. For example,
what if the word ends with a vowel? What if it ends with two vowels in a row? What if it
has more than two consecutive vowels?

(Of course this rule isn’t good enough. It doesn’t deal with things like silent “e”s
that don’t create a syllable (“like”), consecutive vowels that don’t form a diphthong
(“cooperate”), letters like “y” that are vowels only sometimes, etc. If you get bored, see
whether you can teach the program to recognize some of these special cases.)

•
•
•

stub

233

number-name

FIFTEEN 15

number-name

Project: Spelling Names of Huge Numbers

> (number-name 5513345)
(FIVE MILLION FIVE HUNDRED THIRTEEN THOUSAND THREE HUNDRED FORTY FIVE)

> (number-name (factorial 20))
(TWO QUINTILLION FOUR HUNDRED THIRTY TWO QUADRILLION NINE HUNDRED TWO
TRILLION EIGHT BILLION ONE HUNDRED SEVENTY SIX MILLION SIX HUNDRED
FORTY THOUSAND)

’(thousand million billion trillion quadrillion quintillion
sextillion septillion octillion nonillion decillion)

> (number-name 1428425) ;; intermediate version
(1 MILLION 428 THOUSAND 425)

Write a procedure that takes a positive integer argument and returns a
sentence containing that number spelled out in words:

There are some special cases you will need to consider:

Numbers in which some particular digit is zero

Numbers like 1,000,529 in which an entire group of three digits is zero.

Numbers in the teens.

Here are two hints. First, split the number into groups of three digits, going from
right to left. Also, use the sentence

You can write this bottom-up or top-down. To work bottom-up, pick a subtask and
get that working before you tackle the overall structure of the problem. For example,
write a procedure that returns the word given the argument .

To work top-down, start by writing , freely assuming the existence of
whatever helper procedures you like. You can begin debugging by writing procedures
that fit into the overall program but don’t really do their job correctly. For example, as
an intermediate stage you might end up with a program that works like this:

Zoom in on some parts of a fractal and you’ll see a miniature version of the whole thing.

SortExample:

selection

235

15 Advanced Recursion

before?

earliest-word

> (sort ’(i wanna be your man))
(BE I MAN WANNA YOUR)

> (before? ’starr ’best)
#F

By now you’ve had a good deal of experience with straightforward recursive problems,
and we hope you feel comfortable with them. In this chapter, we present some more
challenging problems. But the same leap of faith method that we used for easier problems
is still our basic approach.

First we’ll consider the example of sorting a sentence. The argument will be any sentence;
our procedure will return a sentence with the same words in alphabetical order.

We’ll use the primitive to decide if one word comes before another word
alphabetically:

How are we going to think about this problem recursively? Suppose that we’re given
a sentence to sort. A relatively easy subproblem is to find the word that ought to come
first in the sorted sentence; we’ll write later to do this.

Once we’ve found that word, we just need to put it in front of the sorted version of
the rest of the sentence. This is our leap of faith: We’re going to assume that we can
already sort this smaller sentence. The algorithm we’ve described is called sort.

236 Part IV Recursion

remove-once

remove

()

remove-once

*

* If you’ve read Part III, you might instead want to use for this purpose:

(define earliest-word sent)
(accumulate (lambda (wd1 wd2) (if (before? wd1 wd2) wd1 wd2))

sent))

Another subproblem is to find the “rest of the sentence”—all the words except for
the earliest. But in Exercise 14.1 you wrote a function that takes a word
and a sentence and returns the sentence with that word removed. (We don’t want to use

, which removes all copies of the word, because our argument sentence might
include the same word twice.)

Let’s say in Scheme what we’ve figured out so far:

We need to add a base case. The smallest sentence is , which is already sorted.

We have one unfinished task: finding the earliest word of the argument.

For your convenience, here’s :

(define (sort sent) ;; unfinished
(se (earliest-word sent)

(sort (remove-once (earliest-word sent) sent))))

(define (sort sent)
(if (empty? sent)

’()
(se (earliest-word sent)

(sort (remove-once (earliest-word sent) sent)))))

(define (earliest-word sent)
(earliest-helper (first sent) (bf sent)))

(define (earliest-helper so-far rest)
(cond ((empty? rest) so-far)

((before? so-far (first rest))
(earliest-helper so-far (bf rest)))
(else (earliest-helper (first rest) (bf rest)))))

(define (remove-once wd sent)
(cond ((empty? sent) ’())

((equal? wd (first sent)) (bf sent))
(else (se (first sent) (remove-once wd (bf sent))))))

accumulate

3

× × × ×

Example: From-Binary

first butfirst
1101
101

1

first

expt

bit

Chapter 15 Advanced Recursion 237

* A more straightforward base case would be a one-bit number, but we’ve reduced that to this
more elegant base case, following the principle we discussed on page 197.

> (from-binary 1101)
13

> (from-binary 111)
7

(define (from-binary bits) ;; incomplete
(+ (* (first bits) (expt 2 (count (bf bits))))

(from-binary (bf bits))))

(define (from-binary bits)
(if (empty? bits)

0
(+ (* (first bits) (expt 2 (count (bf bits))))

(from-binary (bf bits)))))

We want to take a word of ones and zeros, representing a binary number, and compute
the numeric value that it represents. Each binary digit (or) corresponds to a power of
two, just as ordinary decimal digits represent powers of ten. So the binary number 1101
represents (1 8) + (1 4) + (0 2) + (1 1) = 13. We want to be able to say

Where is the smaller, similar subproblem? Probably the most obvious thing to try is
our usual trick of dividing the argument into its and its . Suppose we
divide the binary number that way. We make the leap of faith by assuming that we
can translate the butfirst, , into its binary value 5. What do we have to add for the
leftmost ? It contributes 8 to the total, because it’s three bits away from the right end of
the number, so it must be multiplied by 2 . We could write this idea as follows:

That is, we multiply the bit by a power of two depending on the number of bits
remaining, then we add that to the result of the recursive call.

As usual, we have written the algorithm for the recursive case before figuring out the
base case. But it’s pretty easy; a number with no bits (an empty word) has the value zero.*

Although this procedure is correct, it’s worth noting that a more efficient version
can be written by dissecting the number from right to left. As you’ll see, we can then
avoid the calls to , which are expensive because we have to do more multiplication
than should be necessary.

Example: Mergesort

1101 butlast
110

1100

mergesort

merge

mergesort,

merge

believe

238 Part IV Recursion

(define (from-binary bits)
(if (empty? bits)

0
(+ (* (from-binary (bl bits)) 2)

(last bits))))

(define (mergesort sent)
(if (<= (count sent) 1)

sent
(merge (mergesort (one-half sent))

(mergesort (other-half sent)))))

Suppose we want to find the value of the binary number . The of
this number, , has the value six. To get the value of the entire number, we double
the six (because would have the value 12, just as in ordinary decimal numbers 430
is ten times 43) and then add the rightmost bit to get 13. Here’s the new version:

This version may look a little unusual. We usually combine the value returned by the
recursive call with some function of the current element. This time, we are combining
the current element itself with a function of the recursive return value. You may want
to trace this procedure to see how the intermediate return values contribute to the final
result.

Let’s go back to the problem of sorting a sentence. It turns out that sorting one element
at a time, as in selection sort, isn’t the fastest possible approach. One of the fastest sorting
algorithms is called and it works like this: In order to mergesort a sentence,
divide the sentence into two equal halves and recursively sort each half. Then take the
two sorted subsentences and them together, that is, create one long sorted sentence
that contains all the words of the two halves. The base case is that an empty sentence or
a one-word sentence is already sorted.

The leap of faith here is the idea that we can magically the halves of the
sentence. If you try to trace this through step by step, or wonder exactly what happens
at what time, then this algorithm may be very confusing. But if you just that the
recursive calls will do exactly the right thing, then it’s much easier to understand this
program. The key point is that if the two smaller pieces have already been sorted, it’s
pretty easy to merge them while keeping the result in order.

We still need some helper procedures. You wrote in Exercise 14.15. It uses
the following technique: Compare the first words of the two sentences. Let’s say the first
word of the sentence on the left is smaller. Then the first word of the return value is the

SubsetsExample:

Chapter 15 Advanced Recursion 239

* Try writing down all the subsets of a five-letter word if you don’t believe us.

butfirst

one-half other-half
one-half

other-half
odds evens

rat r a t ra rt at rat ""

butfirst

(define (merge left right)
(cond ((empty? left) right)

((empty? right) left)
((before? (first left) (first right))
(se (first left) (merge (bf left) right)))
(else (se (first right) (merge left (bf right))))))

(define (one-half sent)
(if (<= (count sent) 1)

sent
(se (first sent) (one-half (bf (bf sent))))))

(define (other-half sent)
(if (<= (count sent) 1)

’()
(se (first (bf sent)) (other-half (bf (bf sent))))))

(subsets (bf wd))

first word of the sentence on the left. The rest of the return value comes from recursively
merging the of the left sentence with the entire right sentence. (It’s precisely
the opposite of this if the first word of the other sentence is smaller.)

Now we have to write and . One of the easiest ways to
do this is to have return the elements in odd-numbered positions, and have

return the elements in even-numbered positions. These are the same as
the procedures (from Exercise 14.4) and (from Chapter 12).

We’re now going to attack a much harder problem. We want to know all the subsets
of the letters of a word—that is, words that can be formed from the original word by
crossing out some (maybe zero) of the letters. For example, if we start with a short word
like , the subsets are , , , , , , , and the empty word (). As the word
gets longer, the number of subsets gets bigger very quickly.*

As with many problems about words, we’ll try assuming that we can find the subsets
of the of our word. In other words, we’re hoping to find a solution that will
include an expression like

all

is

240 Part IV Recursion

brat
butfirst brat

rat
rat brat

(subsets ’rat) (subsets ’brat)

rat "" r a t ra rt at rat
b br ba bt bra brt bat brat

rat
b rat

downup

b
every

(subsets ’brat)

b rat

"" b r a t br ba bt ra rt at bra brt bat rat brat

(define (prepend-every letter sent)
(if (empty? sent)

’()
(se (word letter (first sent))

(prepend-every letter (bf sent)))))

(prepend-every ’b (subsets ’rat))

(define (subsets wd) ;; first version
(se (subsets (bf wd))

(prepend-every (first wd) (subsets (bf wd)))))

Let’s actually take a four-letter word and look at its subsets. We’ll pick , because
we already know the subsets of its . Here are the subsets of :

You might notice that many of these subsets are also subsets of . In fact, if
you think about it, of the subsets of are also subsets of . So the words in

are some of the words we need for .

Let’s separate those out and look at the ones left over:

subsets:
others:

Right about now you’re probably thinking, “They’ve pulled a rabbit out of a hat, the
way my math teacher always does.” The words that aren’t subsets of all start with

, followed by something that a subset of . You may be thinking that you never
would have thought of that yourself. But we’re just following the method: Look at the
smaller case and see how it fits into the original problem. It’s not so different from what
happened with .

Now all we have to do is figure out how to say in Scheme, “Put a in front of every
word in this sentence.” This is a straightforward example of the pattern:

The way we’ll use this in is

Of course in the general case we won’t have and in our program, but instead
will refer to the formal parameter:

We still need a base case. By now you’re accustomed to the idea of using an empty
word as the base case. It may be strange to think of the empty word as a set in the first
place, let alone to try to find its subsets. But a set of zero elements is a perfectly good set,
and it’s the smallest one possible.

⇒

⇒

did
lot

Pitfalls

subsets

subsets

let

subsets

range

Chapter 15 Advanced Recursion 241

(define (subsets wd) ;; second version
(if (empty? wd)

(se "")
(se (subsets (bf wd))

(prepend-every (first wd) (subsets (bf wd))))))

(define (subsets wd)
(if (empty? wd)

(se "")
(let ((smaller (subsets (bf wd))))
(se smaller

(prepend-every (first wd) smaller)))))

let

* We discussed this point in a pitfall in Chapter 12.

** How come we’re worrying about efficiency all of a sudden? We really pull this out of a hat.
The thing is, it’s a slower without the . Adding one letter to the length of a word doubles
the time required to find its subsets; adding 10 letters multiplies the time by about 1000.

The empty set has only one subset, the empty set itself. What should of the
empty word return? It’s easy to make a mistake here and return the empty word itself.
But we want to return a sentence, containing all the subsets, and we should
stick with returning a sentence even in the simple case.* (This mistake would come from
not thinking about the of our function, which is sentences. This is why we put so
much effort into learning about domains and ranges in Chapter 2.) So we’ll return a
sentence containing one (empty) word to represent the one subset.

This program is entirely correct. Because it uses two identical recursive calls,
however, it’s a lot slower than necessary. We can use to do the recursive subproblem
only once:**

We’ve already mentioned the need to be careful about the value returned in the base
case. The procedure is particularly error-prone because the correct value, a
sentence containing the empty word, is quite unusual. An empty subset isn’t the same as
no subsets at all!

Sometimes you write a recursive procedure with a correct recursive case and a
reasonable base case, but the program still doesn’t work. The trouble may be that the
base case doesn’t quite catch all of the ways in which the problem can get smaller. A

⇒

two

means

242 Part IV Recursion

mergesort

(empty? sent) mergesort
(test)

one-half other-half

merge

fib

fib

for while

(<= (count sent) 1)

(merge (mergesort (one-half ’(test)))
(mergesort (other-half ’(test))))

(merge (mergesort ’(test)) (mergesort ’()))

(define (fib n) ;; wrong!
(if (= n 1)

1
(+ (fib (- n 1))

(fib (- n 2)))))

second base case may be needed. For example, in , why did we write the
following line?

This tests for two base cases, empty sentences and one-word sentences, whereas in most
other examples the base case is just an empty sentence. Suppose the base case test
were and suppose we invoke with a one-word sentence,

. We would end up trying to compute the expression

If you look back at the definitions of and , you’ll see that this is
equivalent to

The first argument to is the same expression we started with! Here is a situation
in which the problem doesn’t get smaller in a recursive call. Although we’ve been trying
to avoid complicated base cases, in this situation a straightforward base case isn’t enough.
To avoid an infinite recursion, we must have two base cases.

Another example is the procedure from Chapter 13. Suppose it were defined
like this:

It would be easy to make this mistake, because everybody knows that in a recursion
dealing with numbers, the base case is the smallest possible number. But in , each
computation depends on smaller values, and we discover that we need two base cases.

The technique of recursion is often used to do something repetitively, but don’t get
the idea that the word “recursion” repetition. Recursion is a technique in which
a procedure invokes itself. We do use recursion to solve repetitive problems, but don’t
confuse the method with the ends it achieves. In particular, if you’ve programmed in
other languages that have special-purpose looping mechanisms (the ones with names
like and), those aren’t recursive. Conversely, not every recursive procedure
carries out a repetition.

Exercises

15.1

15.2

15.3

15.4

substring

not

Chapter 15 Advanced Recursion 243

to-binary

palindrome?

substrings

bat
brat

substring?
#t

> (to-binary 9)
1001

> (to-binary 23)
10111

> (palindrome? ’(flee to me remote elf))
#T

> (palindrome? ’(flee to me remote control))
#F

> (substring? ’ssip ’mississippi)
#T

> (substring? ’misip ’mississippi)
#F

Write a procedure :

A “palindrome” is a sentence that reads the same backward as forward. Write a
predicate that takes a sentence as argument and decides whether it is a
palindrome. For example:

Do not reverse any words or sentences in your solution.

Write a procedure that takes a word as its argument. It should return
a sentence containing all of the substrings of the argument. A is a subset whose
letters come consecutively in the original word. For example, the word is a subset,
but a substring, of .

Write a predicate procedure that takes two words as arguments and
returns if and only if the first word is a substring of the second. (See Exercise 15.3 for
the definition of a substring.)

Be careful about cases in which you encounter a “false start,” like this:

and also about subsets that don’t appear as consecutive letters in the second word:

15.5

15.6

unscramble

nested

in Jack

244 Part IV Recursion

> (phone-spell 2235766)
(AADJPMM AADJPMN CCFLSOO)

> (unscramble ’(this is the roach the gladiator killed))
(THIS IS THE GLADIATOR THAT KILLED THE ROACH)

> (unscramble ’(this is the rat the cat the dog the boy the
girl saw owned chased bit))

(THIS IS THE GIRL THAT SAW THE BOY THAT OWNED THE DOG THAT
CHASED THE CAT THAT BIT THE RAT)

Suppose you have a phone number, such as 223-5766, and you’d like to figure out
a clever way to spell it in letters for your friends to remember. Each digit corresponds
to three possible letters. For example, the digit 2 corresponds to the letters A, B, and
C. Write a procedure that takes a number as argument and returns a sentence of all the
possible spellings:

. . .

(We’re not showing you all 2187 words in this sentence.) You may assume there are no
zeros or ones in the number, since those don’t have letters.

Hint: This problem has a lot in common with the subsets example.

Let’s say a gladiator kills a roach. If we want to talk about the roach, we say “the
roach the gladiator killed.” But if we want to talk about the gladiator, we say “the gladiator
that killed the roach.”

People are pretty good at understanding even rather long sentences as long as they’re
straightforward: “This is the farmer who kept the cock that waked the priest that married
the man that kissed the maiden that milked the cow that tossed the dog that worried the
cat that killed the rat that ate the malt that lay in the house that Jack built.” But even a
short sentence is confusing: “This is the rat the cat the dog worried killed.” Which
rat was that?

Write a procedure that takes a nested sentence as argument and returns a
straightforward sentence about the same cast of characters:

You may assume that the argument has exactly the structure of these examples, with no
special cases like “that lay the house” or “that built.”

245

•
•
•
•
•
•
•

poker-value

Project: Scoring Poker Hands

* Later on we’ll think about seven-card variants of poker.

> (poker-value ’(h4 s4 c6 s6 c4))
(FULL HOUSE - FOURS OVER SIXES)

> (poker-value ’(h7 s3 c5 c4 d6))
(SEVEN-HIGH STRAIGHT)

> (poker-value ’(dq d10 dj da dk))
(ROYAL FLUSH - DIAMONDS)

> (poker-value ’(da d6 d3 c9 h6))
(PAIR OF SIXES)

The idea of this project is to invent a procedure that works like this:

As you can see, we are representing cards and hands just as in the Bridge project, except
that poker hands have only five cards.*

Here are the various kinds of poker hands, in decreasing order of value:

Royal flush: ten, jack, queen, king, and ace, all of the same suit
Straight flush: five cards of sequential rank, all of the same suit
Four of a kind: four cards of the same rank
Full house: three cards of the same rank, and two of a second rank
Flush: five cards of the same suit, not sequential rank
Straight: five cards of sequential rank, not all of the same suit
Three of a kind: three cards of the same rank, no other matches

•
•
•

246 Part IV Recursion

> (compute-ranks ’(q 3 4 3 4))
(ONE Q TWO 3 TWO 4)

one four (1 Q 2 3 2 4)

member?

three of a kind
three sixes

Two pair: two pairs of cards, of two different ranks
Pair: two cards of the same rank, no other matches
Nothing: none of the above

An ace can be the lowest card of a straight (ace, 2, 3, 4, 5) or the highest card of a straight
(ten, jack, queen, king, ace), but a straight can’t “wrap around”; a hand with queen, king,
ace, 2, 3 would be worthless (unless it’s a flush).

Notice that most of the hand categories are either entirely about the ranks of the
cards (pairs, straight, full house, etc.) or entirely about the suits (flush). It’s a good idea
to begin your program by separating the rank information and the suit information. To
check for a straight flush or royal flush, you’ll have to consider both kinds of information.

In what form do you want the suit information? Really, all you need is a true or
false value indicating whether or not the hand is a flush, because there aren’t any poker
categories like “three of one suit and two of another.”

What about ranks? There are two kinds of hand categories involving ranks: the ones
about equal ranks (pairs, full house) and the ones about sequential ranks (straight). You
might therefore want the rank information in two forms. A sentence containing all of
the ranks in the hand, in sorted order, will make it easier to find a straight. (You still have
to be careful about aces.)

For the equal-rank categories, what you want is some data structure that will let you
ask questions like “are there three cards of the same rank in this hand?” We ended up
using a representation like this:

One slightly tricky aspect of this solution is that we spelled out the numbers of cards,
to , instead of using the more obvious . The reason, as you can

probably tell just by looking at the latter version, is that it would lead to confusion between
the names of the ranks, most of which are digits, and the numbers of occurrences, which
are also digits. More specifically, by spelling out the numbers of occurrences, we can use

to ask easily if there is a three-of-a-kind rank in the hand.

You may find it easier to begin by writing a version that returns only the name of a
category, such as , and only after you get that to work, revise it to give
more specific results such as .

Extra Work for Hotshots

Project: Scoring Poker Hands 247

In some versions of poker, each player gets seven cards and can choose any five of the
seven to make a hand. How would it change your program if the argument were a
sentence of seven cards? (For example, in five-card poker there is only one possible
category for a hand, but in seven-card you have to pick the best category that can be made
from your cards.) Fix your program so that it works for both five-card and seven-card
hands.

Another possible modification to the program is to allow for playing with “wild”
cards. If you play with “threes wild,” it means that if there is a three in your hand you’re
allowed to pretend it’s whatever card you like. For this modification, your program will
require a second argument indicating which cards are wild. (When you play with wild
cards, there’s the possibility of having five of a kind. This beats a straight flush.)

In each set, how do the ones on the left differ from the ones on the right?

(* me *) *

match
equal?

Problem Description

16 Example: Pattern Matcher

pattern matcher

pattern.

249

(load "match.scm")

> (match ’(* me *) ’(love me do))
#T

> (match ’(* me *) ’(please please me))
#T

> (match ’(* me *) ’(in my life))
#F

It’s time for another extended example in which we use the Scheme tools we’ve been
learning to accomplish something practical. We’ll start by describing how the program
will work before we talk about how to implement it.

You can load our program into Scheme by typing

A is a commonly used procedure whose job is to compare a sentence to a
range of possibilities. An example may make this clear:

The first argument, , is a In the pattern, each asterisk () means “any
number of words, including no words at all.” So the entire pattern matches any sentence
that contains the word “me” anywhere within it. You can think of as a more
general form of in the sense that it compares two sentences and tells us whether
they’re the same, but with a broader meaning of “the same.”

?
!
&
*

match

match #t #f

*start
Match

end

special characters

name

placeholder.

250 Part IV Recursion

> (match ’(*start me *end) ’(love me do))
(START LOVE ! END DO !)

> (match ’(*start me *end) ’(please please me))
(START PLEASE PLEASE ! END !)

> (match ’(mean mr mustard) ’(mean mr mustard))
()

> (match ’(*start me *end) ’(in my life))
FAILED

Our pattern matcher will accept patterns more complicated than this first example.
There are four that indicate unspecified parts of a pattern, depending
on the number of words that should be allowed:

At most one word.
Exactly one word.
At least one word.
Any number of words.

These characters are meant to be somewhat mnemonic. The question mark means
“maybe there’s a word.” The exclamation point means “precisely one word!” (And it’s
vertical, just like the digit 1, sort of.) The ampersand, which ordinarily means “and,”
indicates that we’re matching a word and maybe more. The asterisk doesn’t have any
mnemonic value, but it’s what everyone uses for a general matching indicator anyway.

We can give a to the collection of words that match an unspecified part of
a pattern by including in the pattern a word that starts with one of the four special
characters and continues with the name. If the match succeeds, will return a
sentence containing these names and the corresponding values from the sentence:

In these examples, you see that doesn’t really return or ; the earlier set
of examples showed a simplified picture. In the first of the new examples, the special
pattern word is allowed to match any number of words, as indicated by the
asterisk. In this case it turned out to match the single word “love.” returns a
result that tells us which words of the sentence match the named special words in the
pattern. (We’ll call one of these special pattern words a) The exclamation
points in the returned value are needed to separate one match from another. (In the
second example, the name was matched by an empty set of words.) In the third

match failed

match

Chapter 16 Example: Pattern Matcher 251

Implementation: When Are Two Sentences Equal?

* Why not return the sentence if successful or otherwise? That would be fine in most versions
of Scheme, but as we mentioned earlier, the empty sentence is the same as the false value
in some dialects. In those Schemes, a successfully matched pattern with no named placeholders,
for which the program should return an empty sentence, would be indistinguishable from an
unmatched pattern.

> (match ’(!twice !other !twice) ’(cry baby cry))
(TWICE CRY ! OTHER BABY !)

> (match ’(!twice !other !twice) ’(please please me))
FAILED

> (match ’(*front *back) ’(your mother should know))

(FRONT YOUR MOTHER SHOULD KNOW ! BACK !)
(FRONT YOUR MOTHER SHOULD ! BACK KNOW !)
(FRONT YOUR MOTHER ! BACK SHOULD KNOW !)
(FRONT YOUR ! BACK MOTHER SHOULD KNOW !)
(FRONT ! BACK YOUR MOTHER SHOULD KNOW !)

#f
() #f

example, the match was successful, but since there were no placeholders the returned
sentence was empty. If the match is unsuccessful, returns the word .*

If the same placeholder name appears more than once in the pattern, then it must
be matched by the same word(s) in the sentence each time:

Some patterns might be matchable in more than one way. For example, the
invocation

might return any of five different correct answers:

We arbitrarily decide that in such cases the first placeholder should match as many words
as possible, so in this case will actually return the first of these answers.

Before continuing, you might want to look at the first batch of exercises at the end
of this chapter, which are about using the pattern matcher. (The rest of the exercises are
about the implementation, which we’ll discuss next.)

Our approach to implementation will be to start with something we already know how

252 Part IV Recursion

equal?

sent-equal?

match?

When Are Two Sentences Nearly Equal?

((equal? (first pattern) ’!)
(match? (bf pattern) (bf sent)))

(define (sent-equal? sent1 sent2)
(cond ((empty? sent1)

(empty? sent2))
((empty? sent2) #f)
((equal? (first sent1) (first sent2))
(sent-equal? (bf sent1) (bf sent2)))
(else #f)))

(define (match? pattern sent) ;; first version: ! only
(cond ((empty? pattern)

(empty? sent))
((empty? sent) #f)

((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #f)))

to write: a predicate that tests whether two sentences are exactly equal. We will add
capabilities one at a time until we reach our goal.

Suppose that Scheme’s primitive function worked only for words and not
for sentences. We could write an equality tester for sentences, like this:

Two sentences are equal if each word in the first sentence is equal to the corresponding
word in the second. They’re unequal if one sentence runs out of words before the other.

Why are we choosing to accept Scheme’s primitive word comparison but rewrite the
sentence comparison? In our pattern matcher, a placeholder in the pattern corresponds
to a group of words in the sentence. There is no kind of placeholder that matches only
part of a word. (It would be possible to implement such placeholders, but we’ve chosen
not to.) Therefore, we will never need to ask whether a word is “almost equal” to another
word.

Pattern matching is just a more general form of this procedure. Let’s
write a very simple pattern matcher that knows only about the “!” special character and
doesn’t let us name the words that match the exclamation points in the pattern. We’ll
call this one with a question mark because it returns just true or false.

Matching with Alternatives

any

before

Chapter 16 Example: Pattern Matcher 253

sent-equal? cond

first pattern first
sent

*

! sent-equal?

?

cond sent
sent (?)

butfirst
all-question-marks? match?

((equal? (first pattern) ’?)
(if (empty? sent)

(match? (bf pattern) ’())
(or (match? (bf pattern) (bf sent))

(match? (bf pattern) sent))))

(define (match? pattern sent) ;; second version: ! and ?
(cond ((empty? pattern)

(empty? sent))

((empty? sent) #f)
((equal? (first pattern) ’!)
(match? (bf pattern) (bf sent)))
((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #f)))

This program is exactly the same as , except for the highlighted
clause. We are still comparing each word of the pattern with the corresponding word
of the sentence, but now an exclamation mark in the pattern matches word in the
sentence. (If of is an exclamation mark, we don’t even look at
of .)

Our strategy in the next several sections will be to expand the pattern matcher by
implementing the remaining special characters, then finally adding the ability to name
the placeholders. For now, when we say something like “the placeholder,” we mean the
placeholder consisting of the asterisk alone. Later, after we add named placeholders, the
same procedures will implement any placeholder that begins with an asterisk.

The matching is not much harder than , because it’s still the case that
one word of the pattern must match one word of the sentence. When we introduce the

option, the structure of the program must be more complicated, because a question
mark in the pattern might or might not be paired up with a word in the sentence. In
other words, the pattern and the sentence might match without being the same length.

Note that the new clause comes the check to see if is empty. That’s
because might be empty and a pattern of would still match it. But if the
sentence is empty, we know that the question mark doesn’t match a word, so we just have
to make sure that the of the pattern contains nothing but question marks.
(We don’t have a predicate named ; instead, we use
recursively to make this test.)

entire

254 Part IV Recursion

or
match?

!
butfirst

match?
butfirst

> (match? ’(? please me) ’(please please me))
#T

> (match? ’(? please me) ’(please me))
#T

In general, a question mark in the pattern has to match either one word or zero
words in the sentence. How do we decide? Our rule is that each placeholder should
match as many words as possible, so we prefer to match one word if we can. But allowing
the question mark to match a word might prevent the rest of the pattern from matching
the rest of the sentence.

Compare these two examples:

In the first case, the first thing in the pattern is a question mark and the first thing
in the sentence is “please,” and they match. That leaves “please me” in the pattern to
match “please me” in the sentence.

In the second case, we again have a question mark as the first thing in the pattern
and “please” as the first thing in the sentence. But this time, we had better not use up
the “please” in the sentence, because that will only leave “me” to match “please me.” In
this case the question mark has to match no words.

To you, these examples probably look obvious. That’s because you’re a human
being, and you can take in the entire pattern and the entire sentence all at once. Scheme
isn’t as smart as you are; it has to compare words one pair at a time. To Scheme, the
processing of both examples begins with question mark as the first word of the pattern
and “please” as the first word of the sentence. The pattern matcher has to consider both
cases.

How does the procedure consider both cases? Look at the invocation of by
the procedure. There are two alternatives; if either turns out true, the match
succeeds. One is that we try to match the question mark with the first word of the
sentence just as we matched in our earlier example—by making a recursive call on the

s of the pattern and sentence. If that returns true, then the question mark
matches the first word.

The second alternative that can make the match succeed is a recursive call to
on the of the pattern and the sentence; this corresponds to matching

Backtracking

?

match?

match?

Chapter 16 Example: Pattern Matcher 255

Try matching with .

It works!

Try matching with .
It doesn’t work.
This time, match with nothing.

> (trace match?)
> (match? ’(? please me) ’(please please me))

#T

> (match? ’(? please me) ’(please me))

#T

or* Actually, since is a special form, Scheme avoids the need to try the second alternative if the
first one succeeds.

(match? (? please me) (please please me))
| (match? (please me) (please me)) ? please
| | (match? (me) (me))
| | | (match? () ())
| | | #t
| | #t
| #t
#t

(match? (? please me) (please me))
| (match? (please me) (me)) ? please
| #f
| (match? (please me) (please me)) ?
| | (match? (me) (me))
| | | (match? () ())
| | | #t
| | #t
| #t
#t

the against nothing.*

Let’s trace so that you can see how these two cases are handled differently
by the program.

The program structure that allows for two alternative routes to success has more profound
implications than you may think at first.

When sees a question mark in the pattern, it has to decide whether or not
to “use up” a word of the sentence by matching it with the question mark. You might
wonder, “How does the question mark decide whether to take a word?” The answer is
that the decision isn’t made “by the question mark”; there’s nothing about the particular

keep

butfirst

keep

match?

Match?

match?

match?

can

tentative

backtracking.

four

256 Part IV Recursion

(recursive-call (bf sent))
(recursive-call (bf sent))

(cond ((empty? sent) ’())
((some-test? (first sent))
(se (first sent)))
(else))

word that the question mark might match that helps with the decision! Instead, the
decision depends on matching what comes to the right of the question mark.

Compare this situation with the recursive pattern. There, too, the procedure
makes a decision about the first word of a sentence, and each alternative leads to a
recursive call for the :

The difference is that in the pattern the choice between alternatives be made
just by looking at the immediate situation—the single word that might or might not be
chosen; the decision doesn’t depend on anything in the rest of the problem. As a result,
the choice has already been made before any recursive call happens. Therefore, only
one of the recursive calls is actually made, to make choices about the remaining words in
the sentence.

In , by contrast, any particular invocation can’t make its choice until it knows
the result of a recursive invocation. The result from the recursive call determines the
choice made by the caller.

Here’s a model that might help you think about this kind of recursion.
sees a question mark in the pattern. It makes a decision that this question mark
should match the first word of the sentence, and it uses a recursive invocation to see
whether that decision allows the rest of the problem to be solved. If so, the tentative
choice was correct. If not, tries an alternative decision that the question mark
doesn’t match a word. This alternative is still tentative; another recursive call is needed
to see if the rest of the pattern can succeed. If not, the overall match fails.

This structure is called

What if there are two question marks in the pattern? Then there are ways to
match the overall pattern. Both question marks can match a word, or only the first
question mark, or only the second, or neither. A pattern with several placeholders
leads to even more alternatives. A pattern with three question marks will have eight
alternatives. (All three match words, the first two do but the third doesn’t, and so on.)
A pattern with 10 question marks will have 1024 alternatives. How can try all
these alternatives? The procedure seems to make only one two-way choice; how can it
accomplish a four-way or many-way decision?

match?

match?

match?

a x

bar

foo

not

Chapter 16 Example: Pattern Matcher 257

(match? ’(a b ? ? ? ?) ’(x y z w p q))

> (match? ’(? ? foo) ’(bar foo))

#T

(match? (? ? foo) (bar foo))
| (match? (? foo) (foo))
| | (match? (foo) ())
| | #f
| | (match? (foo) (foo))
| | | (match? () ())
| | | #t
| | #t
| #t
#t

The secret is the same as the usual secret of recursion: Most of the work is done
in recursive calls. We take a leap of faith that recursive invocations will take care of
the decisions concerning question marks later in the pattern. Think about it using the
backtracking model. Let’s suppose there are 10 question marks in the pattern. When

encounters the leftmost question mark, it makes a tentative decision to match
the question mark with a word of the sentence. To test whether this choice can work,

invokes itself recursively on a pattern with nine question marks. By the leap
of faith, the recursive invocation will examine 512 ways to match question marks with
words—half of the total number. If one of these 512 works, we’re finished. If not, the
original invocation changes its tentative choice, deciding instead to match
its question mark (the leftmost one) with a word of the sentence. Another recursive call
is made based on that decision, and that recursive call checks out the remaining 512
possibilities.

By the way, the program doesn’t always have to try all of the different combinations of
question marks matching or not matching words separately. For example, if the problem
is

then the very first comparison discovers that is different from , so none of the 16
possible arrangements about question marks matching or not matching words will make
a difference.

Here are some traced examples involving patterns with two question marks, to show
how the result of backtracking depends on the individual problem.

In this first example, the first question mark tries to match the word , but it can’t tell
whether or not that match will succeed until the recursive call returns. In the recursive
call, the second question mark tries to match the word , and fails. Then the second

258 Part IV Recursion

foo
(? foo bar) (bar)

foo

> (match? ’(? ? foo bar) ’(foo bar))

#T

(match? (? ? foo bar) (foo bar))
| (match? (? foo bar) (bar))
| | (match? (foo bar) ())
| | #f
| | (match? (foo bar) (bar))
| | #f
| #f
| (match? (? foo bar) (foo bar))
| | (match? (foo bar) (bar))
| | #f
| | (match? (foo bar) (foo bar))
| | | (match? (bar) (bar))
| | | | (match? () ())
| | | | #t
| | | #t
| | #t
| #t
#t

question mark tries again, this time matching nothing, and succeeds. Therefore, the first
question mark can report success; it never has to try a recursive call in which it doesn’t
match a word.

In our second example, each question mark will have to try both alternatives,
matching and then not matching a word, before the overall match succeeds.

The first question mark tries to match the word in the sentence, leaving the pattern
to match . The second question mark will try both matching and

not matching a word, but neither succeeds. Therefore, the first question mark tries
again, this time not matching a word. The second question mark first tries matching

, and when that fails, tries not matching anything. This last attempt is successful.

In the previous example, every question mark’s first attempt failed. The following
example illustrates the opposite case, in which every question mark’s first attempt
succeeds.

foo bar

*

!

?
*

?

Matching Several Words

Chapter 16 Example: Pattern Matcher 259

> (match? ’(? ? baz) ’(foo bar baz))

#t

> (match? ’(? ? foo) ’())

#f

(match? (? ? baz) (foo bar baz))
| (match? (? baz) (bar baz))
| | (match? (baz) (baz))
| | | (match? () ())
| | | #t
| | #t
| #t
#t

(match? (? ? foo) ())
| (match? (? foo) ())
| | (match? (foo) ())
| | #f
| #f
#f

The first question mark matches ; the second matches .

If the sentence is shorter than the pattern, we may end up trying to match a pattern
against an empty sentence. This is much easier than the general problem, because there
aren’t two alternatives; a question mark has no word in the sentence to match.

Each question mark knows right away that it had better not try to match a word, so we
never have to backtrack.

The next placeholder we’ll implement is . The order in which we’re implementing
these placeholders was chosen so that each new version increases the variability in the
number of words a placeholder can match. The placeholder was very easy because it
always matches exactly one word; it’s hardly different at all from a non-placeholder in
the pattern. Implementing was more complicated because there were two alternatives
to consider. But for , we might match any number of words, up to the entire rest of the
sentence.

Our strategy will be a generalization of the strategy: Start with a “greedy” match,
and then, if a recursive call tells us that the remaining part of the sentence can’t match
the rest of the pattern, try a less greedy match.

260 Part IV Recursion

((equal? (first pattern) ’*)
(*-longest-match (bf pattern) sent))

? * ?

or *

* #f

match? *-longest-match

*-lm-helper
*

Sent-matched
* Sent-unmatched

(define (match? pattern sent) ;; third version: !, ?, and *
(cond ((empty? pattern)

(empty? sent))
((equal? (first pattern) ’?)
(if (empty? sent)

(match? (bf pattern) ’())
(or (match? (bf pattern) (bf sent))

(match? (bf pattern) sent))))

((empty? sent) #f)
((equal? (first pattern) ’!)
(match? (bf pattern) (bf sent)))
((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #f)))

(define (*-longest-match pattern-rest sent)
(*-lm-helper pattern-rest sent ’()))

(define (*-lm-helper pattern-rest sent-matched sent-unmatched)
(cond ((match? pattern-rest sent-unmatched) #t)

((empty? sent-matched) #f)
(else (*-lm-helper pattern-rest

(bl sent-matched)
(se (last sent-matched) sent-unmatched)))))

The difference between and is that allows only two possible match lengths, zero
and one. Therefore, these two cases can be checked with two explicit subexpressions of
an expression. In the more general case of , any length is possible, so we can’t check
every possibility separately. Instead, as in any problem of unknown size, we use recursion.
First we try the longest possible match; if that fails because the rest of the pattern can’t
be matched, a recursive call tries the next-longest match. If we get all the way down to an
empty match for the and still can’t match the rest of the pattern, then we return .

If an asterisk is found in the pattern, invokes , which carries
out this backtracking approach.

The real work is done by , which has three arguments. The first
argument is the still-to-be-matched part of the pattern, following the placeholder
that we’re trying to match now. is the part of the sentence that
we’re considering as a candidate to match the placeholder. is

Combining the Placeholders

Chapter 16 Example: Pattern Matcher 261

> (trace match? *-longest-match *-lm-helper)

> (match? ’(* days night) ’(a hard days night))

#t

sent-matched
pattern-rest

*-longest-match
sent-matched sent-matched

sent-unmatched
*-longest-match *-lm-helper

*-lm-helper sent-matched
sent-unmatched

*

& *
&-longest-match

*-longest-match
sent-matched #f

(match? (* days night) (a hard days night))
| (*-longest-match (days night) (a hard days night))
| | (*-lm-helper (days night) (a hard days night) ())
| | | (match? (days night) ())
| | | #f
| | | (*-lm-helper (days night) (a hard days) (night))
| | | | (match? (days night) (night))
| | | | #f
| | | | (*-lm-helper (days night) (a hard) (days night))
| | | | | (match? (days night) (days night))
| | | | | | (match? (night) (night))
| | | | | | | (match? () ())
| | | | | | | #t
| | | | | | #t
| | | | | #t
| | | | #t
| | | #t
| | #t
| #t
#t

the remainder of the sentence, following the words in ; it must match
.

Since we’re trying to find the longest possible match, chooses
the entire sentence as the first attempt for . Since is
using up the entire sentence, the initial value of is empty. The only
job of is to invoke with these initial arguments. On
each recursive invocation, shortens by one word and
accordingly lengthens .

Here’s an example in which the placeholder tries to match four words, then three
words, and finally succeeds with two words:

We have one remaining placeholder, , which is much like except that it fails unless it
can match at least one word. We could, therefore, write a that would
be identical to except for the base case of its helper procedure. If

is empty, the result is even if it would be possible to match the rest of

262 Part IV Recursion

cond

*-longest-match &-longest-match
*

&
?

!

*
&
?
!

*-longest-match &-longest-match

longest-match *-longest-match

(define (&-longest-match pattern-rest sent)
(&-lm-helper pattern-rest sent ’()))

(define (&-lm-helper pattern-rest sent-matched sent-unmatched)
(cond ((empty? sent-matched) #f)

((match? pattern-rest sent-unmatched) #t)
(else (&-lm-helper pattern-rest

(bl sent-matched)
(se (last sent-matched) sent-unmatched)))))

the pattern against the rest of the sentence. (All we have to do is exchange the first two
clauses of the .)

When two procedures are so similar, that’s a clue that perhaps they could be combined
into one. We could look at the bodies of these two procedures to find a way to
combine them textually. But instead, let’s step back and think about the meanings of the
placeholders.

The reason that the procedures and are
so similar is that the two placeholders have almost identical meanings. means “match
as many words as possible”; means “match as many words as possible, but at least one.”
Once we’re thinking in these terms, it’s plausible to think of as meaning “match as
many words as possible, but at most one.” In fact, although this is a stretch, we can also
describe similarly: “Match as many words as possible, but at least one, and at most one.”

Placeholder Minimum size Maximum size

0 no limit
1 no limit
0 1
1 1

We’ll take advantage of this newly understood similarity to simplify the program by using
a single algorithm for all placeholders.

How do we generalize and to handle all
four cases? There are two kinds of generalization involved. We’ll write a procedure

that will have the same arguments as , plus two
others, one for for the minimum size of the matched text and one for the maximum.

start

Chapter 16 Example: Pattern Matcher 263

(define (longest-match pattern-rest sent min max-one?) ;; first version
(cond ((empty? sent)

(and (= min 0) (match? pattern-rest sent)))
(max-one?
(lm-helper pattern-rest (se (first sent)) (bf sent) min))
(else (lm-helper pattern-rest sent ’() min))))

min
Longest-match min

lm-helper

*
& longest-match max-one?

#t ? !

longest-match * &
max-one?

longest-match
longest-match #t

sent-matched sent-unmatched
lm-helper Sent-matched

sent-unmatched

*-longest-match

sent-matched sent-unmatched
sent-matched

sent-unmatched
longest-match sent-matched

sent-unmatched

? !

sent-matched
sent-matched sent-unmatched

We’ll specify the minimum size with a formal parameter . (The corresponding
argument will always be 0 or 1.) will pass the value of down to

, which will use it to reject potential matches that are too short.

Unfortunately, we can’t use a number to specify the maximum size, because for and
there is no maximum. Instead, has a formal parameter

whose value is only for and .

Our earlier, special-case versions of were written for and ,
the placeholders for which will be false. For those placeholders, the new

will be just like the earlier versions. Our next task is to generalize
so that it can handle the cases.

Think about the meaning of the and parameters
in the procedures. means “the longest part of the sentence
that this placeholder is still allowed to match,” while contains whatever
portion of the sentence has already been disqualified from being matched by the
placeholder.

Consider the behavior of when an asterisk is at the begin-
ning of a pattern that we’re trying to match against a seven-word sentence. Initially,

is the entire seven-word sentence, and is empty.
Then, supposing that doesn’t work, is a six-word sentence, while

contains the remaining word. This continues as long as no match
succeeds until, near the end of ’s job, is a one-word
sentence and contains six words. At this point, the longest possible
match for the asterisk is a single word.

This situation is where we want to in the case of the and placeholders. So
when we’re trying to match one of these placeholders, our initialization procedure won’t
use the entire sentence as the initial value of ; rather, the initial value
of will be a one-word sentence, and will contain the
rest of the sentence.

Naming the Matched Text

which

264 Part IV Recursion

match? longest-match Match?
match-special

longest-match min max-one?

((special? (first pattern))
(match-special (first pattern) (bf pattern) sent))

Now we can rewrite to use . will delegate
the handling of all placeholders to a subprocedure that will invoke

with the correct values for and according to the table.

So far we’ve worked out how to match the four kinds of placeholders and return a true or
false value indicating whether a match is possible. Our program is almost finished; all we
need to make it useful is the facility that will let us find out words in the sentence
matched each placeholder in the pattern.

(define (lm-helper pattern-rest sent-matched sent-unmatched min)
(cond ((< (length sent-matched) min) #f)

((match? pattern-rest sent-unmatched) #t)
((empty? sent-matched) #f)
(else (lm-helper pattern-rest

(bl sent-matched)
(se (last sent-matched) sent-unmatched)
min))))

(define (match? pattern sent) ;; fourth version
(cond ((empty? pattern)

(empty? sent))

((empty? sent) #f)
((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #f)))

(define (special? wd) ;; first version
(member? wd ’(* & ? !)))

(define (match-special placeholder pattern-rest sent) ;; first version
(cond ((equal? placeholder ’?)

(longest-match pattern-rest sent 0 #t))
((equal? placeholder ’!)
(longest-match pattern-rest sent 1 #t))
((equal? placeholder ’*)
(longest-match pattern-rest sent 0 #f))
((equal? placeholder ’&)
(longest-match pattern-rest sent 1 #f))))

database

database program,

Chapter 16 Example: Pattern Matcher 265

known-values

known-values

match-using-known-values
known-values

match-using-known-values

!twice

pattern sent known-values

(!twice !other !twice) (cry baby cry) ()

(!other !twice) (baby cry) (twice cry !)

(!twice) (cry) (twice cry ! other baby !)

() () (twice cry ! other baby !)

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

(define (match-using-known-values pattern sent known-values)
)

(match ’(!twice !other !twice) ’(cry baby cry))

* The word has two possible meanings in computer science, a broad meaning and a
narrow one. The broad meaning, which we’re using here, is a repository of information to which
the program periodically adds new items for later retrieval. The narrow meaning is a collection
of information that’s manipulated by a which provides facilities for adding new
information, modifying existing entries, selecting entries that match some specified criterion, and
so on. We’ll see a database program near the end of the book.

We don’t have to change the overall structure of the program in order to make
this work. But most of the procedures in the pattern matcher will have to be given
an additional argument, the database of placeholder names and values that have been
matched so far.* The formal parameter will hold this database. Its
value will be a sentence containing placeholder names followed by the corresponding
words and an exclamation point to separate the entries, as in the examples earlier in the
chapter. When we begin the search for a match, we use an empty sentence as the initial

:

. . .

As matches the beginning of a pattern with the be-
ginning of a sentence, it invokes itself recursively with an expanded
containing each newly matched placeholder. For example, in evaluating

the program will call four times:

In the first invocation, we try to match against some part of the sentence.

•

•

•

The Final Version

266 Part IV Recursion

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

! cry

twice cry

!other baby

!twice twice

cry

match-using-known-values

match-using-known-values
match?
match-special

longest-match lm-helper

Since matches exactly one word, the only possibility is to match the word . The
recursive invocation, therefore, is made with the first words of the pattern and sentence
removed, but with the match between and added to the database.

Similarly, the second invocation matches with and causes a third
invocation with shortened pattern and sentence but a longer database.

The third invocation is a little different because the pattern contains the placeholder
, but the name is already in the database. Therefore, this placeholder

can’t match whatever word happens to be available; it must match the same word that
it matched before. (Our program will have to check for this situation.) Luckily, the
sentence does indeed contain the word at this position.

The final invocation reaches the base case of the recursion, because the pattern is
empty. The value that returns is the database in this
invocation.

We’re now ready to show you the final version of the program. The program structure
is much like what you’ve seen before; the main difference is the database of placeholder
names and values. The program must add entries to this database and must look for
database entries that were added earlier. Here are the three most important procedures
and how they are changed from the earlier version to implement this capability:

, essentially the same as what was formerly named
except for bookkeeping details.

, similar to the old version, except that it must recognize the case
of a placeholder whose name has already been seen. In this case, the placeholder
can match only the same words that it matched before.

and , also similar to the old versions, except that
they have the additional job of adding to the database the name and value of any
placeholder that they match.

Here are the modified procedures. Compare them to the previous versions.

Chapter 16 Example: Pattern Matcher 267

(define (match-using-known-values pattern sent known-values)
(cond ((empty? pattern)

(if (empty? sent) known-values ’failed))
((special? (first pattern))
(let ((placeholder (first pattern)))
(match-special (first placeholder)

(bf placeholder)
(bf pattern)
sent
known-values)))

((empty? sent) ’failed)
((equal? (first pattern) (first sent))
(match-using-known-values (bf pattern) (bf sent) known-values))
(else ’failed)))

(define (match-special howmany name pattern-rest sent known-values)
(let ((old-value (lookup name known-values)))
(cond ((not (equal? old-value ’no-value))

(if (length-ok? old-value howmany)
(already-known-match

old-value pattern-rest sent known-values)
’failed))

((equal? howmany ’?)
(longest-match name pattern-rest sent 0 #t known-values))
((equal? howmany ’!)
(longest-match name pattern-rest sent 1 #t known-values))
((equal? howmany ’*)
(longest-match name pattern-rest sent 0 #f known-values))
((equal? howmany ’&)
(longest-match name pattern-rest sent 1 #f known-values)))))

(define (longest-match name pattern-rest sent min max-one? known-values)
(cond ((empty? sent)

(if (= min 0)
(match-using-known-values pattern-rest

sent
(add name ’() known-values))

’failed))
(max-one?
(lm-helper name pattern-rest (se (first sent))

(bf sent) min known-values))
(else (lm-helper name pattern-rest

sent ’() min known-values))))

268 Part IV Recursion

match-special

match-special

longest-match

sent
pattern

sent
howmany

*stuff
!stuff

length-ok?
already-known-match

(define (lm-helper name pattern-rest
sent-matched sent-unmatched min known-values)

(if (< (length sent-matched) min)
’failed
(let ((tentative-result (match-using-known-values

pattern-rest
sent-unmatched
(add name sent-matched known-values))))

(cond ((not (equal? tentative-result ’failed)) tentative-result)
((empty? sent-matched) ’failed)
(else (lm-helper name

pattern-rest
(bl sent-matched)
(se (last sent-matched) sent-unmatched)
min
known-values))))))

(*stuff and !stuff)

We haven’t listed all of the minor procedures that these procedures invoke. A
complete listing is at the end of the chapter, but we hope that you have enough
confidence about the overall program structure to be able to assume these small details
will work. In the next few paragraphs we discuss some of the ways in which the procedures
shown here differ from the earlier versions.

In the invocation of we found it convenient to split the placeholder
into its first character, the one that tells how many words can be matched, and the butfirst,
which is the name of the placeholder.

What happens if finds that the name is already in the database? In
this situation, we don’t have to try multiple possibilities for the number of words to match
(the usual job of); the placeholder must match exactly the words that
it matched before. In this situation, three things must be true in order for the match to
succeed: (1) The first words of the argument must match the old value stored in
the database. (2) The partial that remains after this placeholder must match
the rest of the . (3) The old value must be consistent with the number of words
permitted by the part of the placeholder. For example, if the pattern is

and the database says that the placeholder was matched by three words from
the sentence, then the second placeholder can’t possibly be matched because it
accepts only one word. This third condition is actually checked first, by , and
if we pass that hurdle, the other two conditions are checked by .

Abstract Data Types

Chapter 16 Example: Pattern Matcher 269

longest-match add

match-using-known-values

lookup add

The only significant change to is that it invokes to compute an
expanded database with the newly found match added, and it uses the resulting database
as an argument to .

As you know, a database of known values is represented in this program as a sentence
in which the entries are separated by exclamation points. Where is this representation
accomplished in the program you’ve seen? There’s nothing like

.

anywhere in the procedures we’ve shown. Instead, the program makes reference to the
database of known values through two procedure calls:

Only the procedures and manipulate the database of known values:

(sentence old-known-values name value ’!)

(lookup name known-values) ; in match-special
(add name matched known-values) ; in longest-match

(define (lookup name known-values)
(cond ((empty? known-values) ’no-value)

((equal? (first known-values) name)
(get-value (bf known-values)))
(else (lookup name (skip-value known-values)))))

(define (get-value stuff)
(if (equal? (first stuff) ’!)

’()
(se (first stuff) (get-value (bf stuff)))))

(define (skip-value stuff)
(if (equal? (first stuff) ’!)

(bf stuff)
(skip-value (bf stuff))))

(define (add name value known-values)
(if (empty? name)

known-values
(se known-values name value ’!)))

Known-ValuesBacktracking and

abstract data types.

primitive
compound

270 Part IV Recursion

longest-match
longest-match lookup add

add
lookup

match-using-known-values

These procedures are full of small details. For example, it’s a little tricky to extract
the part of a sentence from a name to the next exclamation point. It’s convenient that
we could write the more important procedures, such as , without filling
them with these details. As far as knows, and could be
Scheme primitive procedures. In effect we’ve created a new data type, with as its
constructor and as its selector.

Types such as these, that are invented by a programmer and aren’t part of the Scheme
language itself, are called Creating an abstract data type means drawing
a barrier between an idea about some kind of information we want to model in a program
and the particular mechanism that we use to represent the information. In this case, the
information is a collection of name-value associations, and the particular mechanism is a
sentence with exclamation points and so on. The pattern matcher doesn’t think of the
database as a sentence. For example, it would be silly to translate the database into Pig
Latin or find its acronym.

Just as we distinguish the procedures that Scheme knows all along from
the procedures that the Scheme programmer defines, we could use the names
“primitive data type” for types such as numbers and Booleans that are built into Scheme
and “compound data type” for ones that the programmer invents by defining selectors
and constructors. But “compound data type” is a bit of a pun, because it also suggests
a data type built out of smaller pieces, just as a compound expression is built of smaller
expressions. Perhaps that’s why the name “abstract data type” has become generally
accepted. It’s connected to the idea of abstraction that we introduced earlier, because in
order to create an abstract data type, we must specify the selectors and constructors and
give names to those patterns of computation.

What happens to the database in cases that require backtracking, where a particular
recursive call might be “on the wrong track”? Let’s trace
and see what happens. (We’ll use the little-people model to discuss this example, and so
we’re annotating each invocation in the trace with the name of its little person.)

Chapter 16 Example: Pattern Matcher 271

Martha
Mercutio

Masayuki

Mohammad
Mae
Merlin

> (trace match-using-known-values)
> (match ’(*start me *end) ’(love me do))

(START LOVE ! END DO !)

known-values
*start

known-values
match-special

longest-match lm-helper

known-values

start love me do

start

end do
start love

(match-using-known-values (*start me *end) (love me do) ())
| (match-using-known-values (me *end) () (start love me do !))
| failed
| (match-using-known-values (me *end) (do) (start love me !))
| failed
| (match-using-known-values (me *end) (me do) (start love !))
| | (match-using-known-values (*end) (do) (start love !))
| | | (match-using-known-values () () (start love ! end do !))
| | | (start love ! end do !)
| | (start love ! end do !)
| (start love ! end do !)
(start love ! end do !)

Martha, the first little person shown, has an empty . She makes
three attempts to match with parts of the sentence. In each case, a little person
is hired with the provisional match in his or her . (Actually, Martha does
not directly hire Mercutio and the others. Martha hires a little person,
who in turn hires a specialist, who hires an specialist, who
hires Mercutio. But that added complexity isn’t important for the point we’re focusing
on right now, namely, how backtracking can work. Pretend Martha hires Mercutio.)

If you don’t use the little-people model, but instead think about the program as if
there were just one variable, then the backtracking can indeed be very
mysterious. Once a provisional match is added to the database, how is it ever removed?
The answer is that it doesn’t work that way. There isn’t a “the” database. Instead, each
little person has a separate database. If an attempted match fails, the little person who
reports the failure just stops working. For example, Martha hires Mercutio to attempt
a match in which the name has the value . Mercutio is unable to
complete the match, and reports failure. It is Martha, not Mercutio, who then hires
Masayuki to try another value for . Martha’s database hasn’t changed, so Martha
gives Masayuki a database that reflects the new trial value but not the old one.

Not every hiring of a little person starts from an empty database. When a match
is partially successful, the continuation of the same attempt must benefit from the work
that’s already been done. So, for example, when Mohammad hires Mae, and when
Mae hires Merlin, each of them passes on an extended database, not an empty one.
Specifically, Mae gives Merlin the new match of the name with the value , but also
the match of with that she was given by Mohammad.

So as you can see, we don’t have to do anything special to keep track of our database
when we backtrack; the structure of the recursion takes care of everything for free.

! ?

butfirst

*

did

or

272 Part IV Recursion

How We Wrote It

Complete Program Listing

(define (match? pattern sent)
(cond ((empty? pattern) (empty? sent))

((empty? sent)
(and (equal? (first pattern) ’*) (match? (bf pattern) sent)))
((equal? (first pattern) ’*)
(or (match? pattern (bf sent))

(match? (bf pattern) sent)))
(else (and (equal? (first pattern) (first sent))

(match? (bf pattern) (bf sent))))))

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

For explanatory purposes we’ve chosen to present the pieces of this program in a
different order from the one in which we actually wrote them. We implement the
easy placeholders (and) before the harder ones. But our program had provision for
a database of names from the beginning.

There is no “right” way to approach a programming problem. Our particular
approach was determined partly by our past experience. Each of us had written similar
programs before, and we had preconceived ideas about the easy and hard parts. You
might well start at a different point. For example, here is an elegant small program we’d
both been shown by friends:

What’s appealing about this is the funny symmetry of taking the of the pattern
of the sentence. That’s not something you’d naturally think of, probably, but once

you’ve worked out how it can work, it affects your preconceptions when you set out to
write a pattern matcher yourself.

Based on that inspiration, we might well have started with the hard cases (such
as), with the idea that once they’re in place, the easy cases won’t change the program
structure much.

Chapter 16 Example: Pattern Matcher 273

(define (match-using-known-values pattern sent known-values)
(cond ((empty? pattern)

(if (empty? sent) known-values ’failed))
((special? (first pattern))
(let ((placeholder (first pattern)))
(match-special (first placeholder)

(bf placeholder)
(bf pattern)
sent
known-values)))

((empty? sent) ’failed)
((equal? (first pattern) (first sent))
(match-using-known-values (bf pattern) (bf sent) known-values))
(else ’failed)))

(define (special? wd)
(member? (first wd) ’(* & ? !)))

(define (match-special howmany name pattern-rest sent known-values)
(let ((old-value (lookup name known-values)))
(cond ((not (equal? old-value ’no-value))

(if (length-ok? old-value howmany)
(already-known-match

old-value pattern-rest sent known-values)
’failed))

((equal? howmany ’?)
(longest-match name pattern-rest sent 0 #t known-values))
((equal? howmany ’!)
(longest-match name pattern-rest sent 1 #t known-values))
((equal? howmany ’*)
(longest-match name pattern-rest sent 0 #f known-values))
((equal? howmany ’&)
(longest-match name pattern-rest sent 1 #f known-values)))))

(define (length-ok? value howmany)
(cond ((empty? value) (member? howmany ’(? *)))

((not (empty? (bf value))) (member? howmany ’(* &)))
(else #t)))

(define (already-known-match value pattern-rest sent known-values)
(let ((unmatched (chop-leading-substring value sent)))
(if (not (equal? unmatched ’failed))

(match-using-known-values pattern-rest unmatched known-values)
’failed)))

274 Part IV Recursion

(define (chop-leading-substring value sent)
(cond ((empty? value) sent)

((empty? sent) ’failed)
((equal? (first value) (first sent))
(chop-leading-substring (bf value) (bf sent)))
(else ’failed)))

(define (longest-match name pattern-rest sent min max-one? known-values)
(cond ((empty? sent)

(if (= min 0)
(match-using-known-values pattern-rest

sent
(add name ’() known-values))

’failed))
(max-one?
(lm-helper name pattern-rest (se (first sent))

(bf sent) min known-values))
(else (lm-helper name pattern-rest

sent ’() min known-values))))

(define (lm-helper name pattern-rest
sent-matched sent-unmatched min known-values)

(if (< (length sent-matched) min)
’failed
(let ((tentative-result (match-using-known-values

pattern-rest
sent-unmatched
(add name sent-matched known-values))))

(cond ((not (equal? tentative-result ’failed)) tentative-result)
((empty? sent-matched) ’failed)
(else (lm-helper name

pattern-rest
(bl sent-matched)
(se (last sent-matched) sent-unmatched)
min
known-values))))))

;;; Known values database abstract data type

(define (lookup name known-values)
(cond ((empty? known-values) ’no-value)

((equal? (first known-values) name)
(get-value (bf known-values)))
(else (lookup name (skip-value known-values)))))

C

(a b a b)

a b a

16.1

16.2

16.3

16.4

16.5

16.6

16.7

Exercises about Using the Pattern Matcher

all

Chapter 16 Example: Pattern Matcher 275

(define (get-value stuff)
(if (equal? (first stuff) ’!)

’()
(se (first stuff) (get-value (bf stuff)))))

(define (skip-value stuff)
(if (equal? (first stuff) ’!)

(bf stuff)
(skip-value (bf stuff))))

(define (add name value known-values)
(if (empty? name)

known-values
(se known-values name value ’!)))

(*x *y *y *x)

(*x *y &y &x)

(*x *y *y *x)

Design and test a pattern that matches any sentence containing the word three
times (not necessarily next to each other).

Design and test a pattern that matches a sentence consisting of two copies of a
smaller sentence, such as .

Design and test a pattern that matches any sentence of no more than three words.

Design and test a pattern that matches any sentence of at least three words.

Show sentences of length 2, 3, and 4 that match the pattern

For each length, if no sentence can match the pattern, explain why not.

Show sentences of length 2, 3, and 4 that match the pattern

For each length, if no sentence can match the pattern, explain why not.

List the sentences of length 6 or less, starting with , that match the pattern

276 Part IV Recursion

Exercises about Implementation

16.8

16.9

16.10

16.11

16.12

16.13

16.14

16.15

longest-match

cond match-using-known-values

*

match-using-known-values

lookup
no-value

match
lookup (the beatles)

get-value skip-value

((empty? pattern) known-values)

(match ’(from me to you) ’(from me to you))
(match ’(*x *y *x) ’(a b c a b))
(match ’(*x *y *z) ’(a b c a b))
(match ’(*x hey *y bulldog *z) ’(a hey b bulldog c))
(match ’(*x a b c d e f) ’(a b c d e f))
(match ’(a b c d e f *x) ’(a b c d e f))

Explain how handles an empty sentence.

Suppose the first clause in were

Give an example of a pattern and sentence for which the modified program would give a
different result from the original.

What happens if the sentence argument—not the pattern—contains the word
somewhere?

For each of the following examples, how many
little people are required?

In general, what can you say about the characteristics that make a pattern easy or hard to
match?

Show a pattern with the following two properties: (1) It has at least two
placeholders. (2) When you match it against any sentence, every invocation of
returns .

Show a pattern and a sentence that can be used as arguments to so that
returns at some point during the match.

Our program can still match patterns with unnamed placeholders. How would
it affect the operation of the program if these unnamed placeholders were added to the
database? What part of the program keeps them from being added?

Why don’t and check for an empty argument as the
base case?

cond length-ok?

*15x *x

+

+ !

Chapter 16 Example: Pattern Matcher 277

16.16

16.17

16.18

16.19

16.20

16.21

16.22

((and (empty? value) (member? howmany ’(? *))) #t)

(match ’(?x is *y !x) ’(! is an exclamation point !))

> (match ’(*3front *back) ’(your mother should know))
(FRONT YOUR MOTHER SHOULD ! BACK KNOW !)

> (match ’(*front +middle *back) ’(four score and 7 years ago))
(FRONT FOUR SCORE AND ! MIDDLE 7 ! BACK YEARS AGO !)

Why didn’t we write the first clause in as the following?

Where in the program is the initial empty database of known values established?

For the case of matching a placeholder name that’s already been matched in
this pattern, we said on page 268 that three conditions must be checked. For each of
the three, give a pattern and sentence that the program would incorrectly match if the
condition were not checked.

What will the following example do?

Can you suggest a way to fix this problem?

Modify the pattern matcher so that a placeholder of the form is like
except that it can be matched only by exactly 15 words.

Modify the pattern matcher so that a placeholder (with or without a name
attached) matches only a number:

The placeholder is otherwise like —it must match exactly one word.

Does your favorite text editor or word processor have a search command that
allows you to search for patterns rather than only specific strings of characters? Look into
this and compare your editor’s capabilities with that of our pattern matcher.

third-person

Part V
Abstraction

abstracting

data abstraction,
higher-order functions,

278

> (sentence ’she (word ’run ’s))
(SHE RUNS)

> (sentence ’she (word ’walk ’s))
(SHE WALKS)

> (sentence ’she (word ’program ’s))
(SHE PROGRAMS)

(define (third-person verb)
(sentence ’she (word verb ’s)))

We’ve really been talking about abstraction all along. Whenever you find yourself
performing several similar computations, such as

and you capture the similarity in a procedure

you’re the pattern of the computation by expressing it in a form that leaves
out the particular verb in any one instance.

In the preface we said that our approach to computer science is to teach you to think
in larger chunks, so that you can fit larger problems in your mind at once; “abstraction”
is the technical name for that chunking process.

In this part of the book we take a closer look at two specific kinds of abstraction.
One is which means the invention of new data types. The other is
the implementation of an important category of the same process
abstraction of which is a trivial example.

sentence first

lists.
trees. abstract

procedures

279

Until now we’ve used words and sentences as though they were part of the natural
order of things. Now we’ll discover that Scheme sentences exist only in our minds and
take shape through the use of constructors and selectors (, , and so on)
that we wrote. The implementation of sentences is based on a more fundamental data
type called Then we’ll see how lists can be used to invent another in-our-minds data
type, (The technical term for an invented data type is an data type.)

You already know how higher-order functions can express many computational
processes in a very compact form. Now we focus our attention on the higher-order

that implement those functions, exploring the mechanics by which we create
these process abstractions.

17 Lists

list.

281

(vanilla ginger strawberry lychee raspberry mocha)

(define (order flavor)
(if (member? flavor

’(vanilla ginger strawberry lychee raspberry mocha))
’(coming right up!)
(se ’(sorry we have no) flavor)))

(vanilla (ultra chocolate) (heath bar crunch) ginger (cherry garcia))

Suppose we’re using Scheme to model an ice cream shop. We’ll certainly need to know
all the flavors that are available:

For example, here’s a procedure that models the behavior of the salesperson when you
place an order:

But what happens if we want to sell a flavor like “root beer fudge ripple” or “ultra
chocolate”? We can’t just put those words into a sentence of flavors, or our program will
think that each word is a separate flavor. Beer ice cream doesn’t sound very appealing.

What we need is a way to express a collection of items, each of which is itself a
collection, like this:

This is meant to represent five flavors, two of which are named by single words, and the
other three of which are named by sentences.

Luckily for us, Scheme provides exactly this capability. The data structure we’re
using in this example is called a The difference between a sentence and a list is that
the elements of a sentence must be words, whereas the elements of a list can be anything

portion

Selectors and Constructors

#t

known-values

first sentence

car
cdr

sublist. structured

282 Part V Abstraction

(FRONT YOUR MOTHER ! BACK SHOULD KNOW !)

((FRONT (YOUR MOTHER)) (BACK (SHOULD KNOW)))

Cdr

* Don’t even try to figure out a sensible reason for this name. It’s a leftover bit of history from
the first computer on which Lisp was implemented. It stands for “contents of address register”
(at least that’s what all the books say, although it’s really the address of the accumulator
register). , coming up in the next sentence, stands for “contents of decrement register.”
The names seem silly in the Lisp context, but that’s because the Lisp people used these register
components in ways the computer designers didn’t intend. Anyway, this is all very interesting to
history buffs but irrelevant to our purposes. We’re just showing off that one of us is actually old
enough to remember these antique computers first-hand.

at all: words, , procedures, or other lists. (A list that’s an element of another list is
called a We’ll use the name list for a list that includes sublists.)

Another way to think about the difference between sentences and lists is that the
definition of “list” is self-referential, because a list can include lists as elements. The
definition of “sentence” is not self-referential, because the elements of a sentence must
be words. We’ll see that the self-referential nature of recursive procedures is vitally
important in coping with lists.

Another example in which lists could be helpful is the pattern matcher. We used
sentences to hold databases, such as this one:

This would be both easier for you to read and easier for programs to manipulate if we
used list structure to indicate the grouping instead of exclamation points:

We remarked when we introduced sentences that they’re a feature we added to
Scheme just for the sake of this book. Lists, by contrast, are at the core of what Lisp has
been about from its beginning. (In fact the name “Lisp” stands for “LISt Processing.”)

When we introduced words and sentences we had to provide ways to take them apart,
such as , and ways to put them together, such as . Now we’ll tell you
about the selectors and constructors for lists.

The function to select the first element of a list is called .* The function to
select the portion of a list containing all but the first element is called , which is

Chapter 17 Lists 283

first butfirst

null? #t #f
empty?

list

cons
Cons

car cdr

list cons append

list
List

> (list (+ 2 3) ’squash (= 2 2) (list 4 5) remainder ’zucchini)
(5 SQUASH #T (4 5) #<PROCEDURE> ZUCCHINI)

> (cons ’for ’(no one))
(FOR NO ONE)

> (cons ’julia ’())
(JULIA)

> (append ’(get back) ’(the word))
(GET BACK THE WORD)

> (list ’(i am) ’(the walrus))
((I AM) (THE WALRUS))

> (cons ’(i am) ’(the walrus))
((I AM) THE WALRUS)

> (append ’(i am) ’(the walrus))
(I AM THE WALRUS)

pronounced “could-er.” These are analogous to and for words and
sentences.

Of course, we can’t extract pieces of a list that’s empty, so we need a predicate that
will check for an empty list. It’s called and it returns for the empty list, for
anything else. This is the list equivalent of for words and sentences.

There are two constructors for lists. The function takes any number of
arguments and returns a list with those arguments as its elements.

The other constructor, , is used when you already have a list and you want to add
one new element. takes two arguments, an element and a list (in that order), and
returns a new list whose is the first argument and whose is the second.

There is also a function that combines the elements of two or more lists into a larger
list:

It’s important that you understand how , , and differ from each other:

When is invoked with two arguments, it considers them to be two proposed
elements for a new two-element list. doesn’t care whether the arguments are
themselves lists, words, or anything else; it just creates a new list whose elements are the
arguments. In this case, it ends up with a list of two lists.

list

()

()

()

cons

the elements of

both

284 Part V Abstraction

Cons Cons

cons cons
car cons cdr

list

append

list

Cons

* This is not the whole story. See the “pitfalls” section for a slightly expanded version.

requires that its second argument be a list.* will extend that list to
form a new list, one element longer than the original; the first element of the resulting
list comes from the first argument to . In other words, when you pass two
arguments, you get back a list whose is the first argument to and whose is
the second argument.

Thus, in this example, the three elements of the returned list consist of the first
argument as one single element, followed by the second argument (in this
case, two words). (You may be wondering why anyone would want to use such a strange
constructor instead of . The answer has to do with recursive procedures, but hang
on for a few paragraphs and we’ll show you an example, which will help more than any
explanation we could give in English.)

Finally, of two arguments uses the elements of arguments as elements
of its return value.

Pictorially, creates a list whose elements are the arguments:

creates an extension of its second argument with one new element:

()()

()

append

Programming with Lists

Append

cons se

cons
List list

elements of

list of sentences.

Chapter 17 Lists 285

(define (praise flavors)
(if (null? flavors)

’()
(cons (se (car flavors) ’(is delicious))

(praise (cdr flavors)))))

> (praise ’(ginger (ultra chocolate) lychee (rum raisin)))
((GINGER IS DELICIOUS) (ULTRA CHOCOLATE IS DELICIOUS)
(LYCHEE IS DELICIOUS) (RUM RAISIN IS DELICIOUS))

creates a list whose elements are the the arguments, which must be
lists:

In this example our result is a That is, the result is a list that includes
smaller lists as elements, but each of these smaller lists is a sentence, in which only words
are allowed. That’s why we used the constructor for the overall list, but for each
sentence within the list.

This is the example worth a thousand words that we promised, to show why
is useful. wouldn’t work in this situation. You can use only when you know
exactly how many elements will be in your complete list. Here, we are writing a procedure
that works for any number of elements, so we recursively build up the list, one element
at a time.

In the following example we take advantage of structured lists to produce a translation
dictionary. The entire dictionary is a list; each element of the dictionary, a single
translation, is a two-element list; and in some cases a translation may involve a phrase
rather than a single word, so we can get three deep in lists.

286 Part V Abstraction

car
cdr

(Car dictionary)
Cdr

car

car cdr car

cddadr A D

(define (translate wd)
(lookup wd ’((window fenetre) (book livre) (computer ordinateur)

(house maison) (closed ferme) (pate pate) (liver foie)
(faith foi) (weekend (fin de semaine))
((practical joke) attrape) (pal copain))))

(define (lookup wd dictionary)
(cond ((null? dictionary) ’(parlez-vous anglais?))

((equal? wd (car (car dictionary)))
(car (cdr (car dictionary))))
(else (lookup wd (cdr dictionary)))))

> (translate ’computer)
ORDINATEUR

> (translate ’(practical joke))
ATTRAPE

> (translate ’recursion)
(PARLEZ-VOUS ANGLAIS?)

(car (cdr (car dictionary)))

(cadar dictionary)

(cdr (cdr (car (cdr something))))

By the way, this example will help us explain why those ridiculous names and
haven’t died out. In this not-so-hard program we find ourselves saying

to refer to the French part of the first translation in the dictionary. Let’s go through that
slowly. gives us the first element of the dictionary, one English-
French pairing. of that first element is a one-element list, that is, all but the English
word that’s the first element of the pairing. What we want isn’t the one-element list but
rather its only element, the French word, which is its .

This of of business is pretty lengthy and awkward. But Scheme gives
us a way to say it succinctly:

In general, we’re allowed to use names like up to four deep in s and s. That
one means

•

•

•

The Truth about Sentences

must
happens

are

Chapter 17 Lists 287

cdr cdr car cdr
A D

cadr car cdr
car cdr

cadr
caddr cadddr

car

* As we said in Chapter 5, “symbol” is the official name for words that are neither strings nor
numbers.

or in other words, take the of the of the of the of its argument. Notice
that the order of letters and follows the order in which you’d write the procedure
names, but (as always) the procedure that’s invoked first is the one on the right. Don’t
make the mistake of reading as meaning “first take the and then take the .”
It means “take the of the .”

The most commonly used of these abbreviations are , which selects the second
element of a list; , which selects the third element; and , which selects the
fourth.

You’ve probably noticed that it’s hard to distinguish between a sentence (which be
made up of words) and a list that to have words as its elements.

The fact is, sentences lists. You could take of a sentence, for example, and
it’d work fine. Sentences are an abstract data type represented by lists. We created the
sentence ADT by writing special selectors and constructors that provide a different way
of using the same underlying machinery—a different interface, a different metaphor, a
different point of view.

How does our sentence point of view differ from the built-in Scheme point of view
using lists? There are three differences:

A sentence can contain only words, not sublists.

Sentence selectors are symmetrical front-to-back.

Sentences and words have the same selectors.

All of these differences fit a common theme: Words and sentences are meant to represent
English text. The three differences reflect three characteristics of English text: First,
text is made of sequences of words, not complicated structures with sublists. Second, in
manipulating text (for example, finding the plural of a noun) we need to look at the
end of a word or sentence as often as at the beginning. Third, since words and sentences
work together so closely, it makes sense to use the same tools with both. By contrast,
from Scheme’s ordinary point of view, an English sentence is just one particular case of a
much more general data structure, whereas a symbol* is something entirely different.

is

uses

288 Part V Abstraction

last butlast
last butlast

last
first

lookup add

acronym

* We implemented words by combining three data types that are primitive in Scheme: strings,
symbols, and numbers.

(define (first sent) ;;; just for sentences
(car sent))

(define (last sent)
(if (null? (cdr sent))

(car sent)
(last (cdr sent))))

(define (butfirst sent)
(cdr sent))

(define (butlast sent)
(if (null? (cdr sent))

’()
(cons (car sent) (butlast (cdr sent)))))

The constructors and selectors for sentences reflect these three differences. For
example, it so happens that Scheme represents lists in a way that makes it easy to find
the first element, but harder to find the last one. That’s reflected in the fact that there
are no primitive selectors for lists equivalent to and for sentences. But
we want and to be a part of the sentence package, so we have to write
them in terms of the “real” Scheme list selectors. (In the versions presented here, we are
ignoring the issue of applying the selectors to words.)

If you look “behind the curtain” at the implementation, is a lot more complicated
than . But from the point of view of a sentence user, they’re equally simple.

In Chapter 16 we used the pattern matcher’s known-values database to introduce the
idea of abstract data types. In that example, the most important contribution of the ADT
was to isolate the details of the implementation, so that the higher-level procedures could
invoke and without the clutter of looking for exclamation points. We did
hint, though, that the ADT represents a shift in how the programmer thinks about the
sentences that are used to represent databases; we don’t take the acronym of a database,
even though the database a sentence and so it would be possible to apply the
procedure to it. Now, in thinking about sentences, this idea of shift in viewpoint is
more central. Although sentences are represented as lists, they behave much like words,
which are represented quite differently.* Our sentence mechanism highlights the of
sentences, rather than the implementation.

Higher-Order Functions

idea

mapping

Chapter 17 Lists 289

every keep accumulate map filter
reduce

Map

map
every

Filter

keep

> (map square ’(9 8 7 6))
(81 64 49 36)

> (map (lambda (x) (se x x)) ’(rocky raccoon))
((ROCKY ROCKY) (RACCOON RACCOON))

> (every (lambda (x) (se x x)) ’(rocky raccoon))
(ROCKY ROCKY RACCOON RACCOON)

> (map car ’((john lennon) (paul mccartney)
(george harrison) (ringo starr)))

(JOHN PAUL GEORGE RINGO)

> (map even? ’(9 8 7 6))
(#F #T #F #T)

> (map (lambda (x) (word x x)) ’rain)
ERROR -- INVALID ARGUMENT TO MAP: RAIN

The higher-order functions that we’ve used until now work only for words and sentences.
But the of higher-order functions applies perfectly well to structured lists. The
official list versions of , , and are called , , and

.

takes two arguments, a function and a list, and returns a list containing the
result of applying the function to each element of the list.

The word “map” may seem strange for this function, but it comes from the mathematical
study of functions, in which they talk about a of the domain into the range. In this
terminology, one talks about “mapping a function over a set” (a set of argument values,
that is), and Lispians have taken over the same vocabulary, except that we talk about
mapping over lists instead of mapping over sets. In any case, is a genuine Scheme
primitive, so it’s the official grownup way to talk about an -like higher-order
function, and you’d better learn to like it.

also takes a function and a list as arguments; it returns a list containing only
those elements of the argument list for which the function returns a true value. This
is the same as , except that the elements of the argument list may be sublists, and
their structure is preserved in the result.

290 Part V Abstraction

Other Primitives for Lists

Filter

#t
keep filter Filter

Reduce accumulate

list? #t #f

equal?

member?

member

> (filter (lambda (flavor) (member? ’swirl flavor))
’((rum raisin) (root beer swirl) (rocky road) (fudge swirl)))

((ROOT BEER SWIRL) (FUDGE SWIRL))

> (filter word? ’((ultra chocolate) ginger lychee (raspberry sherbet)))
(GINGER LYCHEE)

> (filter (lambda (nums) (= (car nums) (cadr nums)))
’((2 3) (4 4) (5 6) (7 8) (9 9)))

((4 4) (9 9))

> (reduce * ’(4 5 6))
120

> (reduce (lambda (list1 list2) (list (+ (car list1) (car list2))
(+ (cadr list1) (cadr list2))))

’((1 2) (30 40) (500 600)))
(531 642)

probably makes sense to you as a name; the metaphor of the air filter that allows
air through but doesn’t allow dirt, and so on, evokes something that passes some data and
blocks other data. The only problem with the name is that it doesn’t tell you whether the
elements for which the predicate function returns are filtered in or filtered out. But
you’re already used to , and works the same way. is not a standard
Scheme primitive, but it’s a universal convention; everyone defines it the same way we do.

is just like except that it works only on lists, not on words.
Neither is a built-in Scheme primitive; both names are seen in the literature. (The
name “reduce” is official in the languages APL and Common Lisp, which do include this
higher-order function as a primitive.)

The predicate returns if its argument is a list, otherwise.

The predicate , which we’ve discussed earlier as applied to words and
sentences, also works for structured lists.

The predicate , which we used in one of the examples above, isn’t a true
Scheme primitive, but part of the word and sentence package. (You can tell because
it “takes apart” a word to look at its letters separately, something that Scheme doesn’t
ordinarily do.) Scheme does have a primitive without the question mark that’s

Association Lists

association list, a-list.

Chapter 17 Lists 291

member?
#t

#t #f #f

item
count item list-ref

count length

assoc

> (member ’d ’(a b c d e f g))
(D E F G)

> (member ’h ’(a b c d e f g))
#F

> (list-ref ’(happiness is a warm gun) 3)
WARM

> (assoc ’george
’((john lennon) (paul mccartney)
(george harrison) (ringo starr)))

(GEORGE HARRISON)

> (assoc ’x ’((i 1) (v 5) (x 10) (l 50) (c 100) (d 500) (m 1000)))
(X 10)

> (assoc ’ringo ’((mick jagger) (keith richards) (brian jones)
(charlie watts) (bill wyman)))

#F

like except for two differences: Its second argument must be a list (but can
be a structured list); and instead of returning it returns the portion of the argument
list starting with the element equal to the first argument. This will be clearer with an
example:

This is the main example in Scheme of the semipredicate idea that we mentioned earlier
in passing. It doesn’t have a question mark in its name because it returns values other
than and , but it works as a predicate because any non- value is considered true.

The only word-and-sentence functions that we haven’t already mentioned are
and . The list equivalent of is called (short for “reference”); it’s
different in that it counts items from zero instead of from one and takes its arguments in
the other order:

The list equivalent of is called , and it’s exactly the same except that it
doesn’t work on words.

An example earlier in this chapter was about translating from English to French. This
involved searching for an entry in a list by comparing the first element of each entry with
the information we were looking for. A list of names and corresponding values is called
an or an The Scheme primitive looks up a name in an a-list:

292 Part V Abstraction

Assoc #f
translate cadr

rest-of-numbers

Functions That Take Variable Numbers of Arguments

(define dictionary
’((window fenetre) (book livre) (computer ordinateur)
(house maison) (closed ferme) (pate pate) (liver foie)
(faith foi) (weekend (fin de semaine))
((practical joke) attrape) (pal copain)))

(define (translate wd)
(let ((record (assoc wd dictionary)))
(if record

(cadr record)
’(parlez-vous anglais?))))

(define (increasing? number . rest-of-numbers)
(cond ((null? rest-of-numbers) #t)

((> (car rest-of-numbers) number)
(apply increasing? rest-of-numbers))
(else #f)))

> (increasing? 4 12 82)
#T

> (increasing? 12 4 82 107)
#F

returns if it can’t find the entry you’re looking for in your association list.
Our procedure checks for that possibility before using to extract the
French translation, which is the second element of an entry.

In the beginning of this book we told you about some Scheme procedures that can take
any number of arguments, but you haven’t yet learned how to write such procedures for
yourself, because Scheme’s mechanism for writing these procedures requires the use of
lists.

Here’s a procedure that takes one or more numbers as arguments and returns true
if these numbers are in increasing order:

The first novelty to notice in this program is the dot in the first line. In listing the
formal parameters of a procedure, you can use a dot just before the last parameter to
mean that that parameter (in this case) represents any number of

returns false at this point

the numbers in the list

rest parameter.

Chapter 17 Lists 293

(+ 3 4 5)
(apply + ’(3 4 5))

(increasing? rest-of-numbers)

(increasing? 3 5 8 20 6 43 72)

number rest-of-numbers

3 (5 8 20 6 43 72)
5 (8 20 6 43 72)
8 (20 6 43 72)
20 (6 43 72) ()

increasing?
number

rest-of-numbers
rest-of-numbers
Rest-of-numbers

rest-of-numbers

apply
Apply

apply increasing?

increasing?

rest-of-numbers

number rest-of-numbers
increasing?

arguments, including zero. The value that will be associated with this parameter when
the procedure is invoked will be a list whose elements are the actual argument values.

In this example, you must invoke with at least one argument;
that argument will be associated with the parameter . If there are no more
arguments, will be the empty list. But if there are more arguments,

will be a list of their values. (In fact, these two cases are the same:
will be a list of all the remaining arguments, and if there are no

such arguments, is a list with no elements.)

The other novelty in this example is the procedure . It takes two arguments, a
procedure and a list. invokes the given procedure with the elements of the given
list as its arguments, and returns whatever value the procedure returns. Therefore, the
following two expressions are equivalent:

We use in because we don’t know how many arguments we’ll need
in its recursive invocation. We can’t just say

because that would give a list as its single argument, and it doesn’t take
lists as arguments—it takes numbers. We want to be the arguments.

We’ve used the name as the formal parameter to suggest “the
rest of the arguments,” but that’s not just an idea we made up. A parameter that follows
a dot and therefore represents a variable number of arguments is called a

Here’s a table showing the values of and in the
recursive invocations of for the example

increasing?

downup1
downup2

Recursion on Arbitrary Structured Lists

minimum
after

would

294 Part V Abstraction

(define (appearances-in-book wd book)
(reduce + (map (lambda (chapter) (appearances-in-chapter wd chapter))

book)))

(define (appearances-in-chapter wd chapter)
(reduce + (map (lambda (section) (appearances-in-section wd section))

chapter)))

(define (appearances-in-section wd section)
(reduce + (map (lambda (paragraph)

(appearances-in-paragraph wd paragraph))
section)))

(define (appearances-in-paragraph wd paragraph)
(reduce + (map (lambda (sent) (appearances-in-sentence wd sent))

paragraph)))

(define (appearances-in-sentence given-word sent)
(length (filter (lambda (sent-word) (equal? sent-word given-word))

sent)))

In the example we’ve used one formal parameter before the dot, but
you may use any number of such parameters, including zero. The number of formal
parameters before the dot determines the number of arguments that must be
used when your procedure is invoked. There can be only one formal parameter the
dot.

Let’s pretend we’ve stored this entire book in a gigantic Scheme list structure. It’s a list
of chapters. Each chapter is a list of sections. Each section is a list of paragraphs. Each
paragraph is a list of sentences, which are themselves lists of words.

Now we want to know how many times the word “mathematicians” appears in the
book. We could do it the incredibly boring way:

but that be incredibly boring.

What we’re going to do is similar to the reasoning we used in developing the idea
of recursion in Chapter 11. There, we wrote a family of procedures named ,

, and so on; we then noticed that most of these procedures looked almost
identical, and “collapsed” them into a single recursive procedure. In the same spirit,

repeatedly

Chapter 17 Lists 295

appearances-in-

deep-appearances
map Deep-appearances

map structure
map

reduce

deep-appearances
structure

(define (appearances-in-sentence wd sent)
(reduce + (map (lambda (wd2) (appearances-in-word wd wd2))

sent)))

(define (appearances-in-word wd wd2)
(if (equal? wd wd2) 1 0))

(define (deep-appearances wd structure)
(if (word? structure)

(if (equal? structure wd) 1 0)
(reduce +

(map (lambda (sublist) (deep-appearances wd sublist))
structure))))

> (deep-appearances
’the
’(((the man) in ((the) moon)) ate (the) potstickers))

3

> (deep-appearances ’n ’(lambda (n) (if (= n 0) 1 (* n (f (- n 1))))))
4

> (deep-appearances ’mathematicians the-book-structure)
7

notice that all the procedures are very similar. We can make them
even more similar by rewriting the last one:

Now, just as before, we want to write a single procedure that combines all of these.

What’s the base case? Books, chapters, sections, paragraphs, and sentences are all
lists of smaller units. It’s only when we get down to individual words that we have to do
something different:

This is quite different from the recursive situations we’ve seen before. What looks
like a recursive call from to itself is actually inside an anonymous
procedure that will be called by . doesn’t just call
itself once in the recursive case; it uses to call itself for each element of .
Each of those calls returns a number; returns a list of those numbers. What we want
is the sum of those numbers, and that’s what will give us.

This explains why must accept words as well as lists as the
argument. Consider a case like

⋅ ⋅ ⋅

(deep-appearances ’foo ’((a) b))

complete

many

is

296 Part V Abstraction

structure map deep-appearances
(a) b

structure
deep-appearances

deep-appearances

deep-appearances

deep-appearances

car cdr

cdr
car car

Since has two elements, will call twice. One of
these calls uses the list as the second argument, but the other call uses the word as
the second argument.

Of course, if is a word, we can’t make recursive calls for its elements;
that’s why words are the base case for this recursion. What should
return for a word? If it’s the word we’re looking for, that counts as one appearance. If
not, it counts as no appearances.

You’re accustomed to seeing the empty list as the base case in a recursive list
processing procedure. Also, you’re accustomed to thinking of the base case as the end
of a problem; you’ve gone through all of the elements of a list, and there are
no more elements to find. In most problems, there is only one recursive invocation
that turns out to be a base case. But in using , there are
invocations for base cases—one for every word in the list structure. Reaching a base case
doesn’t mean that we’ve reached the end of the entire structure! You might want to trace
a short example to help you understand the sequence of events.

Although there’s no official name for a structure made of lists of lists of . . . of lists,
there a common convention for naming procedures that deal with these structures;
that’s why we’ve called this procedure . The word “deep” indicates
that this procedure is just like a procedure to look for the number of appearances of a
word in a list, except that it looks “all the way down” into the sub-sub- -sublists instead
of just looking at the elements of the top-level list.

This version of , in which higher-order procedures are used to
deal with the sublists of a list, is a common programming style. But for some problems,
there’s another way to organize the same basic program without higher-order procedures.
This other organization leads to very compact, but rather tricky, programs. It’s also a
widely used style, so we want you to be able to recognize it.

Here’s the idea. We deal with the base case—words—just as before. But for lists we
do what we often do in trying to simplify a list problem: We divide the list into its first
element (its) and all the rest of its elements (its). But in this case, the resulting
program is a little tricky. Ordinarily, a recursive program for lists makes a recursive call
for the , which is a list of the same kind as the whole argument, but does something
non-recursive for the , which is just one element of that list. This time, the of
the kind of structured list-of-lists we’re exploring may itself be a list-of-lists! So we make a
recursive call for it, as well:

Chapter 17 Lists 297

something something

cond
deep-appearances

else
car cdr

car cdr

deep-appearances
car cdr

cons

deep-pigl every praise

(define (deep-appearances wd structure)
(cond ((equal? wd structure) 1) ; base case: desired word

((word? structure) 0) ; base case: other word
((null? structure) 0) ; base case: empty list
(else (+ (deep-appearances wd (car structure))

(deep-appearances wd (cdr structure))))))

(define (deep-pigl structure)
(cond ((word? structure) (pigl structure))

((null? structure) ’())
(else (cons (deep-pigl (car structure))

(deep-pigl (cdr structure))))))

> (deep-pigl ’((this is (a structure of (words)) with)
(a (peculiar) shape)))

((ISTHAY ISAY (AAY UCTURESTRAY OFAY (ORDSWAY)) ITHWAY)
(AAY (ECULIARPAY) APESHAY))

(cons ((car argument)) ((cdr argument)))

This procedure has two different kinds of base case. The first two clauses are
similar to the base case in the previous version of ; they deal with a
“structure” consisting of a single word. If the structure is the word we’re looking for, then
the word appears once in it. If the structure is some other word, then the word appears
zero times. The third clause is more like the base case of an ordinary list recursion; it
deals with an empty list, in which case the word appears zero times in it. (This still may
not be the end of the entire structure used as the argument to the top-level invocation,
but may instead be merely the end of a sublist within that structure.)

If we reach the clause, then the structure is neither a word nor an empty
list. It must, therefore, be a non-empty list, with a and a . The number of
appearances in the entire structure of the word we’re looking for is equal to the number
of appearances in the plus the number in the .

In the desired result is a single number. What if we want to
build a new list-of-lists structure? Having used and to disassemble a structure,
we can use to build a new one. For example, we’ll translate our entire book into
Pig Latin:

Compare with an -pattern list recursion such as on
page 285. Both look like

⇒

⇒

⇒

Pitfalls

((3 . 2) . 1)

> (cons ’a ’b)
(A . B)

pair.

aren’t

298 Part V Abstraction

Praise
deep-pigl

praise cdr
deep-pigl car cdr

deep-pigl car cdr

word sentence
list lst

L seq

cons

append

cons

cons

cons

And yet these procedures are profoundly different. is a simple left-to-right
walk through the elements of a sequence; dives in and out of sublists.
The difference is a result of the fact that does one recursive call, for the ,
while does two, for the as well as the . The pattern exhibited by

is called - recursion. (Another name for it is “tree recursion,” for a
reason we’ll see in the next chapter.)

Just as we mentioned about the names and , resist the temptation
to use as a formal parameter. We use instead, but other alternatives are capital

or (for “sequence”).

The list constructor does not treat its two arguments equivalently. The second
one must be the list you’re trying to extend. There is no equally easy way to extend a
list on the right (although you can put the new element into a one-element list and use

). If you get the arguments backward, you’re likely to get funny-looking results
that aren’t lists, such as

The result you get when you onto something that isn’t a list is called a It’s
sometimes called a “dotted pair” because of what it looks like when printed:

It’s just the printed representation that’s dotted, however; the dot isn’t part of the pair
any more than the parentheses around a list are elements of the list. Lists are made of
pairs; that’s why can construct lists. But we’re not going to talk about any pairs that

part of lists, so you don’t have to think about them at all, except to know that if dots
appear in your results you’re ing backward.

Don’t get confused between lists and sentences. Sentences have no internal structure;
the good aspect of this is that it’s hard to make mistakes about building the structure, but
the bad aspect is that you might need such a structure. You can have lists whose elements
are sentences, but it’s confusing if you think of the same structure sometimes as a list and
sometimes as a sentence.

⇒

⇒

⇒

17.1

Boring Exercises

Chapter 17 Lists 299

cdr

deep-appearances

(word? (car structure))

(word? structure)

> (car ’(Rod Chris Colin Hugh Paul))

> (cadr ’(Rod Chris Colin Hugh Paul))

> (cdr ’(Rod Chris Colin Hugh Paul))

> (car ’Rod)

> (cons ’(Rod Argent) ’(Chris White))

> (append ’(Rod Argent) ’(Chris White))

> (list ’(Rod Argent) ’(Chris White))

> (caadr ’((Rod Argent) (Chris White)
(Colin Blunstone) (Hugh Grundy) (Paul Atkinson)))

In reading someone else’s program, it’s easy not to notice that a procedure is making
two recursive calls instead of just one. If you notice only the recursive call for the ,
you might think you’re looking at a sequential recursion.

If you’re writing a procedure whose argument is a list-of-lists, it may feel funny to let
it also accept a word as the argument value. People therefore sometimes insist on a list
as the argument, leading to an overly complicated base case. If your base case test says

then think about whether you’d have a better-organized program if the base case were

Remember that in a deep-structure recursion you may need two base cases, one for
reaching an element that isn’t a sublist, and the other for an empty list, with no elements
at all. (Our procedure is an example.) Don’t forget the empty-list
case.

What will Scheme print in response to each of the following expressions? Try to
figure it out in your head before you try it on the computer.

map

17.2

17.3

17.4

Real Exercises

300 Part V Abstraction

For each of the following examples, write a procedure of two arguments that, when
applied to the sample arguments, returns the sample result. Your procedures may not
include any quoted data.

Describe the value returned by this invocation of :

Describe the result of calling the following procedure with a list as its argument.
(See if you can figure it out before you try it.)

> (assoc ’Colin ’((Rod Argent) (Chris White)
(Colin Blunstone) (Hugh Grundy) (Paul Atkinson)))

> (assoc ’Argent ’((Rod Argent) (Chris White)
(Colin Blunstone) (Hugh Grundy) (Paul Atkinson)))

> (f1 ’(a b c) ’(d e f))
((B C D))

> (f2 ’(a b c) ’(d e f))
((B C) E)

> (f3 ’(a b c) ’(d e f))
(A B C A B C)

> (f4 ’(a b c) ’(d e f))
((A D) (B C E F))

> (map (lambda (x) (lambda (y) (+ x y))) ’(1 2 3 4))

(define (mystery lst)
(mystery-helper lst ’()))

(define (mystery-helper lst other)
(if (null? lst)

other
(mystery-helper (cdr lst) (cons (car lst) other))))

Chapter 17 Lists 301

17.5

17.6

17.7

17.8

17.9

17.10

17.11

(define (max2 a b)
(if (> b a) b a))

> (before-in-list? ’(back in the ussr) ’in ’ussr)
#T

> (before-in-list? ’(back in the ussr) ’the ’back)
#F

max2 max

append car cdr cons append

Append sentence append
sentence

sentence append sentence

sentence

member

list-ref

length

before-in-list?
#t

#f

Here’s a procedure that takes two numbers as arguments and returns whichever
number is larger:

Use to implement , a procedure that takes one or more numeric arguments
and returns the largest of them.

Implement using , , and . (Note: The built-in can
take any number of arguments. First write a version that accepts only two arguments.
Then, optionally, try to write a version that takes any number.)

may remind you of . They’re similar, except that
works only with lists as arguments, whereas will accept words as well as lists.
Implement using . (Note: The built-in can take any
number of arguments. First write a version that accepts only two arguments. Then,
optionally, try to write a version that takes any number. Also, you don’t have to worry
about the error checking that the real does.)

Write .

Write .

Write .

Write , which takes a list and two elements of the list. It
should return if the second argument appears in the list argument before the third
argument:

The procedure should also return if either of the supposed elements doesn’t appear
at all.

17.12

17.13

17.14

17.15

that

302 Part V Abstraction

flatten

branch
item

((G H) (I J))
(G H) H

known-values

> (flatten ’(((a b) c (d e)) (f g) ((((h))) (i j) k)))
(A B C D E F G H I J K)

(define (deep-count lst)
(cond ((null? lst) 0)

((word? (car lst)) (+ 1 (deep-count (cdr lst))))
(else (+ (deep-count (car lst))

(deep-count (cdr lst))))))

> (branch ’(3) ’((a b) (c d) (e f) (g h)))
(E F)

> (branch ’(3 2) ’((a b) (c d) (e f) (g h)))
F

> (branch ’(2 3 1 2) ’((a b) ((c d) (e f) ((g h) (i j)) k) (l m)))
H

((C D) (E F) ((G H) (I J)) K)

Write a procedure called that takes as its argument a list, possibly
including sublists, but whose ultimate building blocks are words (not Booleans or
procedures). It should return a sentence containing all the words of the list, in the order
in which they appear in the original:

Here is a procedure that counts the number of words anywhere within a structured
list:

Although this procedure works, it’s more complicated than necessary. Simplify it.

Write a procedure that takes as arguments a list of numbers and a nested
list structure. It should be the list-of-lists equivalent of , like this:

In the last example above, the second element of the list is

The third element of that smaller list is ; the first element of that is
; and the second element of is just .

Modify the pattern matcher to represent the database as a list of
two-element lists, as we suggested at the beginning of this chapter.

17.16 valid-infix? #t

Chapter 17 Lists 303

> (valid-infix? ’(4 + 3 * (5 - 2)))
#T

> (valid-infix? ’(4 + 3 * (5 2)))
#F

Write a predicate that takes a list as argument and returns if
and only if the list is a legitimate infix arithmetic expression (alternating operands and
operators, with parentheses—that is, sublists—allowed for grouping).

Piet Mondrian (1912)Apple Tree in Blossom,

+

4 3 5

2 7

_*

*

18 Trees

make-node

structure

trees

nodes. root node
branch nodes; leaf nodes,

305

The big advantage of full-featured lists over sentences is their ability to represent
in our data by means of sublists. In this chapter we’ll look at examples in which we
use lists and sublists to represent two-dimensional information structures. The kinds of
structures we’ll consider are called because they resemble trees in nature:

The components of a tree are called At the top is the of the tree; in the
interior of the diagram there are at the bottom are the from which
no further branches extend.

We’re going to begin by considering a tree as an abstract data type, without thinking
about how lists are used to represent trees. For example, we’ll construct trees using
a procedure named , as if that were a Scheme primitive. About halfway
through the chapter, we’ll explore the relationship between trees and lists.

World

United
States

Great
Britain

Zimbabwe

Harare Hwange

Italy

Venezia
Roma

Firenze

Riomaggiore

China

Beijing Guangzhou

SuzhouShanghai

Australia

Victoria

Sydney

Queensland

Melbourne

New South
Wales

Port
DouglasCairns

Honduras

Tegucigalpa

Ohio

Kent

Wales

Abergavenny

California

Berkeley

San
Francisco

Gilroy

England

Liverpool

Massachusetts

Cambridge

Amherst

Sudbury

Gretna
Green

Scotland

Edinburgh

Glasgow

Example: The World

datum children.

parent siblings.

306 Part V Abstraction

* Contrariwise, the tree metaphor is also part of the terminology of families.

Here is a tree that represents the world:

Each node in the tree represents some region of the world. Consider the node
labeled “Great Britain.” There are two parts to this node: The obvious part is the
label itself, the name “Great Britain.” But the regions of the world that are included
within Great Britain—that is, the nodes that are attached beneath Great Britain in the
figure—are also part of this node.

We say that every node has a and zero or more For the moment,
let’s just say that the datum can be either a word or a sentence. The children, if any,
are themselves trees. Notice that this definition is recursive—a tree is made up of trees.
(What’s the base case?)

This family metaphor is also part of the terminology of trees.* We say that a node is
the of another node, or that two nodes are In more advanced treatments,
you even hear things like “grandparent” and “cousin,” but we won’t get into that.

Italy

World

HondurasChinaZimbabweUnited
States Australia

Great
Britain

Wales

Abergavenny

England

Liverpool Gretna
Green

Scotland

Edinburgh

Glasgow

make-node

subtree

in

is

Chapter 18 Trees 307

What happens when you prune an actual tree by cutting off a branch? The cut-off
part is essentially a tree in itself, with a smaller trunk and fewer branches. The metaphor
isn’t perfect because the cut-off part doesn’t have roots, but still, we can stick the end in
the ground and hope that the cut-off end will take root as a new tree.

It’s the same with a country in our example; each country is a branch node of the
entire world tree, but also a tree in itself. Depending on how you think about it, Great
Britain can be either a component of the entire world or a collection of smaller locations.
So the branch node that represents Great Britain is the root node of a of the entire
tree.

What is a node? It might seem natural to think of a node as being just the information
in one of the circles in the diagram—that is, to think of a node as including only its
datum. In that way of thinking, each node would be separate from every other node, just
as the words in a sentence are all separate elements. However, it will be more useful to
think of a node as a structure that includes everything below that circle also: the datum
and the children. So when we think of the node for Great Britain, we’re thinking not
only of the name “Great Britain,” but also of everything Great Britain. From this
perspective, the root node of a tree includes the entire tree. We might as well say that the
node the tree.

The constructor for a tree is actually the constructor for one node, its root node. Our
constructor for trees is therefore called . It takes two arguments: the datum
and a (possibly empty) list of children. As the following example shows, constructing
what we think of as one tree requires the construction of many such nodes.

forest.

308 Part V Abstraction

Datum Children

make-node datum children

You’ll notice that we haven’t defined all of the places shown in the figure. That’s because
we got tired of doing all this typing; we’re going to invent some abbreviations later. For
now, we’ll take time out to show you the selectors for trees.

of a tree node returns the datum of that node. of a node returns a list
of the children of the node. (A list of trees is called a)

Here are some abbreviations to help us construct the world tree with less typing.
Unlike , , and , which are intended to work on trees in
general, these abbreviations were designed with the world tree specifically in mind:

(define world-tree ;; painful-to-type version
(make-node
’world
(list (make-node

’italy
(list (make-node ’venezia ’())

(make-node ’riomaggiore ’())
(make-node ’firenze ’())
(make-node ’roma ’())))

(make-node
’(united states)
(list (make-node ’california

(list (make-node ’berkeley ’())
(make-node ’(san francisco) ’())
(make-node ’gilroy ’())))

(make-node ’massachusetts
(list (make-node ’cambridge ’())

(make-node ’amherst ’())
(make-node ’sudbury ’()))))))))

> (datum world-tree)
WORLD

> (datum (car (children world-tree)))
ITALY

> (datum (car (children (cadr (children world-tree)))))
CALIFORNIA

> (datum (car (children (car (children
(cadr (children world-tree)))))))

BERKELEY

Chapter 18 Trees 309

With these abbreviations the world tree is somewhat easier to define:

(define (leaf datum)
(make-node datum ’()))

(define (cities name-list)
(map leaf name-list))

(define world-tree
(make-node
’world
(list (make-node

’italy
(cities ’(venezia riomaggiore firenze roma)))

(make-node
’(united states)
(list (make-node

’california
(cities ’(berkeley (san francisco) gilroy)))

(make-node
’massachusetts
(cities ’(cambridge amherst sudbury)))

(make-node ’ohio (cities ’(kent)))))
(make-node ’zimbabwe (cities ’(harare hwange)))
(make-node ’china

(cities ’(beijing shanghai guangzhou suzhou)))
(make-node
’(great britain)
(list
(make-node ’england (cities ’(liverpool)))
(make-node ’scotland

(cities ’(edinburgh glasgow (gretna green))))
(make-node ’wales (cities ’(abergavenny)))))

(make-node
’australia
(list
(make-node ’victoria (cities ’(melbourne)))
(make-node ’(new south wales) (cities ’(sydney)))
(make-node ’queensland

(cities ’(cairns (port douglas))))))
(make-node ’honduras (cities ’(tegucigalpa))))))

How Big Is My Tree?

Mutual Recursion

several

mutual recursion.

310 Part V Abstraction

count-leaves
count-leaves

map

count-leaves

count-leaves count-leaves-in-forest count-leaves-
in-forest count-leaves

(define (count-leaves tree)
(if (leaf? tree)

1
(reduce + (map count-leaves (children tree)))))

(define (leaf? node)
(null? (children node)))

> (count-leaves world-tree)
27

(define (count-leaves tree)
(if (leaf? tree)

1
(count-leaves-in-forest (children tree))))

(define (count-leaves-in-forest forest)
(if (null? forest)

0
(+ (count-leaves (car forest))

(count-leaves-in-forest (cdr forest)))))

Now that we have the tree, how many cities are there in our world?

At first glance, this may seem like a simple case of recursion, with
calling . But since what looks like a single recursive call is really a call to

, it is equivalent to recursive calls, one for each child of the given tree node.

In Chapter 14 we wrote recursive procedures that were equivalent to using higher-order
functions. Let’s do the same for .

Note that calls , and
calls . This pattern is called

Mutual recursion is often a useful technique for dealing with trees. In the typical
recursion we’ve seen before this chapter, we’ve moved sequentially through a list or
sentence, with each recursive call taking us one step to the right. In the following
paragraphs we present three different models to help you think about how the shape of
a tree gives rise to a mutual recursion.

down
across

Chapter 18 Trees 311

* You probably think of trees as being short or tall. But since our trees are upside-down, the
convention is to call them shallow or deep.

count-leaves
count-leaves-in-forest

count-leaves
count-leaves-in-forest

car cdr
car car

car

count-leaves

count-leaves count-leaves-in-forest

count-leaves-in-forest

count-leaves
children

count-leaves count-leaves-in-forest

count-leaves

In the first model, we’re going to think of as an initialization
procedure, and as its helper procedure. Suppose we
want to count the leaves of a tree. Unless the argument is a very shallow* tree, this
will involve counting the leaves of all of the children of that tree. What we want is
a straightforward sequential recursion over the list of children. But we’re given the
wrong argument: the tree itself, not its list of children. So we need an initialization
procedure, , whose job is to extract the list of children and invoke a
helper procedure, , with that list as argument.

The helper procedure follows the usual sequential list pattern: Do something to the
of the list, and recursively handle the of the list. Now, what do we have to do

to the ? In the usual sequential recursion, the of the list is something simple,
such as a word. What’s special about trees is that here the is itself a tree, just like
the entire data structure we started with. Therefore, we must invoke a procedure whose
domain is trees: .

This model is built on two ideas. One is the idea of the domain of a function; the
reason we need two procedures is that we need one that takes a tree as its argument
and one that takes a list of trees as its argument. The other idea is the leap of faith; we
assume that the invocation of within will
correctly handle each child without tracing the exact sequence of events.

The second model is easier to state but less rigorous. Because of the two-dimensional
nature of trees, in order to visit every node we have to be able to move in two different
directions. From a given node we have to be able to move to its children, but from
each child we must be able to move to its next sibling.

The job of is to move from left to right through a list of
children. (It does this using the more familiar kind of recursion, in which it invokes itself
directly.) The downward motion happens in , which moves down one
level by invoking . How does the program move down more than one level? At
each level, is invoked recursively from .

The third model is also based on the two-dimensional nature of trees. Imagine for a
moment that each node in the tree has at most one child. In that case,
could move from the root down to the single leaf with a structure very similar to the
actual procedure, but carrying out a sequential recursion:

Searching for a Datum in the Tree

tree recursion

is

312 Part V Abstraction

count-leaves
Count-leaves-in-forest

count-leaves

count-leaves
count-leaves-in-forest

car cdr

cdr
car

count-leaves

in-tree?

filter

(define (count-leaf tree)
(if (leaf? tree)

1
(count-leaf (child tree))))

(define (in-tree? place tree)
(or (equal? place (datum tree))

(not (null? (filter (lambda (subtree) (in-tree? place subtree))
(children tree))))))

The trouble with this, of course, is that at each downward step there isn’t a single “next”
node. Instead of a single path from the root to the leaf, there are multiple paths from the
root to many leaves. To make our idea of downward motion through sequential recursion
work in a real tree, at each level we must “clone” as many times as there
are children. is the factory that manufactures the clones.
It hires one little person for each child and accumulates their results.

The key point in recursion on trees is that each child of a tree is itself a perfectly
good tree. This recursiveness in the nature of trees gives rise to a very recursive structure
for programs that use trees. The reason we say “very” recursive is that each invocation of

causes not just one but several recursive invocations, one for each child,
by way of .

In fact, we use the name for any situation in which a procedure invocation
results in more than one recursive call, even if there isn’t an argument that’s a tree. The
computation of Fibonacci numbers from Chapter 13 is an example of a tree recursion
with no tree. The - recursions in Chapter 17 are also tree recursions; any
structured list-of-lists has a somewhat tree-like, two-dimensional character even though it
doesn’t use the formal mechanisms we’re exploring in this chapter. The recursion
is a “horizontal” one, moving from one element to another within the same list; the
recursion is a “vertical” one, exploring a sublist of the given list.

Procedures that explore trees aren’t always as simple as . We started
with that example because we could write it using higher-order functions, so that you’d
understand the structure of the problem before we had to take on the complexity of
mutual recursion. But many tree problems don’t quite fit our higher-order functions.

For example, let’s write a predicate that takes the name of a place and a
tree as arguments and tells whether or not that place is in the tree. It possible to make
it work with :

where

Chapter 18 Trees 313

Locating a Datum in the Tree

filter
filter

in-tree? in-forest?

(define (in-tree? place tree)
(or (equal? place (datum tree))

(in-forest? place (children tree))))

(define (in-forest? place forest)
(if (null? forest)

#f
(or (in-tree? place (car forest))

(in-forest? place (cdr forest)))))

> (in-tree? ’abergavenny world-tree)
#T

> (in-tree? ’abbenay world-tree)
#F

> (in-tree? ’venezia (cadr (children world-tree)))
#F

> (locate ’berkeley world-tree)
(WORLD (UNITED STATES) CALIFORNIA BERKELEY)

This awkward construction, however, also performs unnecessary computation. If the
place we’re looking for happens to be in the first child of a node, will nevertheless
look in all the other children as well. We can do better by replacing the use of
with a mutual recursion:

Although any mutual recursion is a little tricky to read, the structure of this program
does fit the way we’d describe the algorithm in English. A place is in a tree if one of two
conditions holds: the place is the datum at the root of the tree, or the place is (recursively)
in one of the child trees of this tree. That’s what says. As for , it
says that a place is in one of a group of trees if the place is in the first tree, or if it’s in one
of the remaining trees.

Our next project is similar to the previous one, but a little more intricate. We’d like to
be able to locate a city and find out all of the larger regions that enclose the city. For
example, we want to say

Instead of just getting a yes-or-no answer about whether a city is in the tree, we now want
to find out it is.

314 Part V Abstraction

Representing Trees as Lists

world
Locate

#f
(united states)

world
locate
#f locate

#f

locate in-tree?
in-forest? locate-in-forest

locate

make-node datum children

((UNITED STATES) CALIFORNIA BERKELEY)

(define (locate city tree)
(if (equal? city (datum tree))

(list city)
(let ((subpath (locate-in-forest city (children tree))))
(if subpath

(cons (datum tree) subpath)
#f))))

(define (locate-in-forest city forest)
(if (null? forest)

#f
(or (locate city (car forest))

(locate-in-forest city (cdr forest)))))

(define (make-node datum children)
(cons datum children))

The algorithm is recursive: To look for Berkeley within the world, we need to be
able to look for Berkeley within any subtree. The node has several children
(countries). recursively asks each of those children to find a path to Berkeley.
All but one of the children return , because they can’t find Berkeley within their
territory. But the node returns

To make a complete path, we just prepend the name of the current node, , to this
path. What happens when tries to look for Berkeley in Australia? Since all of
Australia’s children return , there is no path to Berkeley from Australia, so
returns .

Compare the structure of with that of . The helper procedures
and are almost identical. The main procedures look

different, because has a harder job, but both of them check for two possibilities:
The city might be the datum of the argument node, or it might belong to one of the
child trees.

We’ve done a lot with trees, but we haven’t yet talked about the way Scheme stores trees
internally. How do , , and work? It turns out to be very
convenient to represent trees in terms of lists.

Abstract Data Types

Chapter 18 Trees 315

locate

make-node datum children

car cdr

In other words, a tree is a list whose first element is the datum and whose remaining
elements are subtrees.

Ordinarily, however, we’re not going to print out trees in their entirety. As in the
example, we’ll extract just some subset of the information and put it in a more

readable form.

The procedures , , and define an abstract data type for
trees. Using this ADT, we were able to write several useful procedures to manipulate trees
before pinning down exactly how a tree is represented as a Scheme list.

Although it would be possible to refer to the parts of a node by using and
directly, your programs will be more readable if you use the ADT-specific selectors and

(define (datum node)
(car node))

(define (children node)
(cdr node))

> world-tree
(WORLD

(ITALY (VENEZIA) (RIOMAGGIORE) (FIRENZE) (ROMA))
((UNITED STATES)
(CALIFORNIA (BERKELEY) ((SAN FRANCISCO)) (GILROY))
(MASSACHUSETTS (CAMBRIDGE) (AMHERST) (SUDBURY))
(OHIO (KENT)))

(ZIMBABWE (HARARE) (HWANGE))
(CHINA (BEIJING) (SHANGHAI) (GUANGSZHOU) (SUZHOW))
((GREAT BRITAIN)
(ENGLAND (LIVERPOOL))
(SCOTLAND (EDINBURGH) (GLASGOW) ((GRETNA GREEN)))
(WALES (ABERGAVENNY)))

(AUSTRALIA
(VICTORIA (MELBOURNE))
((NEW SOUTH WALES) (SYDNEY))
(QUEENSLAND (CAIRNS) ((PORT DOUGLAS))))

(HONDURAS (TEGUCIGALPA)))

> (car (children world-tree))
(ITALY (VENEZIA) (RIOMAGGIORE) (FIRENZE) (ROMA))

caddr caddr

count-leaves

datum children

caddr world-tree

respecting
data abstraction

violation.

316 Part V Abstraction

(in-tree? ’venezia (caddr world-tree))

(in-tree? ’venezia (cadr (children world-tree)))

(in-tree? ’venezia (list-ref (children world-tree) 1))

(define (make-node datum children)
(list ’the ’node ’with ’datum datum ’and ’children children))

(define (datum node) (list-ref node 4))

(define (children node) (list-ref node 7))

> (make-node ’italy (cities ’(venezia riomaggiore firenze roma)))
(THE NODE WITH DATUM ITALY AND CHILDREN

((THE NODE WITH DATUM VENEZIA AND CHILDREN ())
(THE NODE WITH DATUM RIOMAGGIORE AND CHILDREN ())
(THE NODE WITH DATUM FIRENZE AND CHILDREN ())
(THE NODE WITH DATUM ROMA AND CHILDREN ())))

constructors. Consider this example:

What does mean in this context? Is the of a tree a datum? A child? A
forest? Of course you could work it out by careful reasoning, but the form in which we
presented this example originally was much clearer:

Even better would be

Using the appropriate selectors and constructors is called the data abstrac-
tion. Failing to use the appropriate selectors and constructors is called a

Since we wrote the selectors and constructor for trees ourselves, we could have
defined them to use some different representation:

You might expect that this change in the representation would require changes to all the
procedures we wrote earlier, such as . But in fact, those procedures would
continue to work perfectly because they don’t see the representation. (They respect the
data abstraction.) As long as and find the right information, it doesn’t
matter how the trees are stored. All that matters is that the constructors and selectors
have to be compatible with each other.

On the other hand, the example in this section in which we violated the data
abstraction by using to find the second child of would fail if

_
+

6

54

33 47

/+

+*

× −

match

(+ 3 4)prefix

infix

parsing

Chapter 18 Trees 317

An Advanced Example: Parsing Arithmetic Expressions

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

* Another example of a data abstraction violation is in Chapter 16. When creates an
empty known-values database, we didn’t use a constructor. Instead, we merely used a quoted empty
sentence:

we changed the representation. Many cases like this one, in which formerly working
programs failed after a change in representation, led programmers to use such moralistic
terms as “respecting” and “violating” data abstractions.*

Consider the notation for arithmetic expressions. Scheme uses notation: .
By contrast, people who aren’t Scheme programmers generally represent arithmetic
computations using an notation, in which the function symbol goes between two
arguments: 3 + 4.

Our goal in this section is to translate an infix arithmetic expression into a tree
representing the computation. This translation process is called the expression.
For example, we’ll turn the expression

4 + 3 7 5/(3 + 4) + 6

into the tree

4 3

+

× −

+
- * / (3 + 4)

4 +
3

+ 3
3 * 7

> (parse ’(4 + 3 * 7 - 5 / (3 + 4) + 6))

precedence

318 Part V Abstraction

The point of using a tree is that it’s going to be very easy to perform the computation
once we have it in tree form. In the original infix form, it’s hard to know what to do first,
because there are rules that determine an implicit grouping: Multiplication
and division come before addition and subtraction; operations with the same precedence
are done from left to right. Our sample expression is equivalent to

(((4 + (3 7)) (5/(3 + 4))) + 6)

In the tree representation, it’s easy to see that the operations nearer the leaves are done
first; the root node is the last operation, because it depends on the results of lower-level
operations.

Our program will take as its argument an infix arithmetic expression in the form of
a list:

Each element of the list must be one of three things: a number; one of the four symbols ,
, , or ; or a sublist (such as the three-element list in this example) satisfying

the same rule. (You can imagine that we’re implementing a pocket calculator. If we were
implementing a computer programming language, then we’d also accept variable names
as operands. But we’re not bothering with that complication because it doesn’t really
affect the part of the problem about turning the expression into a tree.)

What makes this problem tricky is that we can’t put the list elements into the tree as
soon as we see them. For example, the first three elements of our sample list are , ,
and . It’s tempting to build a subtree of those three elements:

But if you compare this picture with the earlier picture of the correct tree, you’ll see that
the second argument to this invocation isn’t the number , but rather the subexpression

.

By this reasoning you might think that we have to examine the entire expression
before we can start building the tree. But in fact we can sometimes build a subtree with
confidence. For example, when we see the minus sign in our sample expression, we can

Remaining Expression_ Operations_ Operands_

4+3*7–5/(3+4)+6

+3*7–5/(3+4)+6

3*7–5/(3+4)+6

*7–5/(3+4)+6

()

()

(+)

(+)

()

3 4()
4()
4()

7–5/(3+4)+6

–5/(3+4)+6

(* +)

(* +) 7 3 4()
3 4()

3 * 7 *
-

*
+

+
+ *

+
*

- *
*handle

Chapter 18 Trees 319

* Actually, as we’ll see shortly, the elements of the operand list are trees, so what we put in the
operand list is a one-node tree whose datum is the number.

tell that the subexpression that comes before it is complete, because has higher
precedence than does.

Here’s the plan. The program will examine its argument from left to right. Since
the program can’t finish processing each list element right away, it has to maintain
information about the elements that have been examined but not entirely processed. It’s
going to be easier to maintain that information in two parts: one list for still-pending
operations and another for still-pending operands. Here are the first steps in parsing
our sample expression; the program examines the elements of the argument, putting
numbers onto the operand list and operation symbols onto the operation list:*

At this point, the program is looking at the operator in the infix expression. If this
newly seen operator had lower precedence than the that’s already at the head of the
list of operations, then it would be time to carry out the operation by creating a tree
with at the root and the first two operands in the list as its children. Instead, since has
higher precedence than , the program isn’t ready to create a subtree but must instead
add the to its operation list.

This time, the newly seen operation has lower precedence than the at the head
of the operation list. Therefore, it’s time for the program to the operator, by

–5/(3+4)+6 (+) *
73

4()

–5/(3+4)+6 () ()*

+
4

73

5/(3+4)+6

/(3+4)+6

(–)

(–)

()*

+
4

73

()*

+
4

73
5

(3+4)+6 (/ –) ()*

+
4

73
5

*
-

- +

+

-

320 Part V Abstraction

making a subtree containing that operator and the first two elements of the operand list.
This new subtree becomes the new first element of the operand list.

Because the program decided to handle the waiting operator, it still hasn’t moved
the operator from the infix expression to the operator list. Now the program must
compare with the at the head of the list. These two operators have the same
precedence. Since we want to carry out same-precedence operators from left to right, it’s
time to handle the operator.

Finally the program can move the operator onto the operator list. The next several
steps are similar to ones we’ve already seen.

+6 (/ –) ()*

+
4

73
5

+
43

+6

+6

6

(–)

()

(+)

(+) ()*

+
4

73

–
/

5
43

+6

()*

+
4

73

–
/

5
43

+

()*

+
4

73

–
/

5
43

+

()*

+
4

73
+

/
5

43

ytpme

parse

/
+ - +

Chapter 18 Trees 321

This is a new situation: The first unseen element of the infix expression is neither a
number nor an operator, but a sublist. We recursively this subexpression, adding
the resulting tree to the operand list.

Then we proceed as before, processing the because it has higher precedence than
the , then the because it has the same priority as the , and so on.

ytpme () ()*

+
4

73

–
/

5
43

+

6
+

(3 + *)

322 Part V Abstraction

Once the program has examined every element of the infix expression, the operators
remaining on the operator list must be handled. In this case there is only one such
operator. Once the operators have all been handled, there should be one element
remaining on the operand list; that element is the desired tree for the entire original
expression.

The following program implements this algorithm. It works only for correctly
formed infix expressions; if given an argument like , it’ll give an incorrect result
or a Scheme error.

(define (parse expr)
(parse-helper expr ’() ’()))

(define (parse-helper expr operators operands)
(cond ((null? expr)

(if (null? operators)
(car operands)
(handle-op ’() operators operands)))

((number? (car expr))
(parse-helper (cdr expr)

operators
(cons (make-node (car expr) ’()) operands)))

((list? (car expr))
(parse-helper (cdr expr)

operators
(cons (parse (car expr)) operands)))

(else (if (or (null? operators)
(> (precedence (car expr))

(precedence (car operators))))
(parse-helper (cdr expr)

(cons (car expr) operators)
operands)

(handle-op expr operators operands)))))

⇒

⇒

Pitfalls

children

Chapter 18 Trees 323

We promised that after building the tree it would be easy to compute the value of
the expression. Here is the program to do that:

A leaf node is a perfectly good actual argument to a tree procedure, even though the
picture of a leaf node doesn’t look treeish because there aren’t any branches. A common
mistake is to make the base case of the recursion be a node whose children are leaves,
instead of a node that’s a leaf itself.

The value returned by is not a tree, but a forest. It’s therefore not a
suitable actual argument to a procedure that expects a tree.

(define (handle-op expr operators operands)
(parse-helper expr

(cdr operators)
(cons (make-node (car operators)

(list (cadr operands) (car operands)))
(cddr operands))))

(define (precedence oper)
(if (member? oper ’(+ -)) 1 2))

(define (compute tree)
(if (number? (datum tree))

(datum tree)
((function-named-by (datum tree))

(compute (car (children tree)))
(compute (cadr (children tree))))))

(define (function-named-by oper)
(cond ((equal? oper ’+) +)

((equal? oper ’-) -)
((equal? oper ’*) *)
((equal? oper ’/) /)
(else (error "no such operator as" oper))))

> (compute (parse ’(4 + 3 * 7 - 5 / (3 + 4) + 6)))
30.285714285714

Exercises

18.1

18.2

18.3

18.4

18.5

leaf

324 Part V Abstraction

world-tree

list
cons

depth,

count-nodes

prune
prune

prune
#f

((SAN FRANCISCO))

(define (make-node datum children)
(list datum children))

What does

mean in the printout of ? Why two sets of parentheses?

Suppose we change the definition of the tree constructor so that it uses
instead of :

How do we have to change the selectors so that everything still works?

Write a procedure that takes a tree as argument and returns the largest
number of nodes connected through parent-child links. That is, a leaf node has depth
1; a tree in which all the children of the root node are leaves has depth 2. Our world
tree has depth 4 (because the longest path from the root to a leaf is, for example, world,
country, state, city).

Write , a procedure that takes a tree as argument and returns the
total number of nodes in the tree. (Earlier we counted the number of nodes.)

Write , a procedure that takes a tree as argument and returns a copy of the
tree, but with all the leaf nodes of the original tree removed. (If the argument to
is a one-node tree, in which the root node has no children, then should return

because the result of removing the root node wouldn’t be a tree.)

18.6

Chapter 18 Trees 325

parse-scheme
parse

compute

compute

> (compute (parse-scheme ’(* (+ 4 3) 2)))
14

Write a program that parses a Scheme arithmetic expression
into the same kind of tree that produces for infix expressions. Assume that all
procedure invocations in the Scheme expression have two arguments.

The resulting tree should be a valid argument to :

(You can solve this problem without the restriction to two-argument invocations if you
rewrite so that it doesn’t assume every branch node has two children.)

Generalizing Patterns

19 Implementing Higher-Order Functions

higher-order procedures—

generalize the pattern

327

every keep

every keep

square-sent pigl-sent
every every

(define pi 3.141592654)

(define (square-area r) (* r r))

(define (circle-area r) (* pi r r))

(define (sphere-area r) (* 4 pi r r))

This chapter is about writing that is, procedures that implement
higher-order functions. We are going to study the implementation of , , and
so on.

Really there are no new techniques involved. You know how to write recursive
procedures that follow the pattern, the pattern, and so on; it’s a small
additional step to generalize those patterns. The truly important point made in this
chapter is that you aren’t limited to a fixed set of higher-order functions. If you feel a
need for a new one, you can implement it.

In Chapter 14, we showed you the procedures and , which
follow the pattern of recursion. In order to write the general tool, itself,
we have to that those two have in common.

Before we get to writing higher-order procedures, let’s look at a simpler case of
generalizing patterns.

Suppose we want to find out the areas of several different kinds of shapes, given one
linear dimension. A straightforward way would be to do it like this:

r
shape

square-area
every

328 Part V Abstraction

(define (hexagon-area r) (* (sqrt 3) 1.5 r r))

> (square-area 6)
36

> (circle-area 5)
78.53981635

(define (area shape r) (* shape r r))
(define square 1)
(define circle pi)
(define sphere (* 4 pi))
(define hexagon (* (sqrt 3) 1.5))

> (area sphere 7)
615.752160184

(define (area-of-square-of-side-5)
(* 5 5))

(define (area-of-square-of-side-6)
(* 6 6))

This works fine, but it’s somewhat tedious to define all four of these procedures, given
that they’re so similar. Each one returns the square of its argument times some constant
factor; the only difference is the constant factor.

We want to generalize the pattern that these four procedures exhibit. Each of these
procedures has a particular constant factor built in to its definition. What we’d like
instead is one single procedure that lets you choose a constant factor when you invoke
it. This new procedure will take a second argument besides the linear dimension (the
radius or side): a argument whose value is the desired constant factor.

What’s the point? We started with several procedures. Then we found that they had
certain points of similarity and certain differences. In order to write a single procedure
that generalizes the points of similarity, we had to use an additional argument for each
point of difference. (In this example, there was only one point of difference.)

In fact, procedure with arguments is a generalization in the same way. Even
, which we presented as the special case to be generalized, is more general

than these procedures:

EveryThe Pattern Revisited

every-something

every-something

every

every

every

every
first butfirst

stuff sent

Chapter 19 Implementing Higher-Order Functions 329

(define (sent)
(if (empty? sent)

’()
(se ((first sent))

((bf sent)))))

(define (every fn sent)
(if (empty? sent)

’()
(se (fn (first sent))

(every fn (bf sent)))))

These may seem too trivial to be taken seriously. Indeed, nobody would write such
procedures. But it’s possible to take the area of a particular size square without using
a procedure at all, and then later discover that you need to deal with squares of several
sizes.

This idea of using a procedure to generalize a pattern is part of the larger idea of
abstraction that we’ve been discussing throughout the book. We notice an algorithm that
we need to use repeatedly, and so we separate the algorithm from any particular data
values and give it a name.

The idea of generalization may seem obvious in the example about areas of squares.
But when we apply the same idea to generalizing over a function, rather than merely
generalizing over a number, we gain the enormous expressive power of higher-order
functions.

Here again is the template:

You’ve been writing -like procedures by filling in the blank with a specific function.
To generalize the pattern, we’ll use the trick of adding an argument, as we discussed in
the last section.

This is hardly any work at all for something that seemed as mysterious as probably
did when you first saw it.

Recall that will also work if you pass it a word as its second argument. The
version shown here does indeed work for words, because and work
for words. So probably “ ” would be a better formal parameter than “ .” (The

Map Every

330 Part V Abstraction

The Difference between and

every sentence

map

every cons
car cdr se first butfirst

map
car map every

map

map every Map
cons every sentence

result from is always a sentence, because is used to construct the
result.)

Here’s the definition of the procedure:

The structure here is identical to that of ; the only difference is that we use ,
, and instead of , , and .

One implication of this is that you can’t use with a word, since it’s an error to
take the of a word. When is it advantageous to use instead of ? Suppose
you’re using with a structured list, like this:

Why does preserve the structure of the sublists while doesn’t? uses
to combine the elements of the result, whereas uses :

(define (map fn lst)
(if (null? lst)

’()
(cons (fn (car lst))

(map fn (cdr lst)))))

> (map (lambda (flavor) (se flavor ’(is great)))
’(ginger (ultra chocolate) pumpkin (rum raisin)))

((GINGER IS GREAT) (ULTRA CHOCOLATE IS GREAT)
(PUMPKIN IS GREAT) (RUM RAISIN IS GREAT))

> (every (lambda (flavor) (se flavor ’(is great)))
’(ginger (ultra chocolate) pumpkin (rum raisin)))

(GINGER IS GREAT ULTRA CHOCOLATE IS GREAT PUMPKIN IS GREAT
RUM RAISIN IS GREAT)

> (cons ’(pumpkin is great)
(cons ’(rum raisin is great)

’()))
((PUMPKIN IS GREAT) (RUM RAISIN IS GREAT))

> (se ’(pumpkin is great)
(se ’(rum raisin is great)

’()))
(PUMPKIN IS GREAT RUM RAISIN IS GREAT)

and

Filter

Accumulate Reduce

two

Chapter 19 Implementing Higher-Order Functions 331

filter

map cons
keep

keep

accumulate

+ word

three-arg-accumulate

(define (filter pred lst)
(cond ((null? lst) ’())

((pred (car lst))
(cons (car lst) (filter pred (cdr lst))))
(else (filter pred (cdr lst)))))

(define (addup nums)
(if (empty? nums)

0
(+ (first nums) (addup (bf nums)))))

(define (scrunch-words sent)
(if (empty? sent)

""
(word (first sent) (scrunch-words (bf sent)))))

> (three-arg-accumulate + 0 ’(6 7 8))
21

> (three-arg-accumulate word "" ’(come together))
COMETOGETHER

Here’s the implementation of :

Like , this uses as the constructor so that it will work properly on structured
lists. We’re leaving the definition of , the version for words and sentences, as an
exercise.

(Aside from the difference between lists and sentences, this is just like the
template on page 224.)

Here are the examples of the pattern that we showed you before:

What are the similarities and differences? There are important differences
between these procedures: the combiners (versus) and the values returned
in the base cases (zero versus the empty word). According to what we said about
generalizing patterns, you might expect that we’d need two extra arguments. You’d
invoke like this:

332 Part V Abstraction

accumulate reduce

reduce accumulate

stuff butfirst stuff

stuff Reduce
null? car cdr

accumulate +
* word sentence append list

accumulate
(lambda (x y) (word x ’- y)) max accumulate

(define (accumulate combiner stuff) ;; first version
(if (empty? (bf stuff))

(first stuff)
(combiner (first stuff)

(accumulate combiner (bf stuff)))))

(define (accumulate combiner stuff)
(cond ((not (empty? stuff)) (real-accumulate combiner stuff))

((member combiner (list + * word se append))
(combiner))
(else (error

"Can’t accumulate empty input with that combiner"))))

(define (real-accumulate combiner stuff)
(if (empty? (bf stuff))

(first stuff)
(combiner (first stuff) (real-accumulate combiner (bf stuff)))))

But we’ve actually defined and so that only two arguments are
required, the procedure and the sentence or list. We thought it would be too much
trouble to have to provide the identity element all the time. How did we manage to avoid
it?

The trick is that in our and the base case is a one-element
argument, rather than an empty argument. When we’re down to one element in the
argument, we just return that element:

This version is a simplification of the one we actually provide. What happens if
is empty? This version blows up, since it tries to take the of

immediately. Our final version has a specific check for empty arguments:

This version works just like the earlier version as long as isn’t empty. (is
the same, except that it uses , , and .)

As we mentioned in Chapter 8, many of Scheme’s primitive procedures return their
identity element when invoked with no arguments. We can take advantage of this; if

is invoked with an empty second argument and one of the procedures ,
, , , or , we invoke the combiner with no arguments to

produce the return value.

On the other hand, if ’s combiner argument is something like
or , then there’s nothing can

return, so we give an error message. (But it’s a more descriptive error message than

Robustness

accumulate

accumulate

different

Chapter 19 Implementing Higher-Order Functions 333

(define (accumulate combiner stuff) ;; non-robust version
(if (not (empty? stuff))

(real-accumulate combiner stuff)
(combiner)))

(accumulate max ’())

the first version; what message do you get when you call that first version with an empty
second argument?)

It’s somewhat of a kludge that we have to include in our procedure a list of the
functions that can be called without arguments. What we’d like to do is invoke the
combiner and find out if that causes an error, but Scheme doesn’t provide a mechanism
for causing errors on purpose and recovering from them. (Some dialects of Lisp do have
that capability.)

Instead of providing a special error message for empty-argument cases that
can’t handle, we could have just let it blow up:

Some questions about programming have clear right and wrong answers—if your
program doesn’t work, it’s wrong! But the decision about whether to include the extra
check for a procedure that’s usable with an empty argument is a matter of judgment.

Here is the reasoning in favor of this simpler version: In either version, the user who
tries to evaluate an expression like

is going to get an error message. In the longer version we’ve spent both our own
programming effort and a little of the computer’s time on every invocation just to give a

error message from the one that Scheme would have given anyway. What’s the
point?

Here is the reasoning in favor of the longer version: In practice, the empty-argument
situation isn’t going to arise because someone uses a quoted empty sentence; instead
the second argument to will be some expression whose value happens to
be empty under certain conditions. The user will then have to debug the program that
caused those conditions. Debugging is hard; we should make it easier for the user, if we
can, by giving an error message that points clearly to the problem.

accumulate

robust.

334 Part V Abstraction

Higher-Order Functions for Structured Lists

(define (even? num) ;; silly example
(cond ((not (number? num)) (error "Not a number."))

((not (integer? num)) (error "Not an integer."))
((< num 0) (error "Argument must be positive."))
(else (= (remainder num 2) 0))))

(define (deep-pigl structure)
(cond ((word? structure) (pigl structure))

((null? structure) ’())
(else (cons (deep-pigl (car structure))

(deep-pigl (cdr structure))))))

A program that behaves politely when given incorrect input is called It’s not
always a matter of better or worse error messages. For example, a program that reads
input from a human user might offer the chance to try again if some input value is
incorrect. A robust program will also be alert for hardware problems, such as running
out of space on a disk, or getting garbled information over a telephone connection to
another machine because of noise on the line.

It’s possible to pay either too little or too much attention to program robustness. If
you’re a professional programmer, your employer will expect your programs to survive
errors that are likely to happen. On the other hand, your programs will be hard to read
and debug if the error checking swamps the real work! As a student, unless you are
specifically asked to “bulletproof” your program, don’t answer exam questions by writing
procedures like this one:

In the case of , we decided to be extra robust because we were writing a
procedure for use in a beginning programming course. If we were writing this tool just
for our own use, we might have chosen the non-robust version. Deciding how robust a
program will be is a matter of taste.

We’ve given you a fairly standard set of higher-order functions, but there’s no law that
says these are the only ones. Any time you notice yourself writing what feels like the
same procedure over again, but with different details, consider inventing a higher-order
function.

For example, here’s a procedure we defined in Chapter 17.

The Zero-Trip Do Loop

deep-square

do
every

every do

do

do
do

Chapter 19 Implementing Higher-Order Functions 335

(define (deep-map f structure)
(cond ((word? structure) (f structure))

((null? structure) ’())
(else (cons (deep-map f (car structure))

(deep-map f (cdr structure))))))

This procedure converts every word in a structured list to Pig Latin. Suppose we have a
structure full of numbers and we want to compute all of their squares. We could write a
specific procedure , but instead, we’ll write a higher-order procedure:

The first programming language that provided a level of abstraction over the instructions
understood directly by computer hardware was Fortran, a language that is still widely
used today despite the advances in programming language design since then. Fortran
remains popular because of the enormous number of useful programs that have already
been written in it; if an improvement is needed, it’s easier to modify the Fortran program
than to start again in some more modern language.

Fortran includes a control mechanism called , a sort of higher-order procedure
that carries out a computation repeatedly, as does. But instead of carrying out
the computation once for each element of a given collection of data (like the sentence
argument to), performs a computation once for each integer in a range
specified by its endpoints. “For every number between 4 and 16, do such-and-such.”

What if you specify endpoints such that the starting value is greater than the ending
value? In the first implementation of Fortran, nobody thought very hard about this
question, and they happened to implement in such a way that if you specified a
backward range, the computation was done once, for the given starting value, before
Fortran noticed that it was past the ending value.

Twenty years later, a bunch of computer scientists argued that this behavior was
wrong—that a loop with its starting value greater than its ending value should not
carry out its computation at all. This proposal for a “zero-trip loop” was strongly
opposed by Fortran old-timers, not because of any principle but because of all the
thousands of Fortran programs that had been written to rely on the one-trip behavior.

The point of this story is that the Fortran users had to debate the issue so heatedly
because they are stuck with only the control mechanisms that are built into the language.
Fortran doesn’t have the idea of function as data, so Fortran programmers can’t write
their own higher-order procedures. But you, using the techniques of this chapter, can

⇒

⇒

19.1

19.2

19.3

336 Part V Abstraction

Pitfalls

Boring Exercises

Real Exercises

car cdr

map cadr cdr

keep keep

combine word
sentence

accumulate

(every cdr ’((john lennon) (paul mccartney)
(george harrison) (ringo starr)))

> (three-arg-accumulate + 0 ’(4 5 6))
15

> (three-arg-accumulate + 0 ’())
0

create precisely the control mechanism that you need for whatever problem you happen
to be working on.

The most crucial point in inventing a higher-order function is to make sure that the
pattern you have in mind really does generalize. For example, if you want to write a
higher-order function for structured data, what is the base case? Will you use the tree
abstract data type, or will you use / recursion?

When you generalize a pattern by adding a new argument (typically a procedure),
be sure you add it to the recursive invocation(s) as well as to the formal parameter list!

What happens if you say the following?

How is this different from using , and why? How about instead of ?

Write . Don’t forget that has to return a sentence if its second argument
is a sentence, and a word if its second argument is a word.

(Hint: it might be useful to write a procedure that uses either or
depending on the types of its arguments.)

Write the three-argument version of that we described.

− − − − − −

19.4

19.5

19.6

19.7

every

Chapter 19 Implementing Higher-Order Functions 337

accumulate

left-accumulate
+

-

true-for-all? every
keep accumulate

true-for-any-pair?

#t

true-for-all-pairs?

#t

> (three-arg-accumulate cons ’() ’(a b c d e))
(A B C D E)

(accumulate - ’(2 3 4 5))

> (true-for-any-pair? equal? ’(a b c b a))
#F

> (true-for-any-pair? equal? ’(a b c c d))
#T

> (true-for-any-pair? < ’(20 16 5 8 6)) ;; 5 is less than 8
#T

> (true-for-all-pairs? equal? ’(a b c c d))
#F

> (true-for-all-pairs? equal? ’(a a a a a))
#T

> (true-for-all-pairs? < ’(20 16 5 8 6))
#F

Our combines elements from right to left. That is,

computes 2 (3 (4 5)). Write , which will compute ((2 3) 4) 5
instead. (The result will be the same for an operation such as , for which grouping
order doesn’t matter, but will be different for .)

Rewrite the procedure from Exercise 8.10. Do not use ,
, or .

Write a procedure that takes a predicate and a sentence
as arguments. The predicate must accept two words as its arguments. Your procedure
should return if the argument predicate will return true for any two adjacent words
in the sentence:

Write a procedure that takes a predicate and a sentence
as arguments. The predicate must accept two words as its arguments. Your procedure
should return if the argument predicate will return true for two adjacent words
in the sentence:

338 Part V Abstraction

19.8

19.9

19.10

19.11

19.12

19.13

true-for-all-pairs? true-for-any-pair?

true-for-any-pair?
not

tree-map deep-map datum
children

repeated

tree-reduce

deep-reduce tree-reduce

> (true-for-all-pairs? < ’(3 7 19 22 43))
#T

> (sort ’(4 23 7 5 16 3) <)
(3 4 5 7 16 23)

> (sort ’(4 23 7 5 16 3) >)
(23 16 7 5 4 3)

> (sort ’(john paul george ringo) before?)
(GEORGE JOHN PAUL RINGO)

> (tree-reduce
+
(make-node 3 (list (make-node 4 ’())

(make-node 7 ’())
(make-node 2 (list (make-node 3 ’())

(make-node 8 ’()))))))
27

> (deep-reduce word ’(r ((a (m b) (l)) (e (r)))))
RAMBLER

Rewrite (Exercise 19.7) using
(Exercise 19.6) as a helper procedure. Don’t use recursion in solving this problem
(except for the recursion you’ve already used to write). Hint:
You’ll find the procedure helpful.

Rewrite either of the sort procedures from Chapter 15 to take two arguments, a list
and a predicate. It should sort the elements of that list according to the given predicate:

Write , analogous to our , but for trees, using the
and selectors.

Write . (This is a hard exercise!)

Write . You may assume that the combiner argument can be
invoked with no arguments.

Write , similar to , but for structured lists:

Part VI
Sequential Programming

wash-the-dishes

reserve-seat
issue-ticket

effect, sequence, state.

do

effect,

sequence

340

to go-to-work
get-dressed
eat-breakfast
catch-the-bus

The three big ideas in this part are and

Until now, we’ve been doing functional programming, where the focus is on functions
and their return values. Invoking a function is like asking a question: “What’s two plus
two?” In this part of the book we’re going to talk about giving commands to the computer
as well as asking it questions. That is, we’ll invoke procedures that tell Scheme to
something, such as . (Unfortunately, the Scheme standard leaves
out this primitive.) Instead of merely computing a value, such a procedure has an
an action that changes something.

Once we’re thinking about actions, it’s very natural to consider a of actions.
First cooking dinner, then eating, and then washing the dishes is one sequence. First
eating, then washing the dishes, and then cooking is a much less sensible sequence.

Although these ideas of sequence and effect are coming near the end of our book,
they’re the ideas with which almost every introduction to programming begins. Most
books compare a program to a recipe or a sequence of instructions, along the lines of

This sequential programming style is simple and natural, and it does a good job of
modeling computations in which the problem concerns a sequence of events. If you’re
writing an airline reservation system, a sequential program with and

commands makes sense. But if you want to know the acronym of a
phrase, that’s not inherently sequential, and a question-asking approach is best.

•

•

•

define

state.

model

341

Some actions that Scheme can take affect the “outside” world, such as printing
something on the computer screen. But Scheme can also carry out internal actions,
invisible outside the computer, but changing the environment in which Scheme itself
carries out computations. Defining a new variable with is an example; before the
definition, Scheme wouldn’t understand what that name means, but once the definition
has been made, the name can be used in evaluating later expressions. Scheme’s
knowledge about the leftover effects of past computations is called its The third big
idea in this part of the book is that we can write programs that maintain state information
and use it to determine their results.

Like sequence, the notion of state contradicts functional programming. Earlier in
the book, we emphasized that every time a function is invoked with the same arguments,
it must return the same value. But a procedure whose returned value depends on
state—on the past history of the computation—might return a different value on each
invocation, even with identical arguments.

We’ll explore several situations in which effects, sequence, and state are useful:

Interactive, question-and-answer programs that involve keyboard input while the com-
putation is in progress;

Programs that must read and write long-term data file storage;

Computations that an actual sequence of events in time and use the state of the
program to model information about the state of the simulated events.

After introducing Scheme’s mechanisms for sequential programming, we’ll use those
mechanisms to implement versions of two commonly used types of business computer
applications, a spreadsheet and a database program.

x o

Printing

20 Input and Output

function

conversation

list

343

(define (bottles n)
(if (= n 0)

’()
(append (verse n)

(bottles (- n 1)))))

trace* The only exception is that we’ve used , which prints messages about the progress of a
computation.

In the tic-tac-toe project in Chapter 10, we didn’t write a complete game program. We
wrote a that took a board position and or as arguments, returning the next
move. We noted at the time that a complete game program would also need to carry
on a with the user. Instead of computing and returning one single value, a
conversational program must carry out a sequence of events in time, reading information
from the keyboard and displaying other information on the screen.

Before we complete the tic-tac-toe project, we’ll start by exploring Scheme’s mecha-
nisms for interactive programming.

Up until now, we’ve never told Scheme to print anything. The programs we’ve written
have computed values and returned them; we’ve relied on the read-eval-print loop to
print these values.*

But let’s say we want to write a program to print out all of the words to “99 Bottles of
Beer on the Wall.” We could implement a function to produce a humongous of the
lines of the song, like this:

print

344 Part VI Sequential Programming

The problem is that we don’t want a list. All we want is to print out the lines of the song;
storing them in a data structure is unnecessary and inefficient. Also, some versions of
Scheme would print the above list like this:

or even all on one line. We can’t rely on Scheme’s mechanism for printing lists if we want
to be sure of a particular arrangement on the screen.

Instead we’ll write a program to a verse, rather than return it in a list:

(define (verse n)
(list (cons n ’(bottles of beer on the wall))

(cons n ’(bottles of beer))
’(if one of those bottles should happen to fall)
(cons (- n 1) ’(bottles of beer on the wall))
’()))

> (bottles 3)
((3 BOTTLES OF BEER ON THE WALL)
(3 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(2 BOTTLES OF BEER ON THE WALL)
()
(2 BOTTLES OF BEER ON THE WALL)
(2 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(1 BOTTLES OF BEER ON THE WALL)
()
(1 BOTTLES OF BEER ON THE WALL)
(1 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(0 BOTTLES OF BEER ON THE WALL)
())

((3 BOTTLES OF BEER ON THE WALL) (3 BOTTLES OF BEER) (IF ONE OF
THOSE BOTTLES SHOULD HAPPEN TO FALL) (2 BOTTLES OF BEER ON THE
WALL) () (2 BOTTLES OF BEER ON THE WALL) (2 BOTTLES OF BEER) (IF
ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL) (1 BOTTLES OF BEER ON
THE WALL) () (1 BOTTLES OF BEER ON THE WALL) (1 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL) (0 BOTTLES OF BEER
ON THE WALL) ())

(define (bottles n)
(if (= n 0)

’burp
(begin (verse n)

(bottles (- n 1)))))

Side Effects and Sequencing

(bottles 3)
burp bottles

Show

value

side effects sequencing.

Chapter 20 Input and Output 345

* We know that it’s still not as beautiful as can be, because of the capital letters and parentheses,
but we’ll get to that later.

(define (verse n)
(show (cons n ’(bottles of beer on the wall)))
(show (cons n ’(bottles of beer)))
(show ’(if one of those bottles should happen to fall))
(show (cons (- n 1) ’(bottles of beer on the wall)))
(show ’()))

> (bottles 3)
(3 BOTTLES OF BEER ON THE WALL)
(3 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(2 BOTTLES OF BEER ON THE WALL)
()
(2 BOTTLES OF BEER ON THE WALL)
(2 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(1 BOTTLES OF BEER ON THE WALL)
()
(1 BOTTLES OF BEER ON THE WALL)
(1 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(0 BOTTLES OF BEER ON THE WALL)
()
BURP

Notice that Scheme doesn’t print an outer set of parentheses. Each line was printed
separately; there isn’t one big list containing all of them.*

Why was “burp” printed at the end? Just because we’re printing things explicitly
doesn’t mean that the read-eval-print loop stops functioning. We typed the expression

. In the course of evaluating that expression, Scheme printed several lines
for us. But the of the expression was the word , because that’s what
returned.

How does our program work? There are two new ideas here: and

Until now, whenever we’ve invoked a procedure, our only goal has been to get a
return value. The procedures we’ve used compute and return a value, and do nothing
else. is different. Although every Scheme procedure returns a value, the Scheme

side

> (show 7)
7
#F

show

Show
show

show

do

346 Part VI Sequential Programming

(define (effect x)
(show x)
’done)

(define (value x)
x)

> (effect ’(oh! darling))
(OH! DARLING)
DONE

> (value ’(oh! darling))
(OH! DARLING)

> (bf (effect ’(oh! darling)))
(OH! DARLING)
ONE

show #f

show
burp

show

* Suppose returns in your version of Scheme. Then you might see

But since the return value is unspecified, we try to write programs in such a way that we never use
’s return value as the return value from our procedures. That’s why we return values like
.

** The term effect is based on the idea that a procedure may have a useful return value as
its main purpose and may also have an effect “on the side.” It’s a misnomer to talk about the side
effect of , since the effect is its main purpose. But nobody ever says “side return value”!

language standard doesn’t specify what value the printing procedures should return.*
Instead, we are interested in their side effects. In other words, we invoke because
we want it to something, namely, print its argument on the screen.

What exactly do we mean by “side effect”? The kinds of procedures that we’ve used
before this chapter can compute values, invoke helper procedures, provide arguments to
the helper procedures, and return a value. There may be a lot of activity going on within
the procedure, but the procedure affects the world outside of itself only by returning a
value that some other procedure might use. affects the world outside of itself by
putting something on the screen. After has finished its work, someone who looks
at the screen can tell that was used.**

Here’s an example to illustrate the difference between values and effects:

Chapter 20 Input and Output 347

effect
lots-of-effect lots-of-value

let c

* In Chapter 4, we said that the body of a procedure was always one single expression. We lied.
But as long as you don’t use any procedures with side effects, it doesn’t do you any good to evaluate
more than one expression in a body.

** For example:

> (cond ((< 4 0)
(show ’(how interesting))
(show ’(4 is less than zero?))
#f)

((> 4 0)
(show ’(more reasonable))
(show ’(4 really is more than zero))
’value)

(else
(show ’(you mean 4=0?))
#f))

(MORE REASONABLE)
(4 REALLY IS MORE THAN ZERO)
VALUE

> (bf (value ’(oh! darling)))
(DARLING)

> (define (lots-of-effect x)
(effect x)
(effect x)
(effect x))

> (define (lots-of-value x)
(value x)
(value x)
(value x))

> (lots-of-effect ’(oh! darling))
(OH! DARLING)
(OH! DARLING)
(OH! DARLING)
DONE

> (lots-of-value ’(oh! darling))
(OH! DARLING)

This example also demonstrates the second new idea, sequencing: Each of ,
, and contains more than one expression in its

body. When you invoke such a procedure, Scheme evaluates all the expressions in the
body, in order, and returns the value of the last one.* This also works in the body of a

, which is really the body of a procedure, and in each clause of a ond.**

Begin

function

348 Part VI Sequential Programming

The Special Form

This Isn’t Functional Programming

lots-of-value value

lots-of-effect
effect

effect show

lots-of-effect

bottles
if

if if
(verse n)

begin

begin

(define (bottles n) ;; wrong
(if (= n 0)

’()
(verse n)
(bottles (- n 1))))

(define bottles n)
(if (= n 0)

’burp
(begin (verse n)

(bottles (- n 1)))))

When we invoked , Scheme invoked three times; it dis-
carded the values returned by the first two invocations, and returned the value from
the third invocation. Similarly, when we invoked , Scheme invoked

three times and returned the value from the third invocation. But each
invocation of caused its argument to be printed by invoking .

The procedure accomplished sequencing by having more than one
expression in its body. This works fine if the sequence of events that you want to perform
is the entire body of a procedure. But in we wanted to include a sequence as
one of the alternatives in an construction. We couldn’t just say

because must have exactly three arguments. Otherwise, how would know whether
we meant to be the second expression in the true case, or the first expression
in the false case?

Instead, to turn the sequence of expressions into a single expression, we use the
special form . It takes any number of arguments, evaluates them from left to right,
and returns the value of the last one.

(One way to think about sequences in procedure bodies is that every procedure body has
an invisible surrounding it.)

Sequencing and side effects are radical departures from the idea of functional program-
ming. In fact, we’d like to reserve the name for something that computes and

is
really

lambda

show

Not Moving to the Next Line

emphasis
independent

Chapter 20 Input and Output 349

(* (+ 3 4) (- 92 15))

(begin
(show (+ 3 4))
(show (- 92 15)))

> (begin (show-addition 3 4)
(show-addition 6 8)
’done)

3+4=7
6+8=14
DONE

* Sometimes people sloppily say that the procedure a function. In fact, you may hear people
be sloppy and call a non-functional procedure a function!

returns one value, with no side effects. “Procedure” is the general term for the thing
that returns—an embodiment of an algorithm. If the algorithm is the kind that
computes and returns a single value without side effects, then we say that the procedure
implements a function.*

There is a certain kind of sequencing even in functional programming. If you say

it’s clear that the addition has to happen before the multiplication, because the result
of the addition provides one of the arguments to the multiplication. What’s new in
the sequential programming style is the on sequence, and the fact that the
expressions in the sequence are instead of contributing values to each other.
In this multiplication problem, for example, we don’t care whether the addition happens
before or after the subtraction. If the addition and subtraction were in a sequence, we’d
be using them for independent purposes:

This is what we mean by being independent. Neither expression helps in computing
the other. And the order matters because we can see the order in which the results are
printed.

Each invocation of prints a separate line. What if we want a program that prints
several things on the same line, like this:

Strings

do

any

350 Part VI Sequential Programming

display

show

newline

show display
newline

(define (show-addition x y)
(display x)
(display ’+)
(display y)
(display ’=)
(show (+ x y)))

(define (verse n)
(show (cons n ’(bottles of beer on the wall)))
(show (cons n ’(bottles of beer)))
(show ’(if one of those bottles should happen to fall))
(show (cons (- n 1) ’(bottles of beer on the wall)))
(newline)) ; replaces (show ’())

(define (verse n)
(display n)
(show " bottles of beer on the wall,")
(display n)
(show " bottles of beer.")
(show "If one of those bottles should happen to fall,")
(display (- n 1))
(show " bottles of beer on the wall.")
(newline))

We use , which doesn’t move to the next line after printing its argument:

(The last one is a because we want to start a new line after it.)

What if you just want to print a blank line? You use :

In fact, isn’t an official Scheme primitive; we wrote it in terms of and
.

Throughout the book we’ve occasionally used strings, that is, words enclosed in double-
quote marks so that Scheme will permit the use of punctuation or other unusual
characters. Strings also preserve the case of letters, so they can be used to beautify our
song even more. Since character can be in a string, including spaces, the easiest
thing to do in this case is to treat all the letters, spaces, and punctuation characters of
each line of the song as one long word. (If we wanted to be able to compute functions of
the individual words in each line, that wouldn’t be such a good idea.)

Chapter 20 Input and Output 351

A Higher-Order Procedure for Sequencing

bottles of beer on the wall,

for-each

for-each

map
Map

show

> (verse 6)
6 bottles of beer on the wall,
6 bottles of beer.
If one of those bottles should happen to fall,
5 bottles of beer on the wall.

#F ; or whatever is returned by (newline)

(define (show-list lst)
(if (null? lst)

’done
(begin (show (car lst))

(show-list (cdr lst)))))

> (show-list ’((dig a pony) (doctor robert) (for you blue)))
(DIG A PONY)
(DOCTOR ROBERT)
(FOR YOU BLUE)
DONE

> (for-each show ’((mean mr mustard) (no reply) (tell me why)))
(MEAN MR MUSTARD)
(NO REPLY)
(TELL ME WHY)

It’s strange to think of “ ” as a single word. But the
rule is that anything inside double quotes counts as a single word. It doesn’t have to be
an English word.

Sometimes we want to print each element of a list separately:

Like other patterns of computation involving lists, this one can be abstracted into a
higher-order procedure. (We can’t call it a “higher-order function” because this one is for
computations with side effects.) The procedure is part of standard Scheme:

The value returned by is unspecified.

Why couldn’t we just use for this purpose? There are two reasons. One is just
an efficiency issue: constructs a list containing the values returned by each of its
sub-computations; in this example, it would be a list of three instances of the unspecified
value returned by . But we aren’t going to use that list for anything, so there’s no
point in constructing it. The second reason is more serious. In functional programming,
the order of evaluation of subexpressions is unspecified. For example, when we evaluate
the expression

map

For-each

ttt
x o

Tic-Tac-Toe Revisited

do

strategy

352 Part VI Sequential Programming

(- (+ 4 5) (* 6 7))

(define (stupid-ttt position letter)
(location ’ position))

(define (location letter word)
(if (equal? letter (first word))

1
(+ 1 (location letter (bf word)))))

(define (play-ttt x-strat o-strat)
(play-ttt-helper x-strat o-strat ’ ’x))

(define (play-ttt-helper x-strat o-strat position whose-turn)
(cond ((already-won? position (opponent whose-turn))

(list (opponent whose-turn) ’wins!))
((tie-game? position) ’(tie game))
(else (let ((square (if (equal? whose-turn ’x)

(x-strat position ’x)
(o-strat position ’o))))

(play-ttt-helper x-strat
o-strat
(add-move square whose-turn position)
(opponent whose-turn))))))

we don’t know whether the addition or the multiplication happens first. Similarly, the
order in which computes the results for each element is unspecified. That’s okay
as long as the ultimately returned list of results is in the right order. But when we are
using side effects, we care about the order of evaluation. In this case, we want to make
sure that the elements of the argument list are printed from left to right.
guarantees this ordering.

We’re working up toward playing a game of tic-tac-toe against the computer. But as a first
step, let’s have the computer play against itself. What we already have is , a
function: one that takes a board position as argument (and also a letter or) and
returns the chosen next move. In order to play a game of tic-tac-toe, we need two players;
to make it more interesting, each should have its own strategy. So we’ll write another
one, quickly, that just moves in the first empty square it sees:

Now we can write a program that takes two strategies as arguments and actually plays
a game between them.

x o

add-move

Accepting User Input

interactive

Chapter 20 Input and Output 353

* You wrote the procedures and in Exercises 10.1 and 10.2:

(define (already-won? position who)
(member? (word who who who) (find-triples position)))

(define (tie-game? position)
(not (member? ’ position)))

(define (add-move square letter position)
(if (= square 1)

(word letter (bf position))
(word (first position)

(add-move (- square 1) letter (bf position)))))

> (play-ttt ttt stupid-ttt)
(X WINS!)

> (play-ttt stupid-ttt ttt)
(O WINS!)

already-won? tie-game?

We use a helper procedure because we need to keep track of two pieces of information
besides the strategy procedures: the current board position and whose turn it is (or).
The helper procedure is invoked recursively for each move. First it checks whether the
game is already over (won or tied).* If not, the helper procedure invokes the current
player’s strategy procedure, which returns the square number for the next move. For
the recursive call, the arguments are the same two strategies, the new position after the
move, and the letter for the other player.

We still need , the procedure that takes a square and an old position as
arguments and returns the new position.

The work we did in the last section was purely functional. We didn’t print anything
(except the ultimate return value, as always) and we didn’t have to read information from
a human player, because there wasn’t one.

You might expect that the structure of an game program would be very
different, with a top-level procedure full of sequential operations. But the fact is that we
hardly have to change anything to turn this into an interactive game. All we need is a

1

4

3

8

read
Read not

354 Part VI Sequential Programming

(define (ask-user position letter)
(print-position position)
(display letter)
(display "’s move: ")
(read))

(define (print-position position) ;; first version
(show position))

> (play-ttt ttt ask-user)
X

O’S MOVE:
O XX
O’S MOVE:
O OXXX
O’S MOVE:
OXOOXXX
O’S MOVE:
(TIE GAME)

(define (echo)
(display "What? ")
(let ((expr (read)))
(if (equal? expr ’stop)

’okay
(begin
(show expr)
(echo)))))

new “strategy” procedure that asks the user where to move, instead of computing a move
based on built-in rules.

(Ultimately we’re going to want a beautiful two-dimensional display of the current
position, but we don’t want to get distracted by that just now. That’s why we’ve written a
trivial temporary version.)

What the user typed is just the single digits shown in boldface at the ends of the lines.

What’s new here is that we invoke the procedure . It waits for you to type
a Scheme expression, and returns that expression. Don’t be confused: does
evaluate what you type. It returns exactly the same expression that you type:

Aesthetic Board Display

Chapter 20 Input and Output 355

hello

(+ 2 3)

(first (glass onion))

stop

Here’s our beautiful position printer:

*

* Alternate version:

You can take your choice, depending on which you think is easier, recursion or higher-order
functions.

(define (subword wd start end)
(cond ((> start 1) (subword (bf wd) (- start 1) (- end 1)))

((< end (count wd)) (subword (bl wd) start end))
(else wd)))

> (echo)
What?
HELLO
What?
(+ 2 3)
What?
(FIRST (GLASS ONION))
What?
OKAY

(define (print-position position)
(print-row (subword position 1 3))
(show "-+-+-")
(print-row (subword position 4 6))
(show "-+-+-")
(print-row (subword position 7 9))
(newline))

(define (print-row row)
(maybe-display (first row))
(display "|")
(maybe-display (first (bf row)))
(display "|")
(maybe-display (last row))
(newline))

(define (maybe-display letter)
(if (not (equal? letter ’))

(display letter)
(display " ")))

(define (subword wd start end)
((repeated bf (- start 1))
((repeated bl (- (count wd) end))
wd)))

She Loves You

Reading and Writing Normal Text

356 Part VI Sequential Programming

read

read

read

read-line

read-line Read-line

> (print-position ’ x oo xx)
|X|
-+-+-
O|O|
-+-+-
|X|X

(define (music-critic) ;; first version
(show "What’s your favorite Beatles song?")
(let ((song (read)))
(show (se "I like" song "too."))))

> (music-critic)
What’s your favorite Beatles song?

(I like SHE too.)

(define (music-critic) ;; second version
(read-line) ; See explanation on next page.
(show "What’s your favorite Beatles song?")
(let ((song (read-line)))
(show (se "I like" song "too."))))

Here’s how it works:

The procedure works fine as long as what you type looks like a Lisp program. That
is, it reads one expression at a time. In the tic-tac-toe program the user types a single
number, which is a Scheme expression, so works fine. But what if we want to read
more than one word?

If the user had typed the song title in parentheses, then it would have been a single
Scheme expression and would have accepted it. But we don’t want the users of our
program to have to be typing parentheses all the time.

Scheme also lets you read one character at a time. This allows you to read any text,
with no constraints on its format. The disadvantage is that you find yourself putting a lot
of effort into minor details. We’ve provided a procedure that reads one line
of input and returns a sentence. The words in that sentence will contain any punctuation
characters that appear on the line, including parentheses, which are not interpreted as
sublist delimiters by . also preserves the case of letters.

She Loves You

Chapter 20 Input and Output 357

> (music-critic)
What’s your favorite Beatles song?

(I like She Loves You too.)

> (begin (read-line) (my-procedure))

read-line music-critic
read-line read Read

read
Read

read

read-line

read read-line

read
read

read-line
read

music-critic read
read music-critic

read-line

music-critic
music-critic

read-line music-critic read-line music-critic

read-line
read-line

read-line

show

Why do we call and ignore its result at the beginning of ?
It has to do with the interaction between and . treats what you
type as a sequence of Scheme expressions; each invocation of reads one of them.

pays no attention to formatting details, such as several consecutive spaces or line
breaks. If, for example, you type several expressions on the same line, it will take several
invocations of to read them all.

By contrast, treats what you type as a sequence of lines, reading one line
per invocation, so it does pay attention to line breaks.

Either of these ways to read input is sensible in itself, but if you mix the two, by
invoking sometimes and sometimes in the same program, the results
can be confusing. Suppose you type a line containing an expression and your program
invokes to read it. Since there might have been another expression on the line,

doesn’t advance to the next line until you ask for the next expression. So if you
now invoke , thinking that it will read another line from the keyboard, it will
instead return an empty list, because what it sees is an empty line—what’s left after
uses up the expression you typed.

You may be thinking, “But doesn’t call !” That’s true, but
Scheme itself used to read the expression that you used to invoke .
So the first invocation of is needed to skip over the spurious empty line.

Our solution works only if is invoked directly at a Scheme prompt.
If were a subprocedure of some larger program that has already called

before calling , the extra in
would really read and ignore a useful line of text.

If you write a procedure using that will sometimes be called directly and
sometimes be used as a subprocedure, you can’t include an extra call in it.
Instead, when you call your procedure directly from the Scheme prompt, you must say

Another technical detail about is that since it preserves the capitalization
of words, its result may include strings, which will be shown in quotation marks if you
return the value rather than ing it:

Formatted Text

She Loves You

She Loves You

358 Part VI Sequential Programming

show-line,

show show-line
read-line show-line

Read-line
Show-line

align

(define (music-critic-return)
(read-line)
(show "What’s your favorite Beatles song?")
(let ((song (read-line)))
(se "I like" song "too.")))

> (music-critic-return)
What’s your favorite Beatles song?

("I like" "She" "Loves" "You" "too.")

(define (music-critic)
(read-line)
(show "What’s your favorite Beatles song?")
(let ((song (read-line)))
(show-line (se "I like" song "too."))))

> (music-critic)
What’s your favorite Beatles song?

I like She Loves You too.

We have also provided which takes a sentence as argument. It prints
the sentence without surrounding parentheses, followed by a newline. (Actually, it takes
any list as argument; it prints all the parentheses except for the outer ones.)

The difference between and isn’t crucial. It’s just a matter of
a pair of parentheses. The point is that and go together.

reads a bunch of disconnected words and combines them into a sentence.
takes a sentence and prints it as if it were a bunch of disconnected words.

Later, when we read and write files in Chapter 22, this ability to print in the same form in
which we read will be important.

We’ve been concentrating on the use of sequential programming with explicit printing
instructions for the sake of conversational programs. Another common application of
sequential printing is to display tabular information, such as columns of numbers. The
difficulty is to get the numbers to line up so that corresponding digits are in the same
position, even when the numbers have very widely separated values. The function

Chapter 20 Input and Output 359

Align

align
display show

Align

Align

(define (square-root-table nums)
(if (null? nums)

’done
(begin (display (align (car nums) 7 1))

(show (align (sqrt (car nums)) 10 5))
(square-root-table (cdr nums)))))

> (square-root-table ’(7 8 9 10 20 98 99 100 101 1234 56789))
7.0 2.64575
8.0 2.82843
9.0 3.00000

10.0 3.16228
20.0 4.47214
98.0 9.89949
99.0 9.94987
100.0 10.00000
101.0 10.04988

1234.0 35.12834
56789.0 238.30443
DONE

> (align 12345679 4 0)
"123+"

can be used to convert a number to a printable word with a fixed number of positions
before and after the decimal point:

takes three arguments. The first is the value to be displayed. The second is the
width of the column in which it will be displayed; the returned value will be a word with
that many characters in it. The third argument is the number of digits that should be
displayed to the right of the decimal point. (If this number is zero, then no decimal
point will be displayed.) The width must be great enough to include all the digits, as well
as the decimal point and minus sign, if any.

As the program example above indicates, does not print anything. It’s a
function that returns a value suitable for printing with or .

What if the number is too big to fit in the available space?

returns a word containing the first few digits, as many as fit, ending with a plus
sign to indicate that part of the value is missing.

can also be used to include non-numeric text in columns. If the first argument
is not a number, then only two arguments are needed; the second is the column width.

align

align

align

show
read

Sequential Programming and Order of Evaluation

user interface

360 Part VI Sequential Programming

(define (name-table names)
(if (null? names)

’done
(begin (display (align (cadar names) 11))

(show (caar names))
(name-table (cdr names)))))

> (name-table ’((john lennon) (paul mccartney)
(george harrison) (ringo starr)))

LENNON JOHN
MCCARTNEY PAUL
HARRISON GEORGE
STARR RINGO
DONE

In this case returns a word with extra spaces at the right, if necessary, so that the
argument word will appear at the left in its column:

As with numbers, if a non-numeric word won’t fit in the allowed space, returns a
partial word ending with a plus sign.

This function is not part of standard Scheme. Most programming languages,
including some versions of Scheme, offer much more elaborate formatting capabilities
with many alternate ways to represent both numbers and general text. Our version is a
minimal capability to show the flavor and to meet the needs of projects in this book.

Our expanded tic-tac-toe program includes both functional and sequential parts. The
program computes its strategy functionally but uses sequences of commands to control
the by alternately printing information to the screen and reading information
from the keyboard.

By adding sequential programming to our toolkit, we’ve increased our ability to write
interactive programs. But there is a cost that goes along with this benefit: We now have
to pay more attention to the order of events than we did in purely functional programs.

The obvious concern about order of events is that sequences of expressions
must come in the order in which we want them to appear, and expressions must fit
into the sequence properly so that the user is asked for the right information at the right
time.

does

Chapter 20 Input and Output 361

(7 8)

let let
left

show-and-return
read

(list (+ 3 4) (- 10 2))

(define (show-and-return x)
(show x)
x)

> (list (show-and-return (+ 3 4)) (show-and-return (- 10 2)))
8
7
(7 8)

> (let ((left (show-and-return (+ 3 4))))
(list left (show-and-return (- 10 2))))

7
8
(7 8)

But there is another, less obvious issue about order of events. When the evaluation of
expressions can have side effects in addition to returning values, the order of evaluation
of argument subexpressions becomes important. Here’s an example to show what we
mean. Suppose we type the expression

The answer, of course, is . It doesn’t matter whether Scheme computes the seven
first (left to right) or the eight first (right to left). But here’s a similar example in which
it matter:

The value that’s ultimately returned, in this example, is the same as before. But the two
numeric values that go into the list are also printed separately, so we can see which is
computed first. (We’ve shown the case of right-to-left computation; your Scheme might
be different.)

Suppose you want to make sure that the seven prints first, regardless of which order
your Scheme uses. You could do this:

The expression in the body of a can’t be evaluated until the variables (such as
) have had their values computed.

It’s hard to imagine a practical use for the artificial procedure,
but a similar situation arises whenever we use . Suppose we want to write a procedure
to ask a person for his or her full name, returning a two-element list containing the first
and last name. A natural mistake to make would be to write this procedure:

⇒

Pitfalls

John
Lennon

all

362 Part VI Sequential Programming

John
read list

let

read
play-ttt-helper read

ask-user x

read play-ttt-helper let
read

let read

(define (ask-for-name) ;; wrong
(show "Please type your first name, then your last name:")
(list (read) (read)))

> (ask-for-name)
Please type your first name, then your last name:

(LENNON JOHN)

(define (ask-for-name)
(show "Please type your first name, then your last name:")
(let ((first-name (read)))
(list first-name (read))))

(x-strat position ’x)

What went wrong? We happen to be using a version of Scheme that evaluates argument
subexpressions from right to left. Therefore, the word was read by the rightmost
call to , which provided the second argument to . The best solution is to use

as we did above:

Even this example looks artificially simple, because of the two invocations of
that are visibly right next to each other in the erroneous version. But look at

. The word doesn’t appear in its body at all. But when we
invoke it using as the strategy procedure for , the expression

hides an invocation of . The structure of includes a that
controls the timing of that . (As it turns out, in this particular case we could have
gotten away with writing the program without . The hidden invocation of is
the only subexpression with a side effect, so there aren’t two effects that might get out of
order. But we had to think carefully about the program to be sure of that.)

It’s easy to get confused about what is printed explicitly by your program and what is
printed by Scheme’s read-eval-print loop. Until now, printing was of the second kind.
Here’s an example that doesn’t do anything very interesting but will help make the point
clear:

⇒

⇒

⇒

returned,

last

Chapter 20 Input and Output 363

display
wright display

name
MATT wright

name

let

read-line read-line
read read

read

yes
read

(define (name)
(display "MATT ")
’wright)

> (name)
MATT WRIGHT

> (bf (name))
MATT RIGHT

(let ((result (compute-this-first)))
(begin
(compute-this-second)
(compute-this-third)
result))

(define (ask-question question) ;; wrong
(show question)
(cond ((equal? (read) ’yes) #t)

((equal? (read) ’no) #f)
(else (show "Please answer yes or no.")

(ask-question question))))

At first glance it looks as if putting the word “Matt” inside a call to is unnecessary.
After all, the word is printed even without using . But watch this:

Every time you invoke , whether or not as the entire expression used at a Scheme
prompt, the word is printed. But the word is and may or may not
be printed depending on the context in which is invoked.

A sequence of expressions returns the value of the expression. If that isn’t what
you want, you must remember the value you want to return using :

Don’t forget that the first call to , or any call to after a call
to , will probably read the empty line that left behind.

Sometimes you want to use what the user typed more than once in your program.
But don’t forget that has an effect as well as a return value. Don’t try to read the
same expression twice:

If the answer is , this procedure will work fine. But if not, the second invocation of
will read a second expression, not test the same expression again as intended. To

20.1

20.2

20.3

20.4

20.5

Boring Exercises

Real Exercises

(converse)
Brian Harvey

I’m fine.

364 Part VI Sequential Programming

read
let

newline

show newline display

name-table

(define (ask-question question)
(show question)
(let ((answer (read)))
(cond ((equal? answer ’yes) #t)

((equal? answer ’no) #f)
(else (show "Please answer yes or no.")

(ask-question question)))))

(cond ((= 2 3) (show ’(lady madonna)) ’(i call your name))
((< 2 3) (show ’(the night before)) ’(hello little girl))
(else ’(p.s. i love you)))

>
Hello, I’m the computer. What’s your name?
Hi, Brian. How are you?
Glad to hear it.

avoid this problem, invoke only once for each expression you want to read, and use
to remember the result:

What happens when we evaluate the following expression? What is printed, and
what is the return value? Try to figure it out in your head before you try it on the
computer.

What does return in your version of Scheme?

Define in terms of and .

Write a program that carries on a conversation like the following example. What
the user types is in boldface.

Our procedure uses a fixed width for the column containing the last
names of the people in the argument list. Suppose that instead of liking British-invasion
music you are into late romantic Russian composers:

20.6

20.7

20.8

20.9

Chapter 20 Input and Output 365

name-table

ask-user

ask-user
ask-user

play-ttt-helper

game x o
x games

x o

> (name-table ’((piotr tchaikovsky) (nicolay rimsky-korsakov)
(sergei rachmaninov) (modest musorgsky)))

> (name-table ’((bill evans) (paul motian) (scott lefaro)))

Alternatively, perhaps you like jazz:

Modify so that it figures out the longest last name in its argument list, adds
two for spaces, and uses that number as the width of the first column.

The procedure isn’t robust. What happens if you type something that
isn’t a number, or isn’t between 1 and 9? Modify it to check that what the user types is a
number between 1 and 9. If not, it should print a message and ask the user to try again.

Another problem with is that it allows a user to request a square that
isn’t free. If the user does this, what happens? Fix to ensure that this can’t
happen.

At the end of the game, if the computer wins or ties, you never find out which
square it chose for its final move. Modify the program to correct this. (Notice that this
exercise requires you to make non-functional.)

The way we invoke the game program isn’t very user-friendly. Write a procedure
that asks you whether you wish to play or , then starts a game. (By definition,

plays first.) Then write a procedure that allows you to keep playing repeatedly.
It can ask “do you want to play again?” after each game. (Make sure that the outcome of
each game is still reported, and that the user can choose whether to play or before
each game.)

Once you see how it works, it’s not so mysterious.

367

Functions

The Main Loop

21 Example: The Program

functions

functions

functions
read

functions

(define (functions-loop)
(let ((fn-name (get-fn)))
(if (equal? fn-name ’exit)

"Thanks for using FUNCTIONS!"
(let ((args (get-args (arg-count fn-name))))
(if (not (in-domain? args fn-name))

(show "Argument(s) not in domain.")
(show-answer (apply (scheme-procedure fn-name) args)))

(functions-loop)))))

In Chapter 2 you used a program called to explore some of Scheme’s
primitive functions. Now we’re going to go back to that program from the other point of
view: instead of using the program to learn about functions, we’re going to look at how
the program works as an example of programming with input and output.

The program is an infinite loop similar to Scheme’s read-eval-print loop. It
reads in a function name and some arguments, prints the result of applying that function
to those arguments, and then does the whole thing over again.

There are some complexities, though. The program keeps asking you
for arguments until it has enough. This means that the portion of the loop has
to read a function name, figure out how many arguments that procedure takes, and
then ask for the right number of arguments. On the other hand, each argument is
an implicitly quoted datum rather than an expression to be evaluated; the
evaluator avoids the recursive complexity of arbitrary subexpressions within expressions.
(That’s why we wrote it: to focus attention on one function invocation at a time, rather
than on the composition of functions.) Here’s the main loop:

368 Part VI Sequential Programming

The Difference between a Procedure and Its Name

Arg-count

In-domain? #t
Scheme-procedure

if show-answer
#f

#F

(define (get-fn) ;; first version
(display "Function: ")
(read))

(define (get-args n)
(if (= n 0)

’()
(let ((first (get-arg)))
(cons first (get-args (- n 1))))))

(define (get-arg) ;; first version
(display "Argument: ")
(read))

(define (show-answer answer)
(newline)
(display "The result is: ")
(if (not answer)

(show "#F")
(show answer))

(newline))

(show-answer (apply fn-name args))

This invokes a lot of helper procedures. takes the name of a procedure
as its argument and returns the number of arguments that the given procedure takes.

takes a list and the name of a procedure as arguments; it returns if the
elements of the list are valid arguments to the given procedure.
takes a name as its argument and returns the Scheme procedure with the given name.
We’ll get back to these helpers later.

The other helper procedures are the ones that do the input and output. The actual
versions are more complicated because of error checking; we’ll show them to you later.

(That weird expression in is needed because in some old versions of
Scheme the empty list means the same as . We wanted to avoid raising this issue in
Chapter 2, so we just made sure that false values always printed as .)

You may be wondering why we didn’t just say

•

•

•

The Association List of Functions

word

Chapter 21 Example: The Program 369

(define x (read))

(+ 2 3)

functions
+

functions

functions

functions-loop
fn-name get-fn read

x (+ 2 3)

butfirst

butfirst

butfirst

Functions

* Some Scheme procedures can accept any number of arguments, but for the purposes of the
program we restrict these procedures to their most usual case, such as two arguments

for .

** Scheme would complain all by itself, of course, but would then stop running the
program. We want to catch the error before Scheme does, so that after seeing the error message
you’re still in . As we mentioned in Chapter 19, a program meant for beginners, such
as the readers of Chapter 2, should be especially robust.

in the definition of . Remember that the value of the variable
comes from , which invokes . Suppose you said

and then typed

The value of would be the three element list , not the number five.

Similarly, if you type “butfirst,” then read will return the , not the
procedure of that name. So we need a way to turn the name of a function into the
procedure itself.

We accomplish this by creating a huge association list that contains all of the functions
the program knows about. Given a word, such as , we need to know three
things:

The Scheme procedure with that name (in this case, the procedure).

The number of arguments required by the given procedure (one).*

The types of arguments required by the given procedure (one word or sentence, which
must not be empty).

We need to know the number of arguments the procedure requires because the
program prompts the user individually for each argument; it has to know how many to
ask for. Also, it needs to know the domain of each function so it can complain if the
arguments you give it are not in the domain.**

This means that each entry in the association list is a list of four elements:

* *

Domain Checking

370 Part VI Sequential Programming

(list ’and and 2 (lambda (x y) (and (boolean? x) (boolean? y))))

(lambda (x y) (and x y))

The real list is much longer, of course, but you get the idea.* It’s a convention in Scheme
programming that names of global variables used throughout a program are surrounded
by asterisks to distinguish them from parameters of procedures.

Here are the selector procedures for looking up information in this a-list:

Note that we represent the domain of a procedure by another procedure.** Each

(define *the-functions* ;; partial listing
(list (list ’* * 2 (lambda (x y) (and (number? x) (number? y))))

(list ’+ + 2 (lambda (x y) (and (number? x) (number? y))))
(list ’and (lambda (x y) (and x y)) 2

(lambda (x y) (and (boolean? x) (boolean? y))))
(list ’equal? equal? 2 (lambda (x y) #t))
(list ’even? even? 1 integer?)
(list ’word word 2 (lambda (x y) (and (word? x) (word? y))))))

(define (scheme-procedure fn-name)
(cadr (assoc fn-name *the-functions*)))

(define (arg-count fn-name)
(caddr (assoc fn-name *the-functions*)))

(define (type-predicate fn-name)
(cadddr (assoc fn-name *the-functions*)))

and

and

functions
and if or

butfirst

* Since is a special form, we can’t just say

That’s because special forms can’t be elements of lists. Instead, we have to create a normal
procedure that can be put in a list but computes the same function as :

We can get away with this because in the program we don’t care about argument
evaluation, so it doesn’t matter that is a special form. We do the same thing for and .

** The domain of a procedure is a set, and sets are generally represented in programs as lists.
You might think that we’d have to store, for example, a list of all the legal arguments to .
But that would be impossible, since that list would have to be infinitely large. Instead, we can take
advantage of the fact that the only use we make of this set is membership testing, that is, finding
out whether a particular argument is in a function’s domain.

type predicate,

Chapter 21 Example: The Program 371

+

#t #f
+

in-domain?

+ - =

member? appearances

Functions

domain-checking procedure, or takes the same arguments as the procedure
whose domain it checks. For example, the type predicate for is

The type predicate returns if its arguments are valid and otherwise. So in the case
of , any two numbers are valid inputs, but any other types of arguments aren’t.

Here’s the predicate:

Of course, certain type predicates are applicable to more than one procedure. It
would be silly to type

for , , , and so on. Instead, we give this function a name:

We then refer to the type predicate by name in the a-list:

Some of the type predicates are more complicated. For example, here’s the one for
the and functions:

(lambda (x y) (and (number? x) (number? y)))

(define (in-domain? args fn-name)
(apply (type-predicate fn-name) args))

(lambda (x y) (and (number? x) (number? y)))

(define (two-numbers? x y)
(and (number? x) (number? y)))

(define *the-functions* ;; partial listing, revised
(list (list ’* * 2 two-numbers?)

(list ’+ + 2 two-numbers?)
(list ’and (lambda (x y) (and x y)) 2

(lambda (x y) (and (boolean? x) (boolean? y))))
(list ’equal? equal? 2 (lambda (x y) #t))
(list ’even? even? 1 integer?)
(list ’word word 2 (lambda (x y) (and (word? x) (word? y))))))

(define (member-types-ok? small big)
(and (word? small)

(or (sentence? big) (and (word? big) (= (count small) 1)))))

372 Part VI Sequential Programming

Item

word-or-sent? count

Equal?

functions

#t functions
6

(lambda (n stuff)
(and (integer? n) (> n 0)

(word-or-sent? stuff) (<= n (count stuff))))

(define (word-or-sent? x)
(or (word? x) (sentence? x)))

(lambda (x y) #t)

(and 6 #t)

#f functions

functions

also has a complicated domain:

This invokes , which is itself the type predicate for the procedure:

On the other hand, some are less complicated. will accept any two
arguments, so its type predicate is just

The complete listing at the end of the chapter shows the details of all these
procedures. Note that the program has a more restricted idea of domain
than Scheme does. For example, in Scheme

returns and does not generate an error. But in the program the argument
is considered out of the domain.*

If you don’t like math, just ignore the domain predicates for the mathematical
primitives; they involve facts about the domains of math functions that we don’t expect
you to know.**

* Why did we choose to restrict the domain? We were trying to make the point that invoking a
procedure makes sense only with appropriate arguments; that point is obscured by the complicating
fact that Scheme interprets any non- value as true. In the program, where
composition of functions is not allowed, there’s no benefit to Scheme’s more permissive rule.

** A reason that we restricted the domains of some mathematical functions is to protect ourselves
from the fact that some version of Scheme support complex numbers while others do not. We
wanted to write one version of that would work in either case; sometimes the easiest
way to avoid possible problems was to restrict some function’s domain.

Intentionally Confusing a Function with Its Name

word

everything

name

Chapter 21 Example: The Program 373

butfirst
functions

butlast count

butlast
every

functions
every keep functions

Functions

Function: count
Argument: butlast

The result is: 7

Function: every
Argument: butlast
Argument: (helter skelter)

The result is: (HELTE SKELTE)

(count ’butlast)

(every butlast ’(helter skelter))

(define (named-every fn-name list)
(every (scheme-procedure fn-name) list))

(define (named-keep fn-name list)
(keep (scheme-procedure fn-name) list))

> (every first ’(another girl))
(A G)
> (named-every ’first ’(another girl))
(A G)
> (every ’first ’(another girl))
ERROR: ATTEMPT TO APPLY NON-PROCEDURE FIRST

Earlier we made a big deal about the difference between a procedure and its name, to
make sure you wouldn’t think you can apply the to arguments. But the

program completely hides this distinction from the user:

When we give as an argument to , it’s as if we’d said

In other words, it’s taken as a word. But when we give as an argument to
, it’s as if we’d said

How can we treat some arguments as quoted and others not? The way this works
is that is considered a word or a sentence by the program. The
higher-order functions and are actually represented in the
implementation by Scheme procedures that take the of a function as an argument,
instead of a procedure itself as the ordinary versions do:

More on Higher-Order Functions

does

every

374 Part VI Sequential Programming

Function: first
Non-Automatically-Quoted-Argument: ’datum

The result is: D

Function: first
Non-Automatically-Quoted-Argument: datum

ERROR: THE VARIABLE DATUM IS UNBOUND.

Function: every
Argument: first

named-every
first

functions functions

functions

functions
every

functions first
named-every every functions

functions
number-of-arguments

number-of-arguments

number-of-arguments
functions functions

This illustration hides a subtle point. When we invoked at a Scheme
prompt, we had to quote the word that we used as its argument. But when you
run the program, you don’t quote anything. The point is that
provides an evaluator that uses a different notation from Scheme’s notation. It may be
clearer if we show an interaction with an imaginary version of that use
Scheme notation:

We didn’t want to raise the issue of quoting at that early point in the book, so we wrote
so that argument is automatically quoted. Well, if that’s the case, it’s

true even when we’re invoking . If you say

. . .

then by the rules of the program, that argument is the quoted word .
So , the procedure that pretends to be in the world,
has to “un-quote” that argument by looking up the corresponding procedure.

One of the higher-order functions that you can use in the program is called
. It takes a procedure (actually the name of a procedure, as

we’ve just been saying) as argument and returns the number of arguments that that
procedure accepts. This example is unusual because there’s no such function in Scheme.
(It would be complicated to define, for one thing, because some Scheme procedures can
accept a variable number of arguments. What should return
for such a procedure?)

The implementation of makes use of the same a-list of
functions that the evaluator itself uses. Since the program

Chapter 21 Example: The Program 375

every keep

every keep
every

keep

fn
stuff

Functions

(list ’number-of-arguments arg-count 1 valid-fn-name?)

(define (valid-fn-name? name)
(assoc name *the-functions*))

(every square ’(think for yourself))

> (every square ’(3 4 5))
(9 16 25)

> (every first ’(think for yourself))
(T F Y)

(lambda (fn stuff)
(hof-types-ok? fn stuff word-or-sent?))

(lambda (fn stuff)
(hof-types-ok? fn stuff boolean?))

needs to know the number of arguments for every procedure anyway, it’s hardly any extra
effort to make that information available to the user. We just add an entry to the a-list:

The type predicate merely has to check that the argument is found in the a-list of
functions:

The type checking for the arguments to and is unusually complicated
because what’s allowed as the second argument (the collection of data) depends on
which function is used as the first argument. For example, it’s illegal to compute

even though either of those two arguments would be allowable if we changed the other
one:

The type-checking procedures for and use a common subprocedure.
The one for is

and the one for is

The third argument specifies what types of results must return when applied to the
elements of .

•

•

•

More Robustness

each element

376 Part VI Sequential Programming

every word
keep

stuff
every keep

read

read

read

functions

(define (hof-types-ok? fn-name stuff range-predicate)
(and (valid-fn-name? fn-name)

(= 1 (arg-count fn-name))
(word-or-sent? stuff)
(empty? (keep (lambda (element)

(not ((type-predicate fn-name) element)))
stuff))

(null? (filter (lambda (element)
(not (range-predicate element)))

(map (scheme-procedure fn-name)
(every (lambda (x) x) stuff))))))

and map every
fn every

map stuff every
stuff

map

* That last argument to is complicated. The reason we use instead of is that the
results of the invocations of might not be words or sentences, so wouldn’t accept them.
But has its own limitation: It won’t accept a word as the argument. So we use
to turn into a sentence—which, as you know, is really a list—and that’s guaranteed to be
acceptable to . (This is an example of a situation in which respecting a data abstraction would
be too horrible to contemplate.)

This says that the function being used as the first argument must be a one-argument
function (so you can’t say, for example, of and something); also,
of the second argument must be an acceptable argument to that function. (If you
the unacceptable arguments, you get nothing.) Finally, each invocation of the given
function on an element of must return an object of the appropriate type: words
or sentences for , true or false for .*

The program we’ve shown you so far works fine, as long as the user never makes a mistake.
Because this program was written for absolute novices, we wanted to bend over backward
to catch any kind of strange input they might give us.

Using to accept user input has a number of disadvantages:

If the user enters an empty line, continues waiting silently for input.

If the user types an unmatched open parenthesis, continues reading forever.

If the user types two expressions on a line, the second one will be taken as a response
to the question the program hasn’t asked yet.

Chapter 21 Example: The Program 377

read-line

Read-line

read-line

Get-arg

read-line #
#t #f "#t"

"#f" Get-arg booleanize

Get-arg any-parens? remove-first-paren remove-last-paren
booleanize

Get-fn get-arg

Functions

(define (get-arg)
(display "Argument: ")
(let ((line (read-line)))
(cond ((empty? line)

(show "Please type an argument!")
(get-arg))
((and (equal? "(" (first (first line)))

(equal? ")" (last (last line))))
(let ((sent (remove-first-paren (remove-last-paren line))))

(if (any-parens? sent)
(begin (show "Sentences can’t have parentheses inside.")

(get-arg))
(map booleanize sent))))

((any-parens? line)
(show "Bad parentheses")
(get-arg))
((empty? (bf line)) (booleanize (first line)))
(else (show "You typed more than one argument! Try again.")

(get-arg)))))

We solve all these problems by using to read exactly one line, even if it’s
empty or ill-formed, and then checking explicitly for possible errors.

treats parentheses no differently from any other character. That’s an
advantage if the user enters mismatched or inappropriately nested parentheses. However,
if the user correctly enters a sentence as an argument to some function, will
include the initial open parenthesis as the first character of the first word, and the final
close parenthesis as the last character of the last word. must correct for these
extra characters.

Similarly, treats number signs () like any other character, so it doesn’t
recognize and as special values. Instead it reads them as the strings and

. calls to convert those strings into Boolean values.

invokes , , , and
, whose meanings should be obvious from their names. You can look up

their definitions in the complete listing at the end of this chapter.

is simpler than , because there’s no issue about parentheses, but
it’s still much more complicated than the original version, because of error checking.

Complete Program Listing

378 Part VI Sequential Programming

get-fn valid-fn-name?

read-line
read

read-line read-line read
functions read read

(functions) get-fn
functions

read-line

This version of uses (which you’ve already seen) to ensure
that what the user types is the name of a function we know about.

There’s a problem with using . As we mentioned in a pitfall in
Chapter 20, reading some input with and then reading the next input with

results in returning an empty line left over by . Although
the program doesn’t use , Scheme itself used to read the

expression that started the program. Therefore, ’s first attempt
to read a function name will see an empty line. To fix this problem, the
procedure has an extra invocation of :

(define (get-fn)
(display "Function: ")
(let ((line (read-line)))
(cond ((empty? line)

(show "Please type a function!")
(get-fn))
((not (= (count line) 1))
(show "You typed more than one thing! Try again.")
(get-fn))
((not (valid-fn-name? (first line)))
(show "Sorry, that’s not a function.")
(get-fn))
(else (first line)))))

(define (functions)
(read-line)
(show "Welcome to the FUNCTIONS program.")
(functions-loop))

;;; The functions program

(define (functions)
;; (read-line)
(show "Welcome to the FUNCTIONS program.")
(functions-loop))

FunctionsChapter 21 Example: The Program 379

(define (functions-loop)
(let ((fn-name (get-fn)))
(if (equal? fn-name ’exit)

"Thanks for using FUNCTIONS!"
(let ((args (get-args (arg-count fn-name))))
(if (not (in-domain? args fn-name))

(show "Argument(s) not in domain.")
(show-answer (apply (scheme-function fn-name) args)))

(functions-loop)))))

(define (get-fn)
(display "Function: ")
(let ((line (read-line)))
(cond ((empty? line)

(show "Please type a function!")
(get-fn))
((not (= (count line) 1))
(show "You typed more than one thing! Try again.")
(get-fn))
((not (valid-fn-name? (first line)))
(show "Sorry, that’s not a function.")
(get-fn))
(else (first line)))))

(define (get-arg)
(display "Argument: ")
(let ((line (read-line)))
(cond ((empty? line)

(show "Please type an argument!")
(get-arg))
((and (equal? "(" (first (first line)))

(equal? ")" (last (last line))))
(let ((sent (remove-first-paren (remove-last-paren line))))

(if (any-parens? sent)
(begin
(show "Sentences can’t have parentheses inside.")
(get-arg))
(map booleanize sent))))

((any-parens? line)
(show "Bad parentheses")
(get-arg))
((empty? (bf line)) (booleanize (first line)))
(else (show "You typed more than one argument! Try again.")

(get-arg)))))

380 Part VI Sequential Programming

(define (get-args n)
(if (= n 0)

’()
(let ((first (get-arg)))
(cons first (get-args (- n 1))))))

(define (any-parens? line)
(let ((letters (accumulate word line)))
(or (member? "(" letters)

(member? ")" letters))))

(define (remove-first-paren line)
(if (equal? (first line) "(")

(bf line)
(se (bf (first line)) (bf line))))

(define (remove-last-paren line)
(if (equal? (last line) ")")

(bl line)
(se (bl line) (bl (last line)))))

(define (booleanize x)
(cond ((equal? x "#t") #t)

((equal? x "#f") #f)
(else x)))

(define (show-answer answer)
(newline)
(display "The result is: ")
(if (not answer)

(show "#F")
(show answer))

(newline))

(define (scheme-function fn-name)
(cadr (assoc fn-name *the-functions*)))

(define (arg-count fn-name)
(caddr (assoc fn-name *the-functions*)))

(define (type-predicate fn-name)
(cadddr (assoc fn-name *the-functions*)))

(define (in-domain? args fn-name)
(apply (type-predicate fn-name) args))

FunctionsChapter 21 Example: The Program 381

;; Type predicates

(define (word-or-sent? x)
(or (word? x) (sentence? x)))

(define (not-empty? x)
(and (word-or-sent? x) (not (empty? x))))

(define (two-numbers? x y)
(and (number? x) (number? y)))

(define (two-reals? x y)
(and (real? x) (real? y)))

(define (two-integers? x y)
(and (integer? x) (integer? y)))

(define (can-divide? x y)
(and (number? x) (number? y) (not (= y 0))))

(define (dividable-integers? x y)
(and (two-integers? x y) (not (= y 0))))

(define (trig-range? x)
(and (number? x) (<= (abs x) 1)))

(define (hof-types-ok? fn-name stuff range-predicate)
(and (valid-fn-name? fn-name)

(= 1 (arg-count fn-name))
(word-or-sent? stuff)
(empty? (keep (lambda (element)

(not ((type-predicate fn-name) element)))
stuff))

(null? (filter (lambda (element)
(not (range-predicate element)))

(map (scheme-function fn-name)
(every (lambda (x) x) stuff))))))

(define (member-types-ok? small big)
(and (word? small)

(or (sentence? big) (and (word? big) (= (count small) 1)))))

382 Part VI Sequential Programming

;; Names of functions as functions

(define (named-every fn-name list)
(every (scheme-function fn-name) list))

(define (named-keep fn-name list)
(keep (scheme-function fn-name) list))

(define (valid-fn-name? name)
(assoc name *the-functions*))

;; The list itself

(define *the-functions*
(list (list ’* * 2 two-numbers?)

(list ’+ + 2 two-numbers?)
(list ’- - 2 two-numbers?)
(list ’/ / 2 can-divide?)
(list ’< < 2 two-reals?)
(list ’<= <= 2 two-reals?)
(list ’= = 2 two-numbers?)
(list ’> > 2 two-reals?)
(list ’>= >= 2 two-reals?)
(list ’abs abs 1 real?)
(list ’acos acos 1 trig-range?)
(list ’and (lambda (x y) (and x y)) 2

(lambda (x y) (and (boolean? x) (boolean? y))))
(list ’appearances appearances 2 member-types-ok?)
(list ’asin asin 1 trig-range?)
(list ’atan atan 1 number?)
(list ’bf bf 1 not-empty?)
(list ’bl bl 1 not-empty?)
(list ’butfirst butfirst 1 not-empty?)
(list ’butlast butlast 1 not-empty?)
(list ’ceiling ceiling 1 real?)
(list ’cos cos 1 number?)
(list ’count count 1 word-or-sent?)
(list ’equal? equal? 2 (lambda (x y) #t))
(list ’even? even? 1 integer?)
(list ’every named-every 2

(lambda (fn stuff)
(hof-types-ok? fn stuff word-or-sent?)))

(list ’exit ’() 0 ’())
; in case user applies number-of-arguments to exit

(list ’exp exp 1 number?)

FunctionsChapter 21 Example: The Program 383

(list ’expt expt 2
(lambda (x y)
(and (number? x) (number? y)

(or (not (real? x)) (>= x 0) (integer? y)))))
(list ’first first 1 not-empty?)
(list ’floor floor 1 real?)
(list ’gcd gcd 2 two-integers?)
(list ’if (lambda (pred yes no) (if pred yes no)) 3

(lambda (pred yes no) (boolean? pred)))
(list ’item item 2

(lambda (n stuff)
(and (integer? n) (> n 0)

(word-or-sent? stuff) (<= n (count stuff)))))
(list ’keep named-keep 2

(lambda (fn stuff)
(hof-types-ok? fn stuff boolean?)))

(list ’last last 1 not-empty?)
(list ’lcm lcm 2 two-integers?)
(list ’log log 1 (lambda (x) (and (number? x) (not (= x 0)))))
(list ’max max 2 two-reals?)
(list ’member? member? 2 member-types-ok?)
(list ’min min 2 two-reals?)
(list ’modulo modulo 2 dividable-integers?)
(list ’not not 1 boolean?)
(list ’number-of-arguments arg-count 1 valid-fn-name?)
(list ’odd? odd? 1 integer?)
(list ’or (lambda (x y) (or x y)) 2

(lambda (x y) (and (boolean? x) (boolean? y))))
(list ’quotient quotient 2 dividable-integers?)
(list ’random random 1 (lambda (x) (and (integer? x) (> x 0))))
(list ’remainder remainder 2 dividable-integers?)
(list ’round round 1 real?)
(list ’se se 2

(lambda (x y) (and (word-or-sent? x) (word-or-sent? y))))
(list ’sentence sentence 2

(lambda (x y) (and (word-or-sent? x) (word-or-sent? y))))
(list ’sentence? sentence? 1 (lambda (x) #t))
(list ’sin sin 1 number?)
(list ’sqrt sqrt 1 (lambda (x) (and (real? x) (>= x 0))))
(list ’tan tan 1 number?)
(list ’truncate truncate 1 real?)
(list ’vowel? (lambda (x) (member? x ’(a e i o u))) 1

(lambda (x) #t))
(list ’word word 2 (lambda (x y) (and (word? x) (word? y))))
(list ’word? word? 1 (lambda (x) #t))))

Exercises

21.1

21.2

21.3

21.4

384 Part VI Sequential Programming

(define (get-args n)
(if (= n 0)

’()
(cons (get-arg) (get-args (- n 1)))))

(lambda (x y) #t)

(list ’equal? equal? 2 #t)

get-args let first
let

equal?

#t #t
equal?

assoc *the-functions*
get-fn

fn-name fn-entry functions-loop
scheme-procedure arg-count

assoc

the-functions
functions

The procedure has a that creates the variable , and then
that variable is used only once inside the body of the . Why doesn’t it just say the
following?

The domain-checking function for is

This seems silly; it’s a function of two arguments that ignores both arguments and always
returns . Since we know ahead of time that the answer is , why won’t it work to have

’s entry in the a-list be

Every time we want to know something about a function that the user typed in,
such as its number of arguments or its domain-checking predicate, we have to do an

in . That’s inefficient. Instead, rewrite the program so that
returns a function’s entry from the a-list, instead of just its name. Then rename

the variable to in the procedure, and rewrite
the selectors , , and so on, so that they don’t invoke

.

Currently, the program always gives the message “argument(s) not in domain”
when you try to apply a function to bad arguments. Modify the program so that each
record in also contains a specific out-of-domain message like “both
arguments must be numbers,” then modify to look up and print this error
message along with “argument(s) not in domain.”

21.5

21.6

21.7

21.8

21.9

Chapter 21 Example: The Program 385

First

assoc #f
arg-count caddr assoc (caddr #f)

word?

get-fn

Functions

Function: if
First Argument: #t
Second Argument: paperback
Third Argument: writer

The result is: PAPERBACK

Function: sqrt
Argument: 36

The result is 6

(lambda (x) #t)

(lambda (x) (word? x))

(functions)

Modify the program so that it prompts for the arguments this way:

but if there’s only one argument, the program shouldn’t say :

The procedure might return instead of an a-list record. How come it’s
okay for to take the of ’s return value if is an
error?

Why is the domain-checking predicate for the function

instead of the following procedure?

What is the value of the following Scheme expression?

We said in the recursion chapters that every recursive procedure has to have a base
case and a recursive case, and that the recursive case has to somehow reduce the size
of the problem, getting closer to the base case. How does the recursive call in
reduce the size of the problem?

Ports

22 Files

open

port,

387

read read-line display show show-line newline

mergesort
read

file1

(show ’(across the universe) file1)
(show-line ’(penny lane) file2)
(read file3)

We learned in Chapter 20 how to read from the keyboard and write to the screen. The
same procedures (, , , , , and)
can also be used to read and write data files on the disk.

Imagine a complicated program that reads a little bit of data at a time from a lot of
different files. For example, soon we will write a program to merge two files the way we
merged two sentences in in Chapter 15. In order to make this work, each
invocation of must specify which file to read from this time. Similarly, we might
want to direct output among several files.

Each of the input/output procedures can take an extra argument to specify a file:

What are and so on? You might think that the natural thing would be for them to
be words, that is, the names of files.

It happens not to work that way. Instead, before you can use a file, you have to
it. If you want to read a file, the system has to check that the file exists. If you want to
write a file, the system has to create a new, empty file. The Scheme procedures that open
a file return a which is what Scheme uses to remember the file you opened. Ports
are useful only as arguments to the input/output procedures. Here’s an example:

close

388 Part VI Sequential Programming

Close-output-port define

songs
show

show

let
in

> (let ((port (open-output-file "songs")))
(show ’(all my loving) port)
(show ’(ticket to ride) port)
(show ’(martha my dear) port)
(close-output-port port))

(ALL MY LOVING)
(TICKET TO RIDE)
(MARTHA MY DEAR)

(define in (open-input-file "songs"))

> (read in)
(ALL MY LOVING)

> (read in)
(TICKET TO RIDE)

> (read in)
(MARTHA MY DEAR)

> (close-input-port in)

(, like , has an unspecified return value that we’re not
going to include in the examples.)

We’ve created a file named and put three expressions, each on its own line,
in that file. Notice that nothing appeared on the screen when we called . Because
we used a port argument to , the output went into the file. Here’s what’s in the file:

The example illustrates two more details about using files that we haven’t mentioned
before: First, the name of a file must be given in double-quote marks. Second, when
you’re finished using a file, you have to the port associated with it. (This is very
important. On some systems, if you forget to close the port, the file disappears.)

The file is now permanent. If we were to exit from Scheme, we could read the file
in a word processor or any other program. But let’s read it using Scheme:

(In this illustration, we’ve used a global variable to hold the port because we wanted to
show the results of reading the file step by step. In a real program, we’d generally use a

structure like the one we used to write the file. Now that we’ve closed the port, the
variable contains a port that can no longer be used.)

Chapter 22 Files 389

Writing Files for People to Read

show-line show

songs2

read-line read-line

show-line
read-line show

read

* Another difference, not apparent in this example, is that and can handle
structured lists. can print a structured list, leaving off only the outermost parentheses,
but will treat any parentheses in the file as ordinary characters; it always returns a
sentence.

> (let ((port (open-output-file "songs2")))
(show-line ’(all my loving) port)
(show-line ’(ticket to ride) port)
(show-line ’(martha my dear) port)
(close-output-port port))

ALL MY LOVING
TICKET TO RIDE
MARTHA MY DEAR

(define in (open-input-file "songs2"))

> (read-line in)
(ALL MY LOVING)

> (close-input-port in)

show read
Show-line

read-line

A file full of sentences in parentheses is a natural representation for information that will
be used by a Scheme program, but it may seem awkward if the file will be read by human
beings. We could use instead of to create a file, still with one song title
per line, but without the parentheses:

The file will contain

What should we do if we want to read this file back into Scheme? We must read the
file a line at a time, with . In effect, treats the breaks between
lines as if they were parentheses:

(Notice that we don’t have to read the entire file before closing the port. If we open the
file again later, we start over again from the beginning.)

As far as Scheme is concerned, the result of writing the file with and
reading it with was the same as that of writing it with and reading it
with . The difference is that without parentheses the file itself is more “user-friendly”
for someone who reads it outside of Scheme.*

Using a File as a Database

something,

end-of-file object.

390 Part VI Sequential Programming

list-ref

read-line skip-songs

Read read-line

Skip-songs done

read

(define (get-song n)
(let ((port (open-input-file "songs2")))
(skip-songs (- n 1) port)
(let ((answer (read-line port)))
(close-input-port port)
answer)))

(define (skip-songs n port)
(if (= n 0)

’done
(begin (read-line port)

(skip-songs (- n 1) port))))

> (get-song 2)
(TICKET TO RIDE)

(define (print-file name)
(let ((port (open-input-file name)))
(print-file-helper port)
(close-input-port port)
’done))

It’s not very interesting merely to read the file line by line. Instead, let’s use it as a very
small database in which we can look up songs by number. (For only three songs, it would
be more realistic and more convenient to keep them in a list and look them up with

. Pretend that this file has 3000 songs, too many for you to want to keep them
all at once in your computer’s memory.)

When we invoke in , we pay no attention to the value
it returns. Remember that the values of all but the last expression in a sequence are
discarded. and are the first procedures we’ve seen that have both a
useful return value and a useful side effect—moving forward in the file.

returns the word when it’s finished. We don’t do anything with
that return value, and there’s no particular reason why we chose that word. But every
Scheme procedure has to return and this was as good as anything.

What if we asked for a song number greater than three? In other words, what if we
read beyond the end of the file? In that case, will return a special value called an

The only useful thing to do with that value is to test for it. Our next
sample program reads an entire file and prints it to the screen:

Transforming the Lines of a File

function
justify

contents

function

Chapter 22 Files 391

print-file-helper

butfirst

butfirst

file-map map

map

file-map

(define (print-file-helper port) ;; first version
(let ((stuff (read-line port)))
(if (eof-object? stuff)

’done
(begin (show-line stuff)

(print-file-helper port)))))

> (print-file "songs")
ALL MY LOVING
TICKET TO RIDE
MARTHA MY DEAR
DONE

Did you notice that each recursive call in has exactly the
same argument as the one before? How does the problem get smaller? (Up to now,
recursive calls have involved something like the of an old argument, or one
less than an old number.) When we’re reading a file, the sense in which the problem
gets smaller at each invocation is that we’re getting closer to the end of the file. You
don’t the port; reading it makes the unread portion of the file smaller as a
side effect.

Often we want to transform a file one line at a time. That is, we want to copy lines from
an input file to an output file, but instead of copying the lines exactly, we want each
output line to be a of the corresponding input line. Here are some examples:
We have a file full of text and we want to the output so that every line is exactly the
same length, as in a book. We have a file of students’ names and grades, and we want a
summary with the students’ total and average scores. We have a file with people’s first
and last names, and we want to rearrange them to be last-name-first.

We’ll write a procedure , analogous to but for files. It will take three
arguments: The first will be a procedure whose domain and range are sentences; the
second will be the name of the input file; the third will be the name of the output file.

Of course, this isn’t exactly like the way works—if it were exactly analogous, it
would take only two arguments, the procedure and the of a file. But one of the
important features of files is that they let us handle amounts of information that are too
big to fit all at once in the computer’s memory. Another feature is that once we write a file,
it’s there permanently, until we erase it. So instead of having a that
returns the contents of the new file, we have a procedure that writes its result to the disk.

print-file

fn

dddbmt

file-map

392 Part VI Sequential Programming

(define (file-map fn inname outname)
(let ((inport (open-input-file inname))

(outport (open-output-file outname)))
(file-map-helper fn inport outport)
(close-input-port inport)
(close-output-port outport)
’done))

(define (file-map-helper fn inport outport)
(let ((line (read-line inport)))
(if (eof-object? line)

’done
(begin (show-line (fn line) outport)

(file-map-helper fn inport outport)))))

David Harmon
Trevor Davies
John Dymond
Michael Wilson
Ian Amey

Harmon, David
Davies, Trevor
Dymond, John
Wilson, Michael
Amey, Ian

Compare this program with the earlier example. The two are almost
identical. One difference is that now the output goes to a file instead of to the screen;
the other is that we apply the function to each line before doing the output. But
that small change vastly increases the generality of our program. We’ve performed our
usual trick of generalizing a pattern by adding a procedure argument, and instead of a
program that carries out one specific task (printing the contents of a file), we have a tool
that can be used to create many programs.

We’ll start with an easy example: putting the last name first in a file full of names.
That is, if we start with an input file named that contains

we want the output file to contain

Since we are using to handle our progress through the file, all we have
to write is a procedure that takes a sentence (one name) as its argument and returns the
same name but with the last word moved to the front and with a comma added:

Chapter 22 Files 393

butlast first

file-map

grades

We use rather than in case someone in the file has a middle name.

To use this procedure we call like this:

Although you don’t see the results on the screen, you can

to see that we got the results we wanted.

Our next example is averaging grades. Suppose the file contains this text:

The output we want is:

Here’s the program:

As before, you can

to see that we got the results we wanted.

(define (lastfirst name)
(se (word (last name) ",") (bl name)))

> (file-map lastfirst "dddbmt" "dddbmt-reversed")
DONE

> (print-file "dddbmt-reversed")

John 88 92 100 75 95
Paul 90 91 85 80 91
George 85 87 90 72 96
Ringo 95 84 88 87 87

John total: 450 average: 90
Paul total: 437 average: 87.4
George total: 430 average: 86
Ringo total: 441 average: 88.2

(define (process-grades line)
(se (first line)

"total:"
(accumulate + (bf line))
"average:"
(/ (accumulate + (bf line))

(count (bf line)))))

> (file-map process-grades "grades" "results")

> (print-file "results")

5

Justifying Text

file-map

r5rs

r5rs

show-line
pad

justify

justify

Revised Report on the Algorithmic Language Scheme,

394 Part VI Sequential Programming

Programming languages should be designed not by
piling feature on top of feature, but by
removing the weaknesses and restrictions that
make additional features appear necessary.
Scheme demonstrates that a very small number of
rules for forming expressions, with no
restrictions on how they are composed, suffice
to form a practical and efficient programming
language that is flexible enough to support most
of the major programming paradigms in use today.

Programming languages should be designed not by
piling feature on top of feature, but by
removing the weaknesses and restrictions that
make additional features appear necessary.
Scheme demonstrates that a very small number of
rules for forming expressions, with no
restrictions on how they are composed, suffice
to form a practical and efficient programming
language that is flexible enough to support most
of the major programming paradigms in use today.

Many word-processing programs text; that is, they insert extra space between words
so that every line reaches exactly to the right margin. We can do that using .

Let’s suppose we have a file , written in some text editor, that looks like this:

(This is the first paragraph of the edited
by William Clinger and Jonathan Rees.)

Here is what the result should be if we justify our text:

The tricky part is that ordinarily we don’t control the spaces that appear when a
sentence is printed. We just make sure the words are right, and we get one space between
words automatically. The solution used in this program is that each line of the output file
is constructed as a single long word, including space characters that we place explicitly
within it. (Since requires a sentence as its argument, our procedure will
actually return a one-word sentence. In the following program, constructs the word,
and makes a one-word sentence containing it.)

This program, although short, is much harder to understand than most of our short
examples. There is no big new idea involved; instead, there are a number of unexciting

−n

this time

Chapter 22 Files 395

Justify

char-count
Extra-spaces

pad

pad

pad

pad

(define (justify line width)
(if (< (count line) 2)

line
(se (pad line

(- (count line) 1)
(extra-spaces width (char-count line))))))

(define (char-count line)
(+ (accumulate + (every count line)) ; letters within words

(- (count line) 1))) ; plus spaces between words

(define (extra-spaces width chars)
(if (> chars width)

0 ; none if already too wide
(- width chars)))

but necessary details. How many spaces between words? Do some words get more
space than others? The program structure is messy because the problem itself is messy.
Although it will be hard to read and understand, this program is a more realistic example
of input/output programming than the cleanly structured examples we’ve shown until
now.

takes two arguments, the line of text (a sentence) and a number indicating
the desired width (how many characters). Here’s the algorithm: First the program
computes the total number of characters the sentence would take up without adding
extras. That’s the job of , which adds up the lengths of all the words, and
adds to that the 1 spaces between words. subtracts that length from
the desired line width to get the number of extra spaces we need.

The hard part of the job is done by . It’s invoked with three arguments: the part
of the line not yet processed, the number of opportunities there are to insert extra spaces
in that part of the line (that is, the number of words minus one), and the number of
extra spaces that the program still needs to insert. The number of extra spaces to insert

is the integer quotient of the number wants to insert and the number of
chances it’ll have. That is, if there are five words on the line, there are four places where

can insert extra space. If it needs to insert nine spaces altogether, then it should
insert 9/4 or two spaces at the first opportunity. (Are you worried about the remainder?
It will turn out that doesn’t lose any spaces because it takes the quotient over again
for each word break. The base case is that the number of remaining word breaks (the
divisor) is one, so there will be no remainder, and all the leftover extra spaces will be
inserted at the last word break.)

396 Part VI Sequential Programming

Preserving Spacing of Text from Files

justify

r5rs-just print-file
r5rs read-line

Read-line

read-line

read-string

* Like all the input and output primitives, can be invoked with or without a port
argument.

(define (pad line chances needed)
(if (= chances 0) ; only one word in line

(first line)
(let ((extra (quotient needed chances)))
(word (first line)

(spaces (+ extra 1))
(pad (bf line) (- chances 1) (- needed extra))))))

(define (spaces n)
(if (= n 0)

""
(word " " (spaces (- n 1)))))

> (file-map (lambda (sent) (justify sent 50)) "r5rs" "r5rs-just")

All My Loving

All My Loving

read-string

Because takes two arguments, we have to decide what line width we want
to give it. Here’s how to make each line take 50 characters:

If we try to print the file from the previous section using ,
it’ll look exactly like . That’s because doesn’t preserve consecutive
spaces in the lines that it reads. cares only where each word (consisting of
non-space characters) begins and ends; it pays no attention to how many spaces come
between any two words. The lines

and

are the same, as far as tells you.

For situations in which we do care about spacing, we have another way to read a line
from a file. The procedure reads all of the characters on a line, returning
a single word that contains all of them, spaces included:*

Merging Two Files

Chapter 22 Files 397

read-string print-file

mergesort
first

> (define inport (open-input-file "r5rs-just"))

> (read-string inport)
"Programming languages should be designed not by"

> (read-string inport)
"piling feature on top of feature, but by"

> (close-input-port inport)

(define (print-file-helper port)
(let ((stuff (read-string port)))
(if (eof-object? stuff)

’done
(begin (show stuff)

(print-file-helper port)))))

(define (filemerge file1 file2 outfile)
(let ((p1 (open-input-file file1))

(p2 (open-input-file file2))
(outp (open-output-file outfile)))

(filemerge-helper p1 p2 outp (read-string p1) (read-string p2))
(close-output-port outp)
(close-input-port p1)
(close-input-port p2)
’done))

We can use to rewrite so that it makes an exact copy of
the input file:

(We only had to change the helper procedure.)

Suppose you have two files of people’s names. Each file has been sorted in alphabetical
order. You want to combine them to form a single file, still in order. (If this sounds
unrealistic, it isn’t. Programs that sort very large amounts of information can’t always fit
it all in memory at once, so they read in as much as fits, sort it, and write a file. Then they
read and sort another chunk. At the end of this process, the program is left with several
sorted partial files, and it has to merge those files to get the overall result.)

The algorithm for merging files is exactly the same as the one we used for merging
sentences in the program of Chapter 15. The only difference is that the
items to be sorted come from reading ports instead of from ing a sentence.

398 Part VI Sequential Programming

* Computer programmers really talk this way.

filemerge-helper
print-file-helper file-map-helper
filemerge-helper

file2
file1 file2

file1 read-string
file1

filemerge-helper

read-string

You might think, comparing with such earlier examples as
and , that it would make more sense for

to take just the three ports as arguments and work like this:

Unfortunately, this won’t work. Suppose that the first line of comes before
the first line of . This program correctly writes the first line of to the output
file, as we expect. But what about the first line of ? Since we called
on , we’ve “gobbled”* that line, but we’re not yet ready to write it to the output.

In each invocation of , only one line is written to the output
file, so unless we want to lose information, we’d better read only one line. This means
that we can’t call twice on each recursive call. One of the lines has to be
handed down from one invocation to the next. (That is, it has to be an argument to the

(define (filemerge-helper p1 p2 outp line1 line2)
(cond ((eof-object? line1) (merge-copy line2 p2 outp))

((eof-object? line2) (merge-copy line1 p1 outp))
((before? line1 line2)
(show line1 outp)
(filemerge-helper p1 p2 outp (read-string p1) line2))
(else (show line2 outp)

(filemerge-helper p1 p2 outp line1 (read-string p2)))))

(define (merge-copy line inp outp)
(if (eof-object? line)

#f
(begin (show line outp)

(merge-copy (read-string inp) inp outp))))

(define (filemerge-helper p1 p2 outp) ;; wrong
(let ((line1 (read-string p1))

(line2 (read-string p2)))
(cond ((eof-object? line1) (merge-copy p2 outp))

((eof-object? line2) (merge-copy p1 outp))
((before? line1 line2)
(show line1 outp)
(filemerge-helper p1 p2 outp))
(else (show line2 outp)

(filemerge-helper p1 p2 outp)))))

Writing Files for Scheme to Read

which

structure

Chapter 22 Files 399

filemerge-helper
filemerge-helper

filemerge
filemerge-helper read-string

read
read-line read-string Read

Read-line
Read-string

read-string

file-map

read-string last

lastfirst read-line
read-string Read-line

read

(define (lastfirst name)
(se (word (last name) ",") (bl name)))

((love me do) (please please me))
((do you want to know a secret?) (please please me))
((think for yourself) (rubber soul))
((your mother should know) (magical mystery tour))

love me do please please me

recursive call.) Since we don’t know in advance line to keep, the easiest solution is
to hand down both lines.

Therefore, also takes as arguments the first line of each file
that hasn’t yet been written to the output. When we first call
from , we read the first line of each file to provide the initial values of these
arguments. Then, on each recursive call, calls only
once.

You may be thinking that the three file-reading procedures we’ve shown, ,
, and , have been getting better and better. ignores case

and forces you to have parentheses in your file. fixes those problems, but it
loses spacing information. can read anything and always gets it right.

But there’s a cost to the generality of ; it can read any file, but it loses
information. For example, when we processed a file of people’s names with

, we used this function:

It’s easy to break a name into its components if you have the name in the form of
a sentence, with the words separated already. But if we had read each line with

, of a line would have been the last letter, not the last name.

The example illustrates why you might want to use rather
than : “understands” spaces. Here’s an example in which
the even more structured is appropriate. We have a file of Beatles songs and the
albums on which they appear:

Each line of this file contains two pieces of information: a song title and an album title.
If each line contained only the words of the two titles, as in

400 Part VI Sequential Programming

read-line
"((love" Read

show

day’s

read
’s (quote s)

day’s
read

Write display

> (show ’((love me do) (please please me)) port)

(show ’((and i love her) (a hard "day’s" night)) port)

((AND I LOVE HER) (A HARD day’s NIGHT))

write display
display

write Show show-line
display show-in-write-format

* There are other kinds of data that prints differently from , but we don’t use
them in this book. The general rule is that formats the output for human readers, while

ensures that Scheme can reread the information unambiguously. and
are extensions that we wrote using . We could have written ,
for example, but happened not to need it.

how would we know where the song title stops and the album title starts? The natural
way to represent this grouping information is to use the mechanism Scheme provides for
grouping, namely, list structure.

If we use to read the file, we’ll lose the list structure; it will return a
sentence containing words like . , however, will do what we want.

How did we create this file in the first place? We just used one per line of the
file, like this:

But what about the movie soundtracks? We’re going to have to come to terms with
the apostrophe in “A Hard Day’s Night.”

The straightforward solution is to put in a string:

The corresponding line in the file will look like this:

This result is actually even worse than it looks, because when we try to the line
back, the will be expanded into in most versions of Scheme. Using a
string made it possible for us to get an apostrophe into Scheme. If the word were
inside quotation marks in the file, then would understand our intentions.

Why aren’t there double quotes in the file? All of the printing procedures we’ve seen
so far assume that whatever you’re printing is intended to be read by people. Therefore,
they try to minimize distracting notation such as double-quote marks. But, as we’ve
discovered, if you’re writing a file to be read by Scheme, then you do want enough
notation so that Scheme can tell what the original object was.

is a printing procedure just like , except that it includes quote
marks around strings:*

⇒

⇒

⇒

22.1

22.2

Pitfalls

Exercises

Chapter 22 Files 401

close-all-ports

filemerge

concatenate

> (write ’(a hard "day’s" night))
(A HARD "day’s" NIGHT)

> (write ’("And I Love Her" "A Hard Day’s Night") port)

Once we’re using strings, and since we’re not extracting individual words from the
titles, we might as well represent each title as one string:

One pitfall crucial to avoid when using files is that if there is an error in your
program, it might blow up and return you to the Scheme prompt without closing the
open files. If you fix the program and try to run it again, you may get a message like
“file busy” because the operating system of your computer may not allow you to open the
same file on two ports at once. Even worse, if you exit from Scheme without closing all
your ports, on some computers you may find that you have unreadable files thereafter.

To help cope with this problem, we’ve provided a procedure
that can be invoked to close every port that you’ve opened since starting Scheme. This
procedure works only in our modified Scheme, but it can help you out of trouble while
you’re learning.

Be sure you don’t open or close a file within a recursive procedure, if you intend to
do it only once. That’s why most of the programs in this chapter have the structure of a
procedure that opens files, calls a recursive helper, and then closes the files.

As we explained in the example, you can’t read the same line twice. Be
sure your program remembers each line in a variable as long as it’s needed.

Write a procedure that takes two arguments: a list of names of
input files, and one name for an output file. The procedure should copy all of the input
files, in order, into the output file.

Write a procedure to count the number of lines in a file. It should take the
filename as argument and return the number.

lookup

page

22.3

22.4

22.5

22.6

22.7

22.8 join

402 Part VI Sequential Programming

John Lennon
Paul McCartney
Paul McCartney
George Harrison

Paul McCartney
Ringo Starr

John Lennon
Paul McCartney
George Harrison

Paul McCartney
Ringo Starr

Write a procedure to count the number of words in a file. It should take the
filename as argument and return the number.

Write a procedure to count the number of characters in a file, including space
characters. It should take the filename as argument and return the number.

Write a procedure that copies an input file to an output file but eliminates multiple
consecutive copies of the same line. That is, if the input file contains the lines

then the output file should contain

Write a procedure that takes as arguments a filename and a word. The
procedure should print (on the screen, not into another file) only those lines from the
input file that include the chosen word.

Write a procedure that takes a filename as argument and prints the file a
screenful at a time. Assume that a screen can fit 24 lines; your procedure should print
23 lines of the file and then a prompt message, and then wait for the user to enter a
(probably empty) line. It should then print the most recent line from the file again (so
that the user will see some overlap between screenfuls) and 22 more lines, and so on until
the file ends.

A common operation in a database program is to two databases, that is, to
create a new database combining the information from the two given ones. There has
to be some piece of information in common between the two databases. For example,

join

not

Chapter 22 Files 403

((john alec entwistle) 04397 john)
((keith moon) 09382 kmoon)
((peter townshend) 10428 pete)
((roger daltrey) 01025 roger)

(john 87 90 76 68 95)
(kmoon 80 88 95 77 89)
(pete 100 92 80 65 72)
(roger 85 96 83 62 74)

((john alec entwistle) 04397 john 87 90 76 68 95)
((keith moon) 09382 kmoon 80 88 95 77 89)
((peter townshend) 10428 pete 100 92 80 65 72)
((roger daltrey) 01025 roger 85 96 83 62 74)

> (join "class-roster" "grades" 3 1 "combined-file")

suppose we have a class roster database in which each record includes a student’s name,
student ID number, and computer account name, like this:

We also have a grade database in which each student’s grades are stored according to
computer account name:

We want to create a combined database like this:

in which the information from the roster and grade databases has been combined for
each account name.

Write a program that takes five arguments: two input filenames, two numbers
indicating the position of the item within each record that should overlap between the
files, and an output filename. For our example, we’d say

In our example, both files are in alphabetical order of computer account name, the
account name is a word, and the same account name never appears more than once in
each file. In general, you may assume that these conditions hold for the item that the
two files have in common. Your program should assume that every item in one file
also appears in the other. A line should be written in the output file only for the items
that do appear in both files.

A row of boxes

foo

23 Vectors

The Indy 500

remembers

state.

405

> (foo 3)
ERROR: FOO HAS NO VALUE

> (define (foo x)
(word x x))

> (foo 3)
33

So far all the programs we’ve written in this book have had no memory of the past history
of the computation. We invoke a function with certain arguments, and we get back a
value that depends only on those arguments. Compare this with the operation of Scheme
itself:

Scheme that you have defined , so its response to the very same
expression is different the second time. Scheme maintains a record of certain results of
its past interaction with you; in particular, Scheme remembers the global variables that
you have defined. This record is called its

Most of the programs that people use routinely are full of state; your text editor, for
example, remembers all the characters in your file. In this chapter you will learn how to
write programs with state.

The Indianapolis 500 is an annual 500-mile automobile race, famous among people
who like that sort of thing. It’s held at the Indianapolis Motor Speedway, a racetrack
in Indianapolis, Indiana. (Indiana is better known as the home of Dan Friedman, the

1
2

Vectors

lap

(lap 64)
Lap

lap
vector.

406 Part VI Sequential Programming

> (lap 87)
1

> (lap 64)
1

> (lap 17)
1

> (lap 64)
2

> (lap 64)
3

> (define v (make-vector 5))

coauthor of some good books about Scheme.) The racetrack is 2 miles long, so, as you
might imagine, the racers have to complete 200 laps in order to finish the race. This
means that someone has to keep track of how many laps each car has completed so far.

Let’s write a program to help this person keep count. Each car has a number, and
the count person will invoke the procedure with that number as argument every
time a car completes a lap. The procedure will return the number of laps that that car
has completed altogether:

(Car 64 managed to complete three laps before the other cars completed two because
the others had flat tires.) Note that we typed the expression three times and
got three different answers. isn’t a function! A function has to return the same
answer whenever it’s invoked with the same arguments.

The point of this chapter is to show how procedures like can be written. To
accomplish this, we’re going to use a data structure called a (You may have seen
something similar in other programming languages under the name “array.”)

A vector is, in effect, a row of boxes into which values can be put. Each vector has a
fixed number of boxes; when you create a vector, you have to say how many boxes you
want. Once a vector is created, there are two things you can do with it: You can put a
new value into a box (replacing any old value that might have been there), or you can
examine the value in a box. The boxes are numbered, starting with zero.

mutator

destructive.
index

Chapter 23 Vectors 407

make-vector

vector-set!

vector-set!
define vector-set!

vector-ref
Vector-ref list-ref

bread

> (vector-set! v 0 ’shoe)

> (vector-set! v 3 ’bread)

> (vector-set! v 2 ’(savoy truffle))

> (vector-ref v 3)
BREAD

> (vector-set! v 3 ’jewel)

> (vector-ref v 3)
JEWEL

> (vector-set! v 1 741)

* The Scheme standard says that the initial contents of the boxes is “unspecified.” That means
that the result depends on the particular version of Scheme you’re using. It’s a bad idea to try to
examine the contents of a box before putting something in it.

There are several details to note here. When we invoke we give it
one argument, the number of boxes we want the vector to have. (In this example, there
are five boxes, numbered 0 through 4. There is no box 5.) When we create the vector,
there is nothing in any of the boxes.*

We put things in boxes using the procedure. The exclamation point
in its name, indicates that this is a —a procedure that changes the value of some
previously created data structure. The exclamation point is pronounced “bang,” as in
“vector set bang.” (Scheme actually has several such mutators, including mutators for
lists, but this is the only one we’ll use in this book. A procedure that modifies its argument
is also called) The arguments to are the vector, the number of
the box (the), and the desired new value. Like , returns an
unspecified value.

We examine the contents of a box using , which takes two arguments,
the vector and an index. is similar to , except that it operates
on vectors instead of lists.

We can change the contents of a box that already has something in it.

The old value of box 3, , is no longer there. It’s been replaced by the new value.

#

lap

Using Vectors in Programs

408 Part VI Sequential Programming

(define *lap-vector* (make-vector 100 0))

* In some versions of Scheme, can take an optional argument specifying an
initial value to put in every box. In those versions, we could just say

without having to use the initialization procedure.

> (vector-set! v 4 #t)

> v
#(SHOE 741 (SAVOY TRUFFLE) JEWEL #T)

> (vector-ref ’#(a b c d) 2)
C

(define *lap-vector* (make-vector 100))

(define (initialize-lap-vector index)
(if (< index 0)

’done
(begin (vector-set! *lap-vector* index 0)

(initialize-lap-vector (- index 1)))))

> (initialize-lap-vector 99)
DONE

make-vector

Once the vector is completely full, we can print its value. Scheme prints vectors in a format
like that of lists, except that there is a number sign () before the open parenthesis. If
you ever have need for a constant vector (one that you’re not going to mutate), you can
quote it using the same notation:

To implement our procedure, we’ll keep its state information, the lap counts, in a
vector. We’ll use the car number as the index into the vector. It’s not enough to create
the vector; we have to make sure that each box has a zero as its initial value.

We’ve created a global variable whose value is the vector. We used a recursive procedure
to put a zero into each box of the vector.* Note that the vector is of length 100, but its
largest index is 99. Also, the base case of the recursion is that the index is less than zero,
not equal to zero as in many earlier examples. That’s because zero is a valid index.

lap

Lap

lap

lap

read

Chapter 23 Vectors 409

Non-Functional Procedures and State

* That’s what we mean by “non-functional,” not that it doesn’t work!

(define (lap car-number)
(vector-set! *lap-vector*

car-number
(+ (vector-ref *lap-vector* car-number) 1))

(vector-ref *lap-vector* car-number))

Now that we have the vector, we can write .

Remember that a procedure body can include more than one expression. When the
procedure is invoked, the expressions will be evaluated in order. The value returned by
the procedure is the value of the last expression (in this case, the second one).

has both a return value and a side effect. The job of the first expression is to
carry out that side effect, that is, to add 1 to the lap count for the specified car. The
second expression looks at the value we just put in a box to determine the return value.

We remarked earlier that isn’t a function because invoking it twice with the same
argument doesn’t return the same value both times.*

It’s not a coincidence that also violates functional programming by maintaining
state information. Any procedure whose return value is not a function of its arguments
(that is, whose return value is not always the same for any particular arguments) must
depend on knowledge of what has happened in the past. After all, computers don’t
pull results out of the air; if the result of a computation doesn’t depend entirely on the
arguments we give, then it must depend on some other information available to the
program.

Suppose somebody asks you, “Car 54 has just completed a lap; how many has it
completed in all?” You can’t answer that question with only the information in the
question itself; you have to remember earlier events in the race. By contrast, if someone
asks you, “What’s the plural of ‘book’?” what has happened in the past doesn’t matter at
all.

The connection between non-functional procedures and state also applies to non-
functional Scheme primitives. The procedure, for example, returns different
results when you invoke it repeatedly with the same argument because it remembers how

Shuffling a Deck

random
Random

random random

random

random

random

let
let let let

let
random Let

card-list

the result from the last time you invoked
it.

Every

between

410 Part VI Sequential Programming

far it’s gotten in the file. That’s why the argument is a port instead of a file name: A port
is an abstract data type that includes, among other things, this piece of state. (If you’re
reading from the keyboard, the state is in the person doing the typing.)

A more surprising example is the procedure that you met in Chapter 2.
isn’t a function because it doesn’t always return the same value when called with

the same argument. How does compute its result? Some versions of
compute a number that’s based on the current time (in tiny units like milliseconds so
you don’t get the same answer from two calls in quick succession). How does your
computer know the time? Every so often some procedure (or some hardware device)
adds 1 to a remembered value, the number of milliseconds since midnight. That’s state,
and relies on it.

The most commonly used algorithm for random numbers is a little trickier; each
time you invoke , the result is a function of

(The procedure is pretty complicated; typically the old number is multiplied by some
large, carefully chosen constant, and only the middle digits of the product are kept.)
Each time you invoke , the returned value is stashed away somehow so that the
next invocation can remember it. That’s state too.

Just because a procedure remembers something doesn’t necessarily make it stateful.
procedure remembers the arguments with which it was invoked, while it’s running.

Otherwise the arguments wouldn’t be able to affect the computation. A procedure
whose result depends only on its arguments (the ones used in the current invocation)
is functional. The procedure is non-functional if it depends on something outside of its
current arguments. It’s that sort of “long-term” memory that we consider to be state.

In particular, a procedure that uses isn’t stateful merely because the body of the
remembers the values of the variables created by the . Once returns a value,

the variables that it created no longer exist. You couldn’t use , for example, to carry
out the kind of remembering that needs. doesn’t remember a value
invocations, just during a single invocation.

One of the advantages of the vector data structure is that it allows elements to be
rearranged. As an example, we’ll create and shuffle a deck of cards.

We’ll start with a procedure that returns a list of all the cards, in standard
order:

Chapter 23 Vectors 411

card-list reduce append
map ((HA H2) (SA))

list->vector

vector->list ->

(define (card-list)
(every (lambda (suit) (every (lambda (rank) (word suit rank))

’(a 2 3 4 5 6 7 8 9 10 j q k)))
’(h s d c)))

(define (card-list)
(reduce append

(map (lambda (suit) (map (lambda (rank) (word suit rank))
’(a 2 3 4 5 6 7 8 9 10 j q k)))

’(h s d c))))

> (card-list)
(HA H2 H3 H4 H5 H6 H7 H8 H9 H10 HJ HQ HK
SA S2 S3 S4 S5 S6 S7 S8 S9 S10 SJ SQ SK
DA D2 D3 D4 D5 D6 D7 D8 D9 D10 DJ DQ DK
CA C2 C3 C4 C5 C6 C7 C8 C9 C10 CJ CQ CK)

list->vector
every card-list

card-sentence
every

list->vector

list->vector

sentence->vector

card-list

In writing , we need because the result from the outer
invocation of is a list of lists:*

Each time we want a new deck of cards, we start with this list of 52 cards, copy the list
into a vector, and shuffle that vector. We’ll use the Scheme primitive ,
which takes a list as argument and returns a vector of the same length, with the
boxes initialized to the corresponding elements of the list. (There is also a procedure

that does the reverse. The characters in these function names are

* We could get around this problem in a different way:

In this version, we’re taking advantage of the fact that our sentence data type was defined in a
way that prevents the creation of sublists. A sentence of cards is a good representation for the
deck. However, with this approach we are mixing up the list and sentence data types, because later
we’re going to invoke with this deck of cards as its argument. If we use sentence
tools such as to create the deck, then the procedure should really be called

.
What difference does it make? The version works fine, as long as sentences are imple-

mented as lists, so that can be applied to a sentence. But the point about abstract
data types such as sentences is to avoid making assumptions about their implementation. If for
some reason we decided to change the internal representation of sentences, then
could no longer be applied to a sentence. Strictly speaking, if we’re going to use this trick, we need
a separate conversion procedure .

Of course, if you don’t mind a little typing, you can avoid this whole issue by having a quoted
list of all 52 cards built into the definition of .

→

make-deck

412 Part VI Sequential Programming

(define (make-deck)
(shuffle! (list->vector (card-list)) 51))

(define (shuffle! deck index)
(if (< index 0)

deck
(begin (vector-swap! deck index (random (+ index 1)))

(shuffle! deck (- index 1)))))

(define (vector-swap! vector index1 index2)
(let ((temp (vector-ref vector index1)))
(vector-set! vector index1 (vector-ref vector index2))
(vector-set! vector index2 temp)))

> (make-deck)
#(C4 SA C7 DA S4 D9 SQ H4 C10 D5 H9 S10 D6
S9 CA C9 S2 H7 S5 H6 D7 HK S7 C3 C2 C6
HJ SK CQ CJ D4 SJ D8 S8 HA C5 DK D3 HQ
D10 H8 DJ C8 H2 H5 H3 CK S3 DQ S6 D2 H10)

> (make-deck)
#(CQ H7 D10 D5 S8 C7 H10 SQ H4 H3 D8 C9 S7
SK DK S6 DA D4 C6 HQ D6 S2 H5 CA H2 HJ
CK D7 H6 HA CJ C4 SJ HK SA C2 D2 S4 DQ
S5 C10 H9 D9 C5 D3 DJ C3 S9 S3 C8 S10 H8)

meant to look like an arrow (); this is a Scheme convention for functions that convert
information from one data type to another.)

Now, each time we call , we get a randomly shuffled vector of cards:

How does the shuffling algorithm work? Conceptually it’s not complicated, but there
are some implementation details that make the actual procedures a little tricky. The
general idea is this: We want all the cards shuffled into a random order. So we choose
any card at random, and make it the first card. We’re then left with a one-card-smaller
deck to shuffle, and we do that by recursion. (This algorithm is similar to selection sort
from Chapter 15, except that we select a random card each time instead of selecting the
smallest value.)

The details that complicate this algorithm have to do with the fact that we’re using a
vector, in which it’s easy to change the value in one particular position, but it’s not easy to
do what would otherwise be the most natural thing: If you had a handful of actual cards
and wanted to move one of them to the front, you’d slide the other cards over to make

More Vector Tools

end

Chapter 23 Vectors 413

cdr

index

0 index

vector list

vector-length

equal?

vector? #t

> (define beatles (vector ’john ’paul ’george ’pete))

> (vector-set! beatles 3 ’ringo)

> beatles
#(JOHN PAUL GEORGE RINGO)

> (vector-length beatles)
4

room. There’s no “sliding over” in a vector. Instead we use a trick; we happen to have
an empty slot, the one from which we removed the randomly chosen card, so instead of
moving several cards, we just move the one card that was originally at the front into that
slot. In other words, we exchange two cards, the randomly chosen one and the one that
used to be in front.

Second, there’s nothing comparable to to provide a one-card-smaller vector to
the recursive invocation. Instead, we must use the entire vector and also provide an
additional argument, a number that keeps track of how many cards remain to be
shuffled. It’s simplest if each recursive invocation is responsible for the range of cards
from position to position of the vector, and therefore the program actually
moves each randomly selected card to the of the remaining portion of the deck.

If you want to make a vector with only a few boxes, and you know in advance what values
you want in those boxes, you can use the constructor . Like , it takes any
number of arguments and returns a vector containing those arguments as elements:

The procedure takes a vector as argument and returns the number
of boxes in the vector.

The predicate , which we’ve used with words and lists, also accepts vectors
as arguments. Two vectors are equal if they are the same size and all their corresponding
elements are equal. (A list and a vector are never equal, even if their elements are equal.)

Finally, the predicate takes anything as argument and returns if and
only if its argument is a vector.

begin

car cdr

The Vector Pattern of Recursion

414 Part VI Sequential Programming

(define (initialize-lap-vector index)
(if (< index 0)

’done
(begin (vector-set! *lap-vector* index 0)

(initialize-lap-vector (- index 1)))))

(define (shuffle! deck index)
(if (< index 0)

deck
(begin (vector-swap! deck index (random (+ index 1)))

(shuffle! deck (- index 1)))))

(< index 0)

(define (list->vector lst)
(l->v-helper (make-vector (length lst)) lst 0))

(define (l->v-helper vec lst index)
(if (= index (vector-length vec))

vec
(begin (vector-set! vec index (car lst))

(l->v-helper vec (cdr lst) (+ index 1)))))

Here are two procedures that you’ve seen earlier in this chapter, which do something to
each element of a vector:

These procedures have a similar structure, like the similarities we found in other
recursive patterns. Both of these procedures take an index as an argument, and both
have

as their base case. Also, both have, as their recursive case, a in which the first
action does something to the vector element selected by the current index, and the
second action is a recursive call with the index decreased by one. These procedures are
initially called with the largest possible index value.

In some cases it’s more convenient to count the index upward from zero:

Since lists are naturally processed from left to right (using and), this program
must process the vector from left to right also.

Vectors versus Lists

Chapter 23 Vectors 415

(define (list-square numbers)
(if (null? numbers)

’()
(cons (square (car numbers))

(list-square (cdr numbers)))))

(define (vector-square numbers)
(vec-sq-helper (make-vector (vector-length numbers))

numbers
(- (vector-length numbers) 1)))

(define (vec-sq-helper new old index)
(if (< index 0)

new
(begin (vector-set! new index (square (vector-ref old index)))

(vec-sq-helper new old (- index 1)))))

Since we introduced vectors to provide mutability, you may have the impression that
mutability is the main difference between vectors and lists. Actually, lists are mutable too,
although the issues are more complicated; that’s why we haven’t used list mutation in this
book.

The most important difference between lists and vectors is that each kind of aggregate
lends itself to a different style of programming, because some operations are faster than
others in each. List programming is characterized by two operations: dividing a list
into its first element and all the rest, and sticking one new element onto the front of
a list. Vector programming is characterized by selecting elements in any order, from a
collection whose size is set permanently when the vector is created.

To make these rather vague descriptions more concrete, here are two procedures,
one of which squares every number in a list, and the other of which squares every number
in a vector:

In the list version, the intermediate stages of the algorithm deal with lists that are smaller
than the original argument. Each recursive invocation “strips off” one element of its
argument and “glues on” one extra element in its return value. In the vector version, the
returned vector is created, at full size, as the first step in the algorithm; its component
parts are filled in as the program proceeds.

This example can plausibly be done with either vectors or lists, so we’ve used it to
compare the two techniques. But some algorithms fit most naturally with one kind of

(= (count sent) 1)

(empty? (butfirst sent))

constant
time

416 Part VI Sequential Programming

cons car cdr null?
vector-ref vector-set! vector-length

list-ref

cdr

filter

* Where did this information come from? Just take our word for it. In later courses you’ll study
how vectors and lists are implemented, and then there will be reasons.

aggregate and would be awkward and slow using the other kind. The swapping of pairs
of elements in the shuffling algorithm would be much harder using lists, while mergesort
would be harder using vectors.

The best way to understand these differences in style is to know the operations that
are most efficient for each kind of aggregate. In each case, there are certain operations
that can be done in one small unit of time, regardless of the number of elements in
the aggregate, while other operations take more time for more elements. The

operations for lists are , , , and ; the ones for vectors are
, , and .* And if you reread the squaring

programs, you’ll find that these are precisely the operations they use.

We might have used in the list version, but we didn’t, and Scheme
programmers usually don’t, because we know that it would be slower. Similarly, we could
implement something like for vectors, but that would be slow, too, since it would
have to make a one-smaller vector and copy the elements one at a time. There are two
possible morals to this story, and they’re both true: First, programmers invent and learn
the algorithms that make sense for whatever data structure is available. Thus we have
well-known programming patterns, such as the pattern, appropriate for lists,
and different patterns appropriate for vectors. Second, programmers choose which data
structure to use depending on what algorithms they need. If you want to shuffle cards,
use a vector, but if you want to split the deck into a bunch of variable-size piles, lists might
be more appropriate. In general, vectors are good at selecting elements in arbitrary
order from a fixed-size collection; lists are good only at selecting elements strictly from
left to right, but they can vary in size.

In this book, despite what we’re saying here about efficiency, we’ve generally tried
to present algorithms in the way that’s easiest to understand, even when we know that
there’s a faster way. For example, we’ve shown several recursive procedures in which the
base case test was

If we were writing the program for practical use, rather than for a book, we would have
written

count

State, Sequence, and Effects

every

sequential programming
imperative programming

Chapter 23 Vectors 417

empty? butfirst
null? cdr count

count

vector-set!

(lap 1) (lap 2)

(lap 1) (lap 2)

* For words, it turns out, the version is faster, because words behave more like vectors
than like lists.

** to coin a phrase.

because we know that and are both constant time operations (because
for sentences they’re implemented as and), while takes a long time
for large sentences. But the version using makes the intent clearer.*

Effects, sequence, and state are three sides of the same coin.**

In Chapter 20 we explained the connection between effect (printing something on
the screen) and sequence: It matters what you print first. We also noted that there’s no
benefit to a sequence of expressions unless those expressions produce an effect, since
the values returned by all but the last expression are discarded.

In this chapter we’ve seen another connection. The way our vector programs
maintain state information is by carrying out effects, namely, invocations.
Actually, effect changes some kind of state; if not in Scheme’s memory, then on the
computer screen or in a file.

The final connection to be made is between state and sequence. Once a program
maintains state, it matters whether some computation is carried out before or after
another computation that changes the state. The example at the beginning of this
chapter in which an expression had different results before and after defining a variable
illustrates this point. As another example, if we evaluate 200 times and
200 times, the program’s determination of the winner of the race depends on whether
the last evaluation of comes before or after the last invocation of .

Because these three ideas are so closely connected, the names
(emphasizing sequence) and (emphasizing effect) are both used
to refer to a style of programming that uses all three. This style is in contrast with
functional programming, which, as you know, uses none of them.

Although functional and sequential programming are, in a sense, opposites, it’s
perfectly possible to use both styles within one program, as we pointed out in the tic-
tac-toe program of Chapter 20. We’ll show more such hybrid programs in the following
chapters.

. . .

⇒

⇒

Pitfalls

Exercises

two-desserts

two-desserts

vector make-vector

same

Do not solve any of the following exercises by converting a vector to a list, using list procedures, and
then converting the result back to a vector.

418 Part VI Sequential Programming

> (define dessert (vector ’chocolate ’sundae))
> (define two-desserts (list dessert dessert))
> (vector-set! (car two-desserts) 1 ’shake)
> two-desserts
(#(CHOCOLATE SHAKE) #(CHOCOLATE SHAKE))

(#(CHOCOLATE SHAKE) #(CHOCOLATE SUNDAE))

> (define two-desserts (list (vector ’chocolate ’sundae)
(vector ’chocolate ’sundae)))

> (vector-set! (car two-desserts) 1 ’shake)
> two-desserts
(#(CHOCOLATE SHAKE) #(CHOCOLATE SUNDAE))

Don’t forget that the first element of a vector is number zero, and there is no element
whose index number is equal to the length of the vector. (Although these points are
equally true for lists, it doesn’t often matter, because we rarely select the elements of a
list by number.) In particular, in a vector recursion, if zero is the base case, then there’s
probably still one element left to process.

Try the following experiment:

You might have expected that after asking to change one word in , the
result would be

However, because of the way we created , both of its elements are the
vector. If you think of a list as a collection of things, it’s strange to imagine the

very same thing in two different places, but that’s the situation. If you want to have
two separate vectors that happen to have the same values in their elements, but are
individually mutable, you’d have to say

Each invocation of or creates a new, independent vector.

Chapter 23 Vectors 419

23.1

23.2

23.3

23.4

23.5

23.6

23.7

sum-vector

vector-fill!

vector-fill!

vector-append append

vector->list

vector-map

vector-map!

vector-filter vector-filter!

> (sum-vector ’#(6 7 8))
21

> (define vec (vector ’one ’two ’three ’four))

> vec
#(one two three four)

> (vector-fill! vec ’yeah)

> vec
#(yeah yeah yeah yeah)

> (vector-append ’#(not a) ’#(second time))
#(not a second time)

Write a procedure that takes a vector full of numbers as its argument
and returns the sum of all the numbers:

Some versions of Scheme provide a procedure that takes a vector
and anything as its two arguments. It replaces every element of the vector with the second
argument, like this:

Write . (It doesn’t matter what value it returns.)

Write a function that works just like regular , but for
vectors:

Write .

Write a procedure that takes two arguments, a function and a vector,
and returns a new vector in which each box contains the result of applying the function
to the corresponding element of the argument vector.

Write a procedure that takes two arguments, a function and a
vector, and modifies the argument vector by replacing each element with the result of
applying the function to that element. Your procedure should return the same vector.

Could you write ? How about ? Explain the
issues involved.

23.8

23.9

23.10

23.11

420 Part VI Sequential Programming

lap

leader

order bill. Order
Bill

order *menu*

(define (leader)
(leader-helper 0 1))

(define (leader-helper leader index)
(cond ((= index 100) leader)

((> (lap index) (lap leader))
(leader-helper index (+ index 1)))
(else (leader-helper leader (+ index 1)))))

> (order 3 ’potstickers)

> (order 3 ’wor-won-ton)

> (order 5 ’egg-rolls)

> (order 3 ’shin-shin-special-prawns)

> (bill 3)
13.85

> (bill 5)
2.75

Modify the procedure to print “Car 34 wins!” when car 34 completes its 200th
lap. (A harder but more correct modification is to print the message only if no other car
has completed 200 laps.)

Write a procedure that says which car is in the lead right now.

Why doesn’t this solution to Exercise 23.9 work?

In some restaurants, the servers use computer terminals to keep track of what
each table has ordered. Every time you order more food, the server enters your order
into the computer. When you’re ready for the check, the computer prints your bill.

You’re going to write two procedures, and takes a table number
and an item as arguments and adds the cost of that item to that table’s bill. takes a
table number as its argument, returns the amount owed by that table, and resets the table
for the next customers. (Your procedure can examine a global variable
to find the price of each item.)

× ×

vector-swap!

23.12

23.13

23.14

23.15

matrix.

array

list

Chapter 23 Vectors 421

#(23 4 18 7 95 60)

#(4 23 18 7 95 60) ; exchange 4 with 23
#(4 7 18 23 95 60) ; exchange 7 with 23
#(4 7 18 23 95 60) ; exchange 18 with itself
#(4 7 18 23 95 60) ; exchange 23 with itself
#(4 7 18 23 60 95) ; exchange 60 with 95

(define (vector-swap! vector index1 index2)
(vector-set! vector index1 (vector-ref vector index2))
(vector-set! vector index2 (vector-ref vector index1)))

> (define m (make-matrix 3 5))

> (matrix-set! m 2 1 ’(her majesty))

> (matrix-ref m 2 1)
(HER MAJESTY)

Rewrite selection sort (from Chapter 15) to sort a vector. This can be done in a
way similar to the procedure for shuffling a deck: Find the smallest element of the vector
and exchange it (using) with the value in the first box. Then find the
smallest element not including the first box, and exchange that with the second box, and
so on. For example, suppose we have a vector of numbers:

Your program should transform the vector through these intermediate stages:

Why doesn’t this work?

Implement a two-dimensional version of vectors. (We’ll call one of these structures
a) The implementation will use a vector of vectors. For example, a three-by-five
matrix will be a three-element vector, in which each of the elements is a five-element
vector. Here’s how it should work:

Generalize Exercise 23.14 by implementing an structure that can have any
number of dimensions. Instead of taking two numbers as index arguments, as the matrix
procedures do, the array procedures will take one argument, a of numbers. The
number of numbers is the number of dimensions, and it will be constant for any particular
array. For example, here is a three-dimensional array (4 5 6):

23.16

422 Part VI Sequential Programming

sentence empty? first butfirst last butlast

> (define a1 (make-array ’(4 5 6)))

> (array-set! a1 ’(3 2 3) ’(the end))

> (sentence ’a ’b ’c)
#(A B C)

> (butfirst (sentence ’a ’b ’c))
#(B C)

(define (praise stuff)
(sentence stuff ’(is good)))

(define (praise stuff)
(sentence stuff ’rules!))

(define (item n sent)
(if (= n 1)

(first sent)
(item (- n 1) (butfirst sent))))

We want to reimplement sentences as vectors instead of lists.

(a) Write versions of , , , , , and that
use vectors. Your selectors need only work for sentences, not for words.

(You don’t have to make these procedures work on lists as well as vectors!)

(b) Does the following program still work with the new implementation of sentences? If
not, fix the program.

(c) Does the following program still work with the new implementation of sentences? If
not, fix the program.

(d) Does the following program still work with the new implementation of sentences?
If not, fix the program. If so, is there some optional rewriting that would improve its
performance?

(e) Does the following program still work with the new implementation of sentences?
If not, fix the program. If so, is there some optional rewriting that would improve its
performance?

Chapter 23 Vectors 423

(define (every fn sent)
(if (empty? sent)

sent
(sentence (fn (first sent))

(every fn (butfirst sent)))))

(f) In what ways does using vectors to implement sentences affect the speed of the
selectors and constructor? Why do you think we chose to use lists?

Spreadsheet display from Microsoft Excel

spreadsheet

cell;

425

spreadsheet
exit

c4
a f

??

(load "spread.scm")

(put 6500 c4)

24 Example: A Spreadsheet Program

Until now, you may have felt that the programs you’ve been writing in Scheme don’t act
like other computer programs you’ve used. In this chapter and the next, we’re going to
tie together almost everything you’ve learned so far to write a program, just
like the ones accountants use.

This chapter describes the operation of the spreadsheet program, as a user manual
would. The next chapter explains how the program is implemented in Scheme.

You can load our program into Scheme by typing

To start the program, invoke the procedure with no arguments; to
quit the spreadsheet program, type .

A spreadsheet is a program that displays information in two dimensions on the
screen. It can also compute some of the information automatically. On the next page
is an example of a display from our spreadsheet program. The display is a rectangle of
information with six columns and 20 rows. The intersection of a row with a column is
called a for example, the cell contains the number 6500. The column letters
(through) and row numbers are provided by the spreadsheet program, as is the
information on the bottom few lines, which we’ll talk about later. (The at the very
bottom is the spreadsheet prompt; you type commands on that line.) We typed most of
the entries in the cells, using commands such as

d
b c

b4

formula

426 Part VI Sequential Programming

* We did it by saying

but we aren’t going to talk about the details of formulas for a while longer.

-----a---- -----b---- -----c---- -----d---- -----e---- -----f----

1 NAME NUMBER PRICE GROSS DISCOUNT NET
2 Widget 40.00 1.27 50.80 0.00 50.80
3 Thingo 203.00 14.95 > 3034.85< 15.00 2579.62
4 Computer 1.00 6500.00 6500.00 8.00 5980.00
5 Yacht 300.00 200000.00 60000000.+ 0.00 60000000.+
6
7
8
9 TOTALS 60009585.+ 60008610.+

10
11
12
13
14
15
16
17
18
19
20
d3: 3034.85
(* b3 c3)
??

(put (* (cell b) (cell c)) d)

What’s most useful about a spreadsheet is its ability to compute some of the cell
values itself. For example, every number in column is the product of the numbers in
columns and of the same row. Instead of putting a particular number in a particular
cell, we put a in all the cells of the column at once.* This implies that when we
change the value of one cell, other cells will be updated automatically. For example, if
we put the number 5 into cell , the spreadsheet will look like this:

> 3034.85<

d3: 3034.85
(* b3 c3)

b4 d4 f4 d9
f9

d3

d3 3034.85
(* b3 c3)

selected

Chapter 24 Example: A Spreadsheet Program 427

In addition to cell , the spreadsheet program has changed the values in , , ,
and .

One detail we haven’t mentioned so far is that at any moment there is one cell.
Right now cell is selected. You can tell that because of the arrowheads surrounding it
in the display, like this:

Also, the lines

at the bottom of the screen mean that cell is selected, its value is , and its
formula is .

-----a---- -----b---- -----c---- -----d---- -----e---- -----f----

1 NAME NUMBER PRICE GROSS DISCOUNT NET
2 Widget 40.00 1.27 50.80 0.00 50.80
3 Thingo 203.00 14.95 > 3034.85< 15.00 2579.62
4 Computer 5.00 6500.00 32500.00 8.00 29900.00
5 Yacht 300.00 200000.00 60000000.+ 0.00 60000000.+
6
7
8
9 TOTALS 60035585.+ 60032530.+

10
11
12
13
14
15
16
17
18
19
20
d3: 3034.85
(* b3 c3)
??

return enter

portable.

not

428 Part VI Sequential Programming

Limitations of Our Spreadsheet

Spreadsheet Commands

In commercial spreadsheet programs, you generally select a cell with arrow keys or by
clicking on it with a mouse. The highlighted cell is typically displayed in inverse video,
and there might be thin lines drawn in a grid on the screen to separate the cells.

Our program leaves all this out for two reasons. First, details like this don’t add very
much to what you learn from studying the program, but they take a disproportionate
effort to get exactly right. Second, the facilities needed in Scheme to control screen
graphics are specific to each model of computer. We couldn’t write a single program
that would work in all versions of Scheme. (A program that works in all versions is called

)

Similarly, our program prints an entire new screenful of information after every
command. A better program would change only the parts of the screen for which the
corresponding values have changed. But there is no uniform way to ask Scheme to print
at a particular position on the screen; some versions of Scheme can do that, but not using
standard procedures.

Also, of course, if you spend $500 on a spreadsheet program, it will have hundreds
of bells and whistles, such as graphing, printing your spreadsheet on paper, changing
the widths of columns, and undoing the last command you typed. But each of those is a
straightforward extension. We didn’t write them all because there are only two of us and
we’re not getting paid enough! You’ll add some features as exercises.

When you begin the spreadsheet program, you will see an empty grid and a prompt at
the bottom of the screen.

Most spreadsheet programs are controlled using single-keystroke commands (or
equivalent mouse clicks). That’s another thing we can’t do entirely portably in Scheme.
We’ve tried to compromise by including one-letter command names in our program, but
you do have to type the or key after each command. The single-letter
commands are for simple operations, such as selecting a cell one position up, down, left,
or right from the previously selected cell.

For more complicated commands, such as entering values, a longer notation is
obviously required. In our program we use a notation that looks very much like that of
a Scheme program: A command consists of a name and some arguments, all enclosed
in parentheses. However, the spreadsheet commands are Scheme expressions. In

Moving the Selection

f
b
n
p

f b n p

select

a z 1 30

Chapter 24 Example: A Spreadsheet Program 429

(put 6500 c4)

(put 6500 ’c4) ;; wrong!

?? (f 4)

(select e12)

particular, the arguments are not evaluated as they would be in Scheme. For example,
earlier we said

If this were a Scheme expression, we would have had to quote the second argument:

There are four one-letter commands to move to a new selected cell:

Command Name Meaning

move Forward (right)
move Back (left)
move to Next line (down)
move to Previous line (up)

(These command names are taken from EMACS, the industry standard text editor.)

If you want to move one step, you can just type the letter , , , or on a line
by itself. If you want to move farther, you can invoke the same commands in Scheme
notation, with the distance to move as an argument:

Another way to move the selection is to choose a particular cell by name. The
command for this is called :

The spreadsheet grid includes columns through and rows through . Not all
of it can fit on the screen at once. If you select a cell that’s not shown on the screen, then
the program will shift the entire screen display so that the rows and columns shown will
include the newly selected cell.

(put ’peter d)

Putting Values in Cells

put

’word

"Widget"

+

()

put

peter d
d1

d30

value

430 Part VI Sequential Programming

As we’ve already seen, the command is used to put a value in a particular cell. It
can be used with either one or two arguments. The first (or only) argument is a value.
If there is a second argument, it is the (unquoted) name of the desired cell. If not, the
currently selected cell will be used.

A value can be a number or a quoted word. (As in Scheme programming, most
words can be quoted using the single-quote notation , but words that include
spaces, mixed-case letters, or some punctuation characters must be quoted using the
double-quote string notation .) However, non-numeric words are used only as
labels; they can’t provide values for formulas that compute values in other cells.

The program displays numbers differently from labels. If the value in a cell is a
number, it is displayed at the right edge of its cell, and it is shown with two digits following
the decimal point. (Look again at the screen samples earlier in this chapter.) If the value
is a non-numeric word, it is displayed at the left edge of its cell.

If the value is too wide to fit in the cell (that is, more than ten characters wide), then
the program prints the first nine characters followed by a plus sign () to indicate that
there is more information than is visible. (If you want to see the full value in such a cell,
select it and look at the bottom of the screen.)

To erase the value from a cell, you can put an empty list in it. With this one
exception, lists are not allowed as cell values.

It’s possible to put a value in an entire row or column, instead of just one cell. To do
this, use the row number or the column letter as the second argument to . Here’s an
example:

This command will put the word into all the cells in column . (Remember that
not all the cells are visible at once, but even the invisible ones are affected. Cells
through are given values by this command.)

What happens if you ask to fill an entire row or column at once, but some of the
cells already have values? In this case, only the vacant cells will be affected. The only
exception is that if the you are using is the empty list, indicating that you want to
erase old values, then the entire row or column is affected. (So if you put a formula in
an entire row or column and then change your mind, you must erase the old one before
you can install a new one.)

Formulas

put

d6 b3
c5

d6
b3 c5

b3 d6

b4

lambda

put

d b
c same

Chapter 24 Example: A Spreadsheet Program 431

(put (+ b3 c5) d6)

(put (* d6 (+ b4 92)) a3)

(put (* b2 c2) d)

We mentioned earlier that the value of one cell can be made to depend on the values of
other cells. This, too, is done using the command. The difference is that instead of
putting a constant value into a cell, you can put a formula in the cell. Here’s an example:

This command says that the value in cell should be the sum of the values in and
. The command may or may not have any immediately visible effect; it depends on

whether those two cells already have values. If so, a value will immediately appear in ;
if not, nothing happens until you put values into and .

If you erase the value in a cell, then any cells that depend on it are also erased. For
example, if you erase the value in , then the value in will disappear also.

So far we’ve seen only one example of a formula; it asks for the sum of two
cells. Formulas, like Scheme expressions, can include invocations of functions with
sub-formulas as the arguments.

The “atomic” formulas are constants (numbers or quoted words) and cell references
(such as in our example).

Not every Scheme function can be used in a formula. Most important, there is no
in the spreadsheet language, so you can’t invent your own functions. Also, since

formulas can be based only on numbers, only the numeric functions can be used.

Although we’ve presented the idea of putting a formula in a cell separately from
the idea of putting a value in a cell, a value is really just a particularly simple formula.
The program makes no distinction internally between these two cases. (Since a constant
formula doesn’t depend on any other cells, its value is always displayed right away.)

We mentioned that a value can be into an entire row or column at once. The
same is true of formulas in general. But this capability gives rise to a slight complication.
The typical situation is that each cell in the row or column should be computed using the
same algorithm, but based on different values. For example, in the spreadsheet at the
beginning of the chapter, every cell in column is the product of a cell in column and
a cell in column , but not the cell for every row. If we used a formula like

not

432 Part VI Sequential Programming

d 50.80

Cell

d5 (cell b) b5 (cell 12)
d12

cell

d3 d2 c2

cell

(put (* b2 c2) d2)
(put (* b3 c3) d3)
(put (* b4 c4) d4)

(put (* (cell b) (cell c)) d)

(put (- (cell 2) (cell <1 2)) 3)

-----a---- -----b---- -----c---- -----d---- -----e---- -----f----

1 MONTH January February March April May
2 PRICE 70.00 74.00 79.00 76.50 81.00
3 CHANGE 4.00 5.00 -2.50 4.50

then every cell in column would have the value . Instead we want the equivalent
of

and so on. The spreadsheet program meets this need by providing a notation for cells
that indicates position relative to the cell being computed, rather than by name. In our
case we could say

can take one or two arguments. In this example we’ve used the one-argument
version. The argument must be either a letter, to indicate a column, or a number between
1 and 30, to indicate a row. Whichever dimension (row or column) is specified by the
argument will be the same as that of the cell being computed. So, for example, if we are
computing a value for cell , then refers to cell , but would
refer to cell .

The one-argument form of is adequate for many situations, but not if you
want a cell to depend on one that’s both in a different row and in a different column.
For example, suppose you wanted to compute the change of a number across various
columns, like this:

The value of cell , for example, is a function of the values of cells and .

To create this spreadsheet, we said

The first appearance of asks for the value of the cell immediately above the one
being calculated. (That is, it asks for the cell in row 2 of the same column.) But the
one-argument notation doesn’t allow us to ask for the cell above and to the left.

*
<3

>5

b3
(- b2 a2) a2 PRICE b3

Chapter 24 Example: A Spreadsheet Program 433

Displaying Formula Values

Loading Spreadsheet Commands from a File

(put (- (cell 2) (cell <1 2)) 3)

(put (- (cell 2) (cell <1 <1)) 3)

(put (- (cell * 2) (cell <1 2)) 3)

(put (- (cell * <1) (cell <1 2)) 3)

(put (- (cell <0 <1) (cell <1 <1)) 3)

In the two-argument version, the first argument determines the column and the
second determines the row. Each argument can take any of several forms. It can be a
letter (for the column) or number (for the row), to indicate a specific column or row. It
can be an asterisk () to indicate the same column or row as the cell being calculated.
Finally, either argument can take the form to indicate a cell three before the one
being calculated (above or to the left, depending on whether this is the row or column
argument) or to indicate a cell five after this one (below or to the right).

So any of the following formulas would have let us calculate the change in this
example:

When a formula is put into every cell in a particular row or column, it may not be
immediately computable for all those cells. The value for each cell will depend on the
values of the cells to which the formula refers, and some of those cells may not have
values. (If a cell has a non-numeric value, that’s the same as not having a value at all
for this purpose.) New values are computed only for those cells for which the formula
is computable. For example, cell in the monthly change display has the formula

, but the value of cell is the label , so no value is computed for .

Formulas can be used in two ways. We’ve seen that a formula can be associated with a
cell, so that changes to one cell can automatically recompute the value of another. You
can also type a formula directly to the spreadsheet prompt, in which case the value of the
formula will be shown at the bottom of the screen. In a formula used in this way, cell
references relative to “the cell being computed” refer instead to the selected cell.

Sometimes you use a series of several spreadsheet commands to set up some computation.

filename

load

put
put

(put "Thingo" a3)

(load " ")

Application Programs and Abstraction

metaphor

documentation

generalization

loses

434 Part VI Sequential Programming

For example, we had to use several commands such as

to set up the sample spreadsheet displays at the beginning of this chapter.

If you want to avoid retyping such a series of commands, you can put the commands
in a file using a text editor. Then, in the spreadsheet program, use the command

This looks just like Scheme’s (on purpose), but it’s not the same thing; the file
that it loads must contain spreadsheet commands, not Scheme expressions. It will list the
commands from the file as it carries them out.

We’ve talked throughout this book about the importance of abstraction, the act of giving
a name to some process or structure. Writing an application program can be seen as the
ultimate in abstraction. The user of the program is encouraged to think in a vocabulary
that reflects the tasks for which the program is used, rather than the steps by which
the program does its work. Some of these names are explicitly used to control the
program, either by typing commands or by selecting named choices from a menu. Our
spreadsheet program, for example, uses the name for the task of putting a formula
into a cell. The algorithm used by the command is quite complicated, but the user’s
picture of the command is simple. Other names are not explicitly used to control the
program; instead, they give the user a with which to think about the work of
the program. For example, in describing the operation of our spreadsheet program,
we’ve talked about rows, columns, cells, and formulas. Introducing this vocabulary in
our program is just as much an abstraction as introducing new procedures
in the program itself.

In the past we’ve used procedural abstraction to achieve of an algo-
rithm, moving from specific instances to a more universal capability, especially when we
implemented the higher-order functions. If you’ve used application programs, though,
you’ve probably noticed that in a different sense the abstraction in the program
generality. For example, a formula in our spreadsheet program can operate only on
data that are in cells. The same formula, expressed as a Scheme procedure, can get its
arguments from anywhere: from reading a file, from the keyboard, from a global variable,
or from the result of invoking some other procedure.

extensible.

Zterm,

extensibility.

Hypertalk Hypercard

Chapter 24 Example: A Spreadsheet Program 435

An application program doesn’t have to be less general than a programming
language. The best application programs are Broadly speaking, this means that
the programmer has made it possible for the user to add capabilities to the program,
or modify existing capabilities. This broad idea of extensibility can take many forms in
practice. Some kinds of extensibility are more flexible than others; some are easier to
use than others. Here are a few examples:

Commercial spreadsheet programs have grown in extensibility. We mentioned that
our spreadsheet program allows the user to express a function only as a formula attached
to a cell. Modern commercial programs allow the user to define a procedure, similar in
spirit to a Scheme procedure, that can then be used in formulas.

Our program, on the other hand, is extensible in a different sense: We provide the
Scheme programs that implement the spreadsheet in a form that users can read and
modify. In the next chapter, in fact, you’ll be asked to extend our spreadsheet. Most
commercial programs are provided in a form that computers can read, but people can’t.
The provision of human-readable programs is an extremely flexible form of extensibility,
but not necessarily an easy one, since you have to know how to program to take advantage
of it.

We have written much of this book using a home computer as a remote terminal to
a larger computer at work. The telecommunication program we’re using, called
has dozens of options. We can set frivolous things like the screen color and the sound
used to attract our attention; we can set serious things like the file transfer protocol
used to “download” a chapter for printing at home. The program has a directory of
telephone numbers for different computers we use, and we can set the technical details
of the connection separately for each number. It’s very easy to customize the program in
all of these ways, because it uses a mouse-driven graphical interface. But the interface is
inflexible. For example, although the screen can display thousands of colors, only eight
are available in Zterm. More important, if we think of an entirely new feature that would
require a modification to the program, there’s no way we can do it. This program’s
extensibility is the opposite of that in our spreadsheet: It’s very easy to use, but limited in
flexibility.

We started by saying that the abstraction in an application program runs the risk of
limiting the program’s generality, but that this risk can be countered by paying attention to
the goal of The ultimate form of extensibility is to provide the full capabilities
of a programming language to the user of the application program. This can be done
by inventing a special-purpose language for one particular application, such as the

language that’s used only in the application program. Alternatively,
the application programmer can take advantage of an existing general-purpose language

Exercises

load

a
b

c
d a c e

a

24.1

24.2

24.3

436 Part VI Sequential Programming

by making it available within the program. You’ll see an example soon, in the database
project, which the user controls by typing expressions at a Scheme prompt. The EMACS
text editor is a better-known example that includes a Lisp interpreter.

For each of the following exercises, the information to hand in is the sequence of
spreadsheet commands you used to carry out the assignment. You will find the
command helpful in these exercises.

Set up a spreadsheet to keep track of the grades in a course. Each column should
be an assignment; each row should be a student. The last column should add the grade
points from the individual assignments. You can make predictions about your grades on
future assignments and see what overall numeric grade each prediction gives you.

Make a table of tax and tip amounts for a range of possible costs at a restaurant.
Column should contain the pre-tax amounts, starting at 50 cents and increasing by
50 cents per row. (Do this without entering each row separately!) Column should
compute the tax, based on your state’s tax rate. Column should compute the 15% tip.
Column should add columns through to get the total cost of the meal. Column
should contain the same total cost, rounded up to the next whole dollar amount.

Make a spreadsheet containing the values from Pascal’s triangle: Each element
should be the sum of the number immediately above it and the number immediately to
its left, except that all of column should have the value 1, and all of row 1 should have
the value 1.

They did spreadsheets by hand in the old days.

•

•

•

•

•

•

•

load put

expression

439

25 Implementing the Spreadsheet Program

This is a big program and you can’t keep it all in your head at once. In this chapter, we’ll
discuss different parts of the program separately. For example, while we’re talking about
the screen display procedures, we’ll just take the rest of the program for granted. We’ll
assume that we can ask for the value in a cell, and some other part of the program will
ensure that we can find it out.

Our division of the program includes these parts:

The command processor, which reads user commands and oversees their execution.

The specific commands: cell selection commands, , and .

The formula translator, which turns a formula into an by translating relative
cell positions to specific cells.

The dependency manager, which keeps track of which cells’ expressions depend on
which other cells.

The expression evaluator.

The screen printer.

The cell management procedures, which store and retrieve cell information for the
rest of the program.

The diagram on the next page shows the interconnections among these seven parts
of the program by showing what information they have to provide for each other.

Expression
Evaluator

Cell
Manager

cell expression, value,
and dependencies

se
le

ct
ed

 c
el

l
an

d
sc

re
en

 c
or

ne
r

cell dependencies

Cell Selection
Commands

Screen
Printer

cell value

ce
ll

va
lu

e

Formula
Translator

value of
expression

ex
pr

es
si

on

va
lu

e
of

 e
xp

re
ss

io
n

ty
pe

d
as

 c
om

m
an

d

Dependency
Manager

Command
Processor

new formula and cell new cell or offset

vector-ref
c5

Cells, Cell Names, and Cell IDs

aren’t

440 Part VI Sequential Programming

(The arrows that in the diagram convey as much information as the ones that are.
For example, since there is no arrow from the evaluator to the printer, we know that when
the spreadsheet program redisplays the screen, the values printed are found directly in
the data structure; no new computation of formulas is needed.)

The spreadsheet program does its work by manipulating cells. In this section we introduce
three abstract data types having to do with cells. Before we jump into the spreadsheet
procedures themselves, we must introduce these three types, which are used throughout
the program.

Each cell is a data structure that contains various pieces of information, including
its value and other things that we’ll talk about later. Just as these cells are arranged
in a two-dimensional pattern on the screen, they are kept within the program in a
two-dimensional data structure: a vector of vectors.

The elements of a vector are selected by number, using . Therefore, if
we’re looking for a particular cell, such as , what the program really wants to know is

The Command Processor

Chapter 25 Implementing the Spreadsheet Program 441

c5 c 5
c

c5

id
cell-id?

id

id-row id-col
make-id

cell-name->id

* The vector elements are numbered from zero, but we number rows and columns from one,
subtracting one in the selector that actually extracts information from the array of cells.

(id 3 5)

(define (command-loop)
(print-screen)
(let ((command-or-formula (read)))
(if (equal? command-or-formula ’exit)

"Bye!"
(begin (process-command command-or-formula)

(command-loop)))))

that this cell is in column 3, row 5.* If the program refers to cells by name, then there
will be several occasions for it to split the word into its pieces and , and to convert
the letter into the number 3. These operations are fairly slow. To avoid carrying them
out repeatedly, the spreadsheet program identifies cells internally using a form that’s
invisible to the person using the program, called a “cell ID.”

Therefore, there are three different abstract data types in the program that have to
do with cells: cell names, such as ; cell IDs; and cells themselves. We’ve chosen to
represent cell IDs as three-element lists like this one:

but you won’t see much evidence of that fact within the program because we’ve im-
plemented selectors and constructors for all of these three types. The representation
includes the word because one facility that the program needs is the ability to deter-
mine whether some datum is or is not a cell ID. The predicate looks for a list
whose first element is .

The selectors for cell IDs are and ; both take a cell ID as argument
and return a number. The constructor, , takes a column number (not a letter)
and a row number as arguments.

When the program recognizes a cell name typed by the user, it calls
to translate the name to an ID, and only the ID is stored for later use.

(These application-specific ADTs are similar to the database of known values in the
pattern matcher, as opposed to more general-purpose ADTs like trees and sentences.)

Here’s the core of the command processor:

442 Part VI Sequential Programming

exit
read

Print-screen

process-command
put

process-command (f 3) f

Process-command

command?
process-command

1

Execute-command

((p) (n) (b) (f) (select) (put) (load))

(define (process-command command-or-formula)
(cond ((and (list? command-or-formula)

(command? (car command-or-formula)))
(execute-command command-or-formula))
((command? command-or-formula)
(execute-command (list command-or-formula 1)))
(else (exhibit (ss-eval (pin-down command-or-formula

(selection-cell-id)))))))

This short program runs until the user types , because it invokes itself as its last
step. During each invocation, it prints the current spreadsheet display, uses to read
a command, and carries out whatever actions that command requires. Those actions
probably change something in the spreadsheet data, so the next cycle has to redisplay the
modified data before accepting another command.

is a large chunk of the program and will be discussed in its own
section.

How does work? It looks for the command name (a word such
as) in its list of known commands. The commands are kept in an association list,
like this:

. .

Each of these sublists contains two elements: the name and the procedure that carries
out the command. We’ll see shortly how these procedures are invoked.

Looking for the command name is a little tricky because in the spreadsheet language
a command can be invoked either by typing its name inside parentheses with argu-
ments, as in Scheme, or by typing the name alone, without parentheses, which Scheme
wouldn’t interpret as a request to invoke a procedure. For example, the argument
to might be a list, such as , or just a word, such as . A
third case is that the argument might not be one of these commands at all, but instead
might be a formula, just like one that could be used to determine the value in a cell.

must recognize these three cases:

The predicate tells whether its argument is one of the command names in the
list. As you can see, if a command name is used without parentheses,
pretends that it was given an argument of .

looks up the command name in the list of commands, then
applies the associated procedure to the arguments, if any:

Cell Selection Commands

Chapter 25 Implementing the Spreadsheet Program 443

else process-command

exhibit

read-line read command-loop

read-line read-line

p

* Not every version of Scheme has this behavior. If you find that you have to hit twice
after exhibiting the value of a formula, take out one of the invocations.

(define (execute-command command)
(apply (get-command (car command))

(cdr command)))

(define (exhibit val)
(show val)
(show "Type RETURN to redraw screen")
(read-line)
(read-line))

(define (prev-row delta)
(let ((row (id-row (selection-cell-id))))
(if (< (- row delta) 1)

(error "Already at top.")
(set-selected-row! (- row delta)))))

(define (set-selected-row! new-row)
(select-id! (make-id (id-column (selection-cell-id)) new-row)))

return
read-line

The clause in , which handles the case of a formula typed
instead of a command, invokes several procedures that you haven’t seen yet. We’ll explain
them when we get to the section of the program that manipulates formulas. The only
one that’s used just for command processing is :

This prints a value on the screen, gives the user a chance to read it, and then, when
the user is ready, returns to processing commands. (This will entail redrawing the
spreadsheet display; that’s why we have to wait for the user to hit return.) The reason
that we invoke twice is that the call to from reads the
spreadsheet formula you typed but doesn’t advance to the next line. Therefore, the first

invocation gobbles that empty line; the second call to reads the
(probably empty) line that the user typed in response to the prompting message.*

Several commands have to do with selecting a cell. We’ll show just one typical procedure,
the one that carries out the (previous row) command:

LoadThe Command

444 Part VI Sequential Programming

Prev-row
prev-row
Next-row

Adjust-screen-boundaries

Selection-cell-id
set-selection-cell-id!

screen-corner-cell-id
set-screen-corner-cell-id!

special-cells

command-loop
read

process-command

(define (select-id! id)
(set-selection-cell-id! id)
(adjust-screen-boundaries))

(define (spreadsheet-load filename)
(let ((port (open-input-file filename)))
(sl-helper port)
(close-input-port port)))

(define (sl-helper port)
(let ((command (read port)))
(if (eof-object? command)

’done
(begin (show command)

(process-command command)
(sl-helper port)))))

must ensure that the selected cell is within the legal boundaries. Since
only moves upward, it has to check only that we don’t go beyond row 1.

(will instead check that we don’t go beyond row 30 in the other direction.)

checks for the situation in which the newly selected
cell, although within the bounds of the spreadsheet, is not within the portion currently
visible on the screen. In that case the visible portion is shifted to include the selected cell.
(The procedure is straightforward and uninteresting, so we’re not showing it here. You
can see it in the complete listing of the spreadsheet program at the end of this chapter.)

is a procedure that returns the cell ID of the cell
that’s currently selected. Similarly, sets the cur-
rent selection. There are comparable procedures and

to keep track of which cell should be in the upper
left corner of the screen display. There is a vector named that holds
these two cell IDs; you can see the details in the complete program listing.

Loading commands from files is easy. The procedure, which carries
out commands from the keyboard, repeatedly reads a command with and invokes

to carry it out. To load commands from a file, we want to do exactly
the same thing, except that we read from a file instead of from the keyboard:

PutThe Command

Chapter 25 Implementing the Spreadsheet Program 445

put

Put
put-formula-in-cell

put put-formula-in-cell
put put-all-cells-in-row

put-all-cells-in-col

Put

where

put (car where)

The command takes two arguments, a formula and a place to put it. The second
of these can specify either a single cell or an entire row or column. (If there is
no second argument, then a single cell, namely the selected cell, is implied.)
invokes either once or several times, as needed. If only a
single cell is involved, then calls directly. If a row or
column is specified, then uses the auxiliary procedure
or as an intermediary.

The only tricky part of this is the first line. can be invoked with either one or two
arguments. Therefore, the dot notation is used to allow a variable number of arguments;
the parameter will have as its value not the second argument itself, but a list that
either contains the second argument or is empty. Thus, if there is a second argument,

refers to it as .

(define (put formula . where)
(cond ((null? where)

(put-formula-in-cell formula (selection-cell-id)))
((cell-name? (car where))
(put-formula-in-cell formula (cell-name->id (car where))))
((number? (car where))
(put-all-cells-in-row formula (car where)))
((letter? (car where))
(put-all-cells-in-col formula (letter->number (car where))))
(else (error "Put it where?"))))

(define (put-all-cells-in-row formula row)
(put-all-helper formula (lambda (col) (make-id col row)) 1 26))

(define (put-all-cells-in-col formula col)
(put-all-helper formula (lambda (row) (make-id col row)) 1 30))

(define (put-all-helper formula id-maker this max)
(if (> this max)

’done
(begin (try-putting formula (id-maker this))

(put-all-helper formula id-maker (+ 1 this) max))))

(define (try-putting formula id)
(if (or (null? (cell-value id)) (null? formula))

(put-formula-in-cell formula id)
’do-nothing))

function

446 Part VI Sequential Programming

(make-id this-col row)

(make-id col this-row)

(put-all-helper formula (lambda (col) (make-id col 4)) 1 26)

* We originally wrote two separate helper procedures for the two cases, like this:

but the procedures were so similar that we decided to generalize the pattern.

Put-all-cells-in-row put-all-cells-in-col put-all-helper
Put-all-helper

lambda
put-all-helper

put-all-cells-in-row 4
row

lambda
put-all-helper

Put-all-helper put-formula-in-cell

(define (put-all-cells-in-row formula row)
(row-helper formula 1 26 row))

(define (row-helper formula this-col max-col row)
(if (> this-col max-col)

’done
(begin (try-putting formula)

(row-helper formula (+ this-col 1) max-col row))))

(define (put-all-cells-in-col formula col)
(column-helper formula 1 30 col))

(define (column-helper formula this-row max-row col)
(if (> this-row max-row)

’done
(begin (try-putting formula)

(column-helper formula (+ this-row 1) max-row col))))

and invoke ,
which repeatedly puts the formula into a cell.* is a typical sequential
recursion: Do something for this element, and recur for the remaining elements. The
difference is that “this element” means a cell ID that combines one constant index with
one index that varies with each recursive call. How are those two indices combined?
What differs between filling a row and filling a column is the used to compute
each cell ID.

The substitution model explains how the expressions used as arguments to
implement this idea. Suppose we are putting a formula into every cell

in row 4. Then will be invoked with the value substituted
for the parameter . After this substitution, the body is

The expression creates a procedure that takes a column number as argument and
returns a cell ID for the cell in row 4 and that column. This is just what
needs. It invokes the procedure with the varying column number as its argument to get
the proper cell ID.

doesn’t directly invoke . The reason
is that if a particular cell already has a value, then the new formula isn’t used for that

The Formula Translator

Chapter 25 Implementing the Spreadsheet Program 447

(define (put-formula-in-cell formula id)
(put-expr (pin-down formula id) id))

(put (* (cell b) (cell c)) d)

Try-putting
try-putting if

pin-down put-expr

put d
put-formula-in-cell d4

d4
b4 c4 d5

d d4
b4 c4

put
pin-down

put-expr Pin-down

put-expr

particular cell, unless the formula is empty. That is, you can erase an entire row or
column at once, but a non-empty formula affects only cells that were empty before this
command. decides whether or not to put the formula into each possible
cell. (In , the third argument to could be anything; we’re interested
only in what happens if the condition is true.)

All that’s left is, finally, to put the formula into a cell:

The two new procedures seen here, and , are both large sections
of the program and are described in the next two sections of this chapter.

Suppose the user has said

The procedure puts this formula into each cell of column by repeatedly calling
; as an example, let’s concentrate on cell .

The purpose of the formula is that later we’re going to use it to compute a value
for . For that purpose, we will need to multiply two particular numbers together: the
ones in cells and . Although the same formula applies to cell , the particular
numbers multiplied together will be found in different places. So instead of storing the
same general formula in every cell, what we’d really like to store in is something
that refers specifically to and .

We’ll use the term “expression” for a formula whose cell references have been
replaced by specific cell IDs. We started with the idea that we wanted to put a formula
into a cell; we’ve refined that idea so that we now want to put an expression into the
cell. This goal has two parts: We must translate the formula (as given to us by the user
in the command) to an expression, and we must store that expression in the cell
data structure. These two subtasks are handled by , discussed in this section,
and by , discussed in the next section. is entirely functional; the
only modification to the spreadsheet program’s state in this process is carried out by

.

general specific

448 Part VI Sequential Programming

pin-down

Pin-down

put
pin-down

Pin-down <3

Put-formula-in-cell

pin-down

pin-down

c3

* In fact, also invokes when the user types a formula in place
of a command. In that situation, the result doesn’t go into a cell but is immediately evaluated and
printed.

(pin-down ’(* (cell b) (cell c)) ’d4)

(* (id 2 4) (id 3 4))

(put (+ (* (cell b) (cell c)) (- (cell 2< 3>) 6)) f)

(define (pin-down formula id)
(cond ((cell-name? formula) (cell-name->id formula))

((word? formula) formula)
((null? formula) ’())
((equal? (car formula) ’cell)
(pin-down-cell (cdr formula) id))
(else (bound-check

(map (lambda (subformula) (pin-down subformula id))
formula)))))

process-command pin-down

We’ll refer to the process of translating a formula to an expression as “pinning down”
the formula; the procedure carries out this process. It’s called “pinning
down” because we start with a formula and end up with a expression.

takes two arguments: The first is, of course, a formula; the second is the ID of
the cell that will be used as the reference point for relative cell positions. In the context
of the command, the reference point is the cell into which we’ll put the expression.
But doesn’t think about putting anything anywhere; its job is to translate a
formula (containing relative cell locations) into an expression (containing only absolute
cell IDs).* needs a reference point as a way to understand the notation ,
which means “three cells before the reference point.”

Let’s go back to the specific example. will invoke

and will return the expression

The overall structure of this problem is tree recursive. That’s because a formula can
be arbitrarily complicated, with sublists of sublists, just like a Scheme expression:

Here’s :

The base cases of the tree recursion are specific cell names, such as ; other words, such

Chapter 25 Implementing the Spreadsheet Program 449

(put (+ (cell 2< 3<) 1) d)

(define (bound-check form)
(if (member ’out-of-bounds form)

’out-of-bounds
form))

pin-down

cell

map pin-down

b d
d7 b4 d2

-1
d1 d2 d3 Pin-down

out-of-bounds

pin-down-cell
out-of-bounds

pin-down bound-check

(cell) pin-down-cell

pin-down-cell cell

cell
cell pin-down

cond

cell

as numbers and procedure names, which are unaffected by ; null formulas,
which indicate that the user is erasing the contents of a cell; and sublists that start with
the word . The first three of these are trivial; the fourth, which we will describe
shortly, is the important case. If a formula is not one of these four base cases, then it’s
a compound expression. In that case, we have to pin down all of the subexpressions
individually. (We basically over the formula. That’s what makes this
process tree recursive.)

One complication is that the pinned-down formula might refer to nonexistent cells.
For example, saying

refers to cells in column (two to the left of) three rows above the current row.
That works for a cell such as , referring to cell , but not for , which has no row
that’s three above it. (There is no row .) So our program must refrain from pinning
down this formula for cells , , and . will instead return the word

to signal this situation.

The case of a nonexistent cell is discovered by at the base of a tree
recursion. The signal must be returned not only by the base case but
by the initial invocation of . That’s why is used to ensure that
if any part of a formula is out of bounds, the entire formula will also be considered out
of bounds:

When a formula contains a . . . sublist, the procedure is
invoked to translate that notation into a cell ID.

The arguments to are a list of the “arguments” of the sublist
and the reference point’s cell ID. (The word “arguments” is in quotation marks because
the word doesn’t represent a Scheme procedure, even though the parenthesized
notation looks like an invocation. In a way, the special treatment of by
is analogous to the treatment of special forms, such as , by the Scheme evaluator.)

There can be one or two of these “arguments” to . A single argument is either
a number, indicating a row, or a letter, indicating a column. Two arguments specify both
a column and a row, in that order:

The Dependency Manager

450 Part VI Sequential Programming

pin-down-col pin-down-row
<3

put put-expr

In the two-argument case, the job of and is to
understand notations like for relative rows and columns:

The remaining part of the command is , which actually stores the
translated expression in the cell data structure. You might imagine that putting an
expression into a cell would require nothing more than invoking a mutator, like this:

(define (pin-down-cell args reference-id)
(cond ((null? args)

(error "Bad cell specification: (cell)"))
((null? (cdr args))
(cond ((number? (car args)) ; they chose a row

(make-id (id-column reference-id) (car args)))
((letter? (car args)) ; they chose a column
(make-id (letter->number (car args))

(id-row reference-id)))
(else (error "Bad cell specification:"

(cons ’cell args)))))
(else
(let ((col (pin-down-col (car args) (id-column reference-id)))

(row (pin-down-row (cadr args) (id-row reference-id))))
(if (and (>= col 1) (<= col 26) (>= row 1) (<= row 30))

(make-id col row)
’out-of-bounds)))))

(define (pin-down-col new old)
(cond ((equal? new ’*) old)

((equal? (first new) ’>) (+ old (bf new)))
((equal? (first new) ’<) (- old (bf new)))
((letter? new) (letter->number new))
(else (error "What column?"))))

(define (pin-down-row new old)
(cond ((number? new) new)

((equal? new ’*) old)
((equal? (first new) ’>) (+ old (bf new)))
((equal? (first new) ’<) (- old (bf new)))
(else (error "What row?"))))

(define (put-expr expr cell) ;; wrong
(set-cell-expr! cell expr))

a3 b2 c4
c4

c4

b5

c4

a1

cell-value
set-cell-value!

parents children

Chapter 25 Implementing the Spreadsheet Program 451

(put (+ a3 b2) c4)

(put (+ a3 c4) b5)

#(12
(+ (id 1 3) (id 2 2))
((id 1 3) (id 2 2))
((id 2 5)))

(put 6 a1)

#(6 6 () ())

The trouble is that adding an expression to a cell might have many consequences beyond
the mutation itself. For example, suppose we say

If cells and already have values, we can’t just put the formula into ; we must also
compute its value and put that value into .

Also, once has a value, that could trigger the computation of some other cell’s
value. If we’ve previously said

then we’re now able to compute a value for because both of the cells that it depends
on have values.

All this implies that what’s inside a cell is more than just an expression, or even an
expression and a value. Each cell needs to know which other cells it depends on for its
value, and also which other cells depend on it.

Our program represents each cell as a four-element vector. Each cell includes a
value, an expression, a list of (the cells that it depends on), and a list of
(the cells that depend on it). The latter two lists contain cell IDs. So our example cell
might look like this:

In a simpler case, suppose we put a value into a cell that nothing depends on, by saying,
for example,

Then cell would contain

(Remember that a value is just a very simple formula.)

There are selectors and so on that take a cell ID as argument, and
mutators and so on that take a cell ID and a new value as arguments.

•

•

•

•

()
(b2)

make-cell

a2

old isn’t

452 Part VI Sequential Programming

cell expression value parents children

a1 20 20 () (a2)
b1 5 5 () (a2 b2)
c1 8 8 () ()
a2 (+ a1 b1) 25 (a1 b1) (b2)
b2 (+ a2 b1) 30 (a2 b1) ()

(put (+ b1 c1) a2)

cell expression value parents children

a1 20 20 ()
b1 5 5 ()
c1 8 8 () ()
a2 (+ a1 b1) 25 (a1 b1) (b2)
b2 (+ a2 b1) 30 (a2 b1) ()

There’s also the constructor , but it’s called only at the beginning of the
program, when the 780 cells in the spreadsheet are created at once.

When a cell is given a new expression, several things change:

The new expression becomes the cell’s expression, of course.

The cells mentioned in the expression become the parents of this cell.

This cell becomes a child of the cells mentioned in the expression.

If all the parents have values, the value of this cell is computed.

Some of these changes are simple, but others are complicated. For example, it’s not
enough to tell the cell’s new parents that the cell is now their child (the third task). First
we have to tell the cell’s parents that this cell their child any more. That has to
be done before we forget the cell’s old parents.

Here is an example. (In the following tables, we represent the data structures as if
cells were represented by their names, even though really their IDs are used. We’ve done
this to make the example more readable.) Suppose that we have five cells set up like this:

If we now enter the spreadsheet command

the program must first remove from the children of its old parents (changes are
shown in boldface):

Then the program can change the expression and compute a new list of parents:

a2 a2

a2

(+ b1 c1) (b1 c1)

(a2 b2)
(a2)

13

18

Chapter 25 Implementing the Spreadsheet Program 453

Next it can tell the new parents to add as a child, and can compute ’s new value:

Changing ’s value affects the values of all of its children, and also its grandchildren
and so on (except that in this example there are no grandchildren):

Now that we’ve considered an example, here is the main procedure that oversees all
these tasks:

cell expression value parents children

a1 20 20 () ()
b1 5 5 () (b2)
c1 8 8 () ()
a2 25 (b2)
b2 (+ a2 b1) 30 (a2 b1) ()

cell expression value parents children

1 20 20 () ()
b1 5 5 ()
c1 8 8 ()
a2 (+ b1 c1) (b1 c1) (b2)
b2 (+ a2 b1) 30 (a2 b1) ()

cell expression value parents children

a1 20 20 () ()
b1 5 5 () (a2 b2)
c1 8 8 () (a2)
a2 (+ b1 c1) 13 (b1 c1) (b2)
b2 (+ a2 b1) (a2 b1) ()

(define (put-expr expr-or-out-of-bounds id)
(let ((expr (if (equal? expr-or-out-of-bounds ’out-of-bounds)

’()
expr-or-out-of-bounds)))

(for-each (lambda (old-parent)
(set-cell-children!
old-parent
(remove id (cell-children old-parent))))

(cell-parents id))
(set-cell-expr! id expr)
(set-cell-parents! id (remdup (extract-ids expr)))
(for-each (lambda (new-parent)

(set-cell-children!
new-parent
(cons id (cell-children new-parent))))

(cell-parents id))
(figure id)))

454 Part VI Sequential Programming

put-expr pin-down
out-of-bounds

let

extract-ids
expr

remdup expr

extract-ids

remdup

let

cond

car cdr
append extract-ids

put-expr

(+ (id 4 2) (* (id 1 3) (id 1 3)))

((id 4 2) (id 1 3) (id 1 3))

((id 4 2) (id 1 3))

(define (extract-ids expr)
(cond ((id? expr) (list expr))

((word? expr) ’())
((null? expr) ’())
(else (append (extract-ids (car expr))

(extract-ids (cdr expr))))))

Remember that ’s first argument is the return value from , so it
might be the word instead of an expression. In this case, we store an
empty list as the expression, indicating that there is no active expression for this cell.

Within the body of the there are five Scheme expressions, each of which carries
out one of the tasks we’ve listed. The first expression tells the cell’s former parents that
the cell is no longer their child. The second expression stores the expression in the cell.

The third Scheme expression invokes to find all the cell ids used
in , removes any duplicates, and establishes those identified cells as the argument
cell’s parents. (You wrote in Exercise 14.3.) For example, if the is

then will return the list

and of that will be

The fourth expression in the tells each of the new parents to consider the
argument cell as its child. The fifth expression may or may not compute a new value for
this cell. (As we’ll see in a moment, that process is a little complicated.)

Two of these steps require closer examination. Here is the procedure used in the
third step:

This is a tree recursion. The first three clauses are base cases; cell IDs are included
in the returned list, while other words are ignored. For compound expressions, we use
the trick of making recursive calls on the and of the list. We combine the results
with because must return a flat list of cell IDs, not a cheap tree.

The fifth step in is complicated because, as we saw in the example,
changing the value of one cell may require us to recompute the value of other cells:

The Expression Evaluator

Chapter 25 Implementing the Spreadsheet Program 455

Figure

figure
figure

figure

Setvalue

figure

ss-eval

Figure ss-eval
process-command ss-eval

ss-eval
process-command

ss ss-eval

(define (figure id)
(cond ((null? (cell-expr id)) (setvalue id ’()))

((all-evaluated? (cell-parents id))
(setvalue id (ss-eval (cell-expr id))))
(else (setvalue id ’()))))

(define (all-evaluated? ids)
(cond ((null? ids) #t)

((not (number? (cell-value (car ids)))) #f)
(else (all-evaluated? (cdr ids)))))

(define (setvalue id value)
(let ((old (cell-value id)))
(set-cell-value! id value)
(if (not (equal? old value))

(for-each figure (cell-children id))
’do-nothing)))

is invoked for the cell whose expression we’ve just changed. If there is no
expression (that is, if we’ve changed it to an empty expression or to an out-of-bounds
one), then will remove any old value that might be left over from a previous
expression. If there is an expression, then will compute and save a new value,
but only if all of this cell’s parents have numeric values. If any parent doesn’t have a
value, or if its value is a non-numeric label, then has to remove the value from
this cell.

actually puts the new value in the cell. It first looks up the old value.
If the new and old values are different, then all of the children of this cell must be
re- d. This, too, is a tree recursion because there might be several children, and
each of them might have several children.

We haven’t yet explained how actually computes the value from the
expression. That’s the subject of the next major part of the program.

invokes to convert a cell’s expression into its value. Also, we’ve seen
earlier that uses to evaluate an expression that the user
types in response to a spreadsheet prompt. (That is, is invoked if what the user
types isn’t one of the special commands recognized by itself.)

The in stands for “spreadsheet”; it distinguishes this procedure from

•

•

•

•

•

•

456 Part VI Sequential Programming

eval
ss-eval eval
ss-eval

if define

ss-eval cond

* You can think of the notation in generalized formulas as a kind of special form, but
has turned those into specific cell IDs before the formula is eligible for evaluation as an

expression.

(define (ss-eval expr)
(cond ((number? expr) expr)

((quoted? expr) (quoted-value expr))
((id? expr) (cell-value expr))
((invocation? expr)
(apply (get-function (car expr))

(map ss-eval (cdr expr))))
(else (error "Invalid expression:" expr))))

cell
pin-down

, a primitive procedure that evaluates Scheme expressions. As it turns out,
’s algorithm is similar in many ways to that of Scheme’s , although
is much simpler in other ways. The experience you already have with Scheme’s

expression evaluation will help you understand the spreadsheet’s.

Scheme’s evaluator takes an expression and computes the corresponding value. The
expressions look quite different from the values, but there are well-defined rules (the
ones we studied in Chapter 3) to translate expressions to values. In the spreadsheet
language, as in Scheme, an expression can be one of three things:

a constant expression (a number or quoted word), whose value is itself.

a variable (a cell ID, in the case of the spreadsheet language).

a procedure invocation enclosed in parentheses.

The spreadsheet language is simpler than Scheme for three main reasons.

There are no special forms such as or .*

The only variables, the cell IDs, are global; in Scheme, much of the complexity of
evaluation has to do with variables that are local to procedures (i.e., formal parameters).

The only procedures are primitives, so there is no need to evaluate procedure bodies.

The structure of is a whose clauses handle the three types of
expressions. Constants and variables are easy; invocations require recursively evaluating
the arguments before the procedure can be invoked.

The Screen Printer

Chapter 25 Implementing the Spreadsheet Program 457

ss-eval
’abc (quote abc)

ss-eval

apply

Get-function

ss-eval

(define (quoted? expr)
(or (string? expr)

(and (list? expr) (equal? (car expr) ’quote))))

(define (quoted-value expr)
(if (string? expr)

expr
(cadr expr)))

The value of a number is itself; the value of a quoted word is the word without
the quotation mark. (Actually, by the time sees a quoted word, Scheme has
translated the notation into and that’s what we deal with here. Also,
double-quoted strings look different to the program from single-quoted words.)

The third clause checks for a cell ID; the value of such an expression is the value
stored in the corresponding cell.

If an expression is none of those things, it had better be a function invocation, that
is, a list. In that case, has to do three things: It looks up the function name
in a table (as we did earlier for spreadsheet commands); it recursively evaluates all the
argument subexpressions; and then it can invoke to apply the procedure to the
argument values.

looks up a function name in the name-to-function association list
and returns the corresponding Scheme procedure. Thus, only the functions included in
the list can be used in spreadsheet formulas.

The entire expression evaluator, including and its helper procedures, is
functional. Like the formula translator, it doesn’t change the state of the spreadsheet.

The procedures that print the spreadsheet on the screen are straightforward but full of
details. Much of the work here goes into those details.

As we mentioned earlier, a better spreadsheet program wouldn’t redraw the entire
screen for each command but would change only the parts of the screen that were
affected by the previous command. However, Scheme does not include a standard way to
control the positioning of text on the screen, so we’re stuck with this approach.

458 Part VI Sequential Programming

Screen-corner-cell-id
selection-cell-id

Show-column-labels
Show-rows

screen-corner

display-expression display

Display-expression pin-down
display-expression

display-expression
display-expression

Show-rows

(define (print-screen)
(newline)
(newline)
(newline)
(show-column-labels (id-column (screen-corner-cell-id)))
(show-rows 20

(id-column (screen-corner-cell-id))
(id-row (screen-corner-cell-id)))

(display-cell-name (selection-cell-id))
(show (cell-value (selection-cell-id)))
(display-expression (cell-expr (selection-cell-id)))
(newline)
(display "?? "))

(+ (id 2 5) (id 6 3))

(+ b5 f3)

returns the ID of the cell that should be shown in the top
left corner of the display; returns the ID of the selected cell.

prints the first row of the display, the one with the column
letters. is a sequential recursion that prints the actual rows of the spreadsheet,
starting with the row number of the cell and continuing for 20 rows.
(There are 30 rows in the entire spreadsheet, but they don’t all fit on the screen at once.)
The rest of the procedure displays the value and expression of the selected cell at the
bottom of the screen and prompts for the next command.

Why isn’t just ? Remember that the spreadsheet
stores expressions in a form like

but the user wants to see

is yet another tree recursion over expressions. Just as
translates cell names into cell IDs, translates IDs back into
names. (But prints as it goes along, instead of reconstructing
and returning a list.) The definition of , along with the
remaining details of printing, can be seen in the full program listing at the end of this
chapter.

Just to give the flavor of those details, here is the part that displays the rectangular
array of cell values. is a sequential recursion in which each invocation prints

show-row

show-row

show-row
show-row print-screen

Chapter 25 Implementing the Spreadsheet Program 459

an entire row. It does so by invoking , another sequential recursion, in which
each invocation prints a single cell value.

Why didn’t we write in the following way?

That would have worked fine and would have been a little clearer. In fact, we did write
this way originally. But it’s a little time-consuming to construct an ID, and
is called 120 times whenever is used. Since printing the

screen was annoyingly slow, we sped things up as much as we could, even at the cost of
this kludge.

(define (show-rows to-go col row)
(cond ((= to-go 0) ’done)

(else
(display (align row 2 0))
(display " ")
(show-row 6 col row)
(newline)
(show-rows (- to-go 1) col (+ row 1)))))

(define (show-row to-go col row)
(cond ((= to-go 0) ’done)

(else
(display (if (selected-indices? col row) ">" " "))
(display-value (cell-value-from-indices col row))
(display (if (selected-indices? col row) "<" " "))
(show-row (- to-go 1) (+ 1 col) row))))

(define (selected-indices? col row)
(and (= col (id-column (selection-cell-id)))

(= row (id-row (selection-cell-id)))))

(define (show-row to-go col row) ;; alternate version
(cond ((= to-go 0) ’done)

(else
(let ((id (make-id col row)))
(display (if (equal? id (selection-cell-id)) ">" " "))
(display-value (cell-value id))
(display (if (equal? id (selection-cell-id)) "<" " "))
(show-row (- to-go 1) (+ 1 col) row)))))

The Cell Manager

those

460 Part VI Sequential Programming

the-spreadsheet-array

cell-structure

Global-array-lookup

vector-ref

cell-structure

(define (cell-structure id)
(global-array-lookup (id-column id)

(id-row id)))

(define (global-array-lookup col row)
(if (and (<= row 30) (<= col 26))

(vector-ref (vector-ref *the-spreadsheet-array* (- row 1))
(- col 1))

(error "Out of bounds")))

(define (cell-value id)
(vector-ref (cell-structure id) 0))

(define (set-cell-value! id val)
(vector-set! (cell-structure id) 0 val))

(define (cell-expr id)
(vector-ref (cell-structure id) 1))

The program keeps information about the current status of the spreadsheet cells in a
vector called . It contains all of the 780 cells that make
up the spreadsheet (30 rows of 26 columns). It’s not a vector of length 780; rather, it’s
a vector of length 30, each of whose elements is itself a vector of length 26. In other
words, each element of the spreadsheet array is a vector representing one row of the
spreadsheet. (Each element of vectors is one cell, which, as you recall, is represented
as a vector of length four. So the spreadsheet array is a vector of vectors of vectors!)

The selectors for the parts of a cell take the cell’s ID as argument and return one of
the four elements of the cell vector. Each must therefore be implemented as two steps:
We must find the cell vector, given its ID; and we must then select an element from the
cell vector. The first step is handled by the selector that takes a cell
ID as argument:

makes sure the desired cell exists. It also compensates for the
fact that Scheme vectors begin with element number zero, while our spreadsheet begins
with row and column number one. Two invocations of are needed, one to
select an entire row and the next to select a cell within that row.

Selectors and mutators for the parts of a cell are written using :

init-array

Chapter 25 Implementing the Spreadsheet Program 461

The constructor is

The spreadsheet program begins by invoking to set up this large array.
(Also, it sets the initial values of the selected cell and the screen corner.)

(define (set-cell-expr! id val)
(vector-set! (cell-structure id) 1 val))

(define (cell-parents id)
(vector-ref (cell-structure id) 2))

(define (set-cell-parents! id val)
(vector-set! (cell-structure id) 2 val))

(define (cell-children id)
(vector-ref (cell-structure id) 3))

(define (set-cell-children! id val)
(vector-set! (cell-structure id) 3 val))

(define (make-cell)
(vector ’() ’() ’() ’()))

(define (spreadsheet)
(init-array)
(set-selection-cell-id! (make-id 1 1))
(set-screen-corner-cell-id! (make-id 1 1))
(command-loop))

(define *the-spreadsheet-array* (make-vector 30))

(define (init-array)
(fill-array-with-rows 29))

(define (fill-array-with-rows n)
(if (< n 0)

’done
(begin (vector-set! *the-spreadsheet-array* n (make-vector 26))

(fill-row-with-cells
(vector-ref *the-spreadsheet-array* n) 25)
(fill-array-with-rows (- n 1)))))

letter->number

Complete Program Listing

462 Part VI Sequential Programming

That’s the end of the project, apart from some straightforward procedures such as
that you can look up in the complete listing if you’re interested.

(define (fill-row-with-cells vec n)
(if (< n 0)

’done
(begin (vector-set! vec n (make-cell))

(fill-row-with-cells vec (- n 1)))))

(define (spreadsheet)
(init-array)
(set-selection-cell-id! (make-id 1 1))
(set-screen-corner-cell-id! (make-id 1 1))
(command-loop))

(define (command-loop)
(print-screen)
(let ((command-or-formula (read)))
(if (equal? command-or-formula ’exit)

"Bye!"
(begin (process-command command-or-formula)

(command-loop)))))

(define (process-command command-or-formula)
(cond ((and (list? command-or-formula)

(command? (car command-or-formula)))
(execute-command command-or-formula))
((command? command-or-formula)
(execute-command (list command-or-formula 1)))
(else (exhibit (ss-eval (pin-down command-or-formula

(selection-cell-id)))))))

(define (execute-command command)
(apply (get-command (car command))

(cdr command)))

(define (exhibit val)
(show val)
(show "Type RETURN to redraw screen")
(read-line)
(read-line))

Chapter 25 Implementing the Spreadsheet Program 463

;;; Commands

;; Cell selection commands: F, B, N, P, and SELECT

(define (prev-row delta)
(let ((row (id-row (selection-cell-id))))
(if (< (- row delta) 1)

(error "Already at top.")
(set-selected-row! (- row delta)))))

(define (next-row delta)
(let ((row (id-row (selection-cell-id))))
(if (> (+ row delta) 30)

(error "Already at bottom.")
(set-selected-row! (+ row delta)))))

(define (prev-col delta)
(let ((col (id-column (selection-cell-id))))
(if (< (- col delta) 1)

(error "Already at left.")
(set-selected-column! (- col delta)))))

(define (next-col delta)
(let ((col (id-column (selection-cell-id))))
(if (> (+ col delta) 26)

(error "Already at right.")
(set-selected-column! (+ col delta)))))

(define (set-selected-row! new-row)
(select-id! (make-id (id-column (selection-cell-id)) new-row)))

(define (set-selected-column! new-column)
(select-id! (make-id new-column (id-row (selection-cell-id)))))

(define (select-id! id)
(set-selection-cell-id! id)
(adjust-screen-boundaries))

(define (select cell-name)
(select-id! (cell-name->id cell-name)))

464 Part VI Sequential Programming

(define (adjust-screen-boundaries)
(let ((row (id-row (selection-cell-id)))

(col (id-column (selection-cell-id))))
(if (< row (id-row (screen-corner-cell-id)))

(set-corner-row! row)
’do-nothing)

(if (>= row (+ (id-row (screen-corner-cell-id)) 20))
(set-corner-row! (- row 19))
’do-nothing)

(if (< col (id-column (screen-corner-cell-id)))
(set-corner-column! col)
’do-nothing)

(if (>= col (+ (id-column (screen-corner-cell-id)) 6))
(set-corner-column! (- col 5))
’do-nothing)))

(define (set-corner-row! new-row)
(set-screen-corner-cell-id!
(make-id (id-column (screen-corner-cell-id)) new-row)))

(define (set-corner-column! new-column)
(set-screen-corner-cell-id!
(make-id new-column (id-row (screen-corner-cell-id)))))

;; LOAD

(define (spreadsheet-load filename)
(let ((port (open-input-file filename)))
(sl-helper port)
(close-input-port port)))

(define (sl-helper port)
(let ((command (read port)))
(if (eof-object? command)

’done
(begin (show command)

(process-command command)
(sl-helper port)))))

Chapter 25 Implementing the Spreadsheet Program 465

;; PUT

(define (put formula . where)
(cond ((null? where)

(put-formula-in-cell formula (selection-cell-id)))
((cell-name? (car where))
(put-formula-in-cell formula (cell-name->id (car where))))
((number? (car where))
(put-all-cells-in-row formula (car where)))
((letter? (car where))
(put-all-cells-in-col formula (letter->number (car where))))
(else (error "Put it where?"))))

(define (put-all-cells-in-row formula row)
(put-all-helper formula (lambda (col) (make-id col row)) 1 26))

(define (put-all-cells-in-col formula col)
(put-all-helper formula (lambda (row) (make-id col row)) 1 30))

(define (put-all-helper formula id-maker this max)
(if (> this max)

’done
(begin (try-putting formula (id-maker this))

(put-all-helper formula id-maker (+ 1 this) max))))

(define (try-putting formula id)
(if (or (null? (cell-value id)) (null? formula))

(put-formula-in-cell formula id)
’do-nothing))

(define (put-formula-in-cell formula id)
(put-expr (pin-down formula id) id))

;;; The Association List of Commands

(define (command? name)
(assoc name *the-commands*))

(define (get-command name)
(let ((result (assoc name *the-commands*)))
(if (not result)

#f
(cadr result))))

466 Part VI Sequential Programming

(define *the-commands*
(list (list ’p prev-row)

(list ’n next-row)
(list ’b prev-col)
(list ’f next-col)
(list ’select select)
(list ’put put)
(list ’load spreadsheet-load)))

;;; Pinning Down Formulas Into Expressions

(define (pin-down formula id)
(cond ((cell-name? formula) (cell-name->id formula))

((word? formula) formula)
((null? formula) ’())
((equal? (car formula) ’cell)
(pin-down-cell (cdr formula) id))
(else (bound-check

(map (lambda (subformula) (pin-down subformula id))
formula)))))

(define (bound-check form)
(if (member ’out-of-bounds form)

’out-of-bounds
form))

(define (pin-down-cell args reference-id)
(cond ((null? args)

(error "Bad cell specification: (cell)"))
((null? (cdr args))
(cond ((number? (car args)) ; they chose a row

(make-id (id-column reference-id) (car args)))
((letter? (car args)) ; they chose a column
(make-id (letter->number (car args))

(id-row reference-id)))
(else (error "Bad cell specification:"

(cons ’cell args)))))
(else
(let ((col (pin-down-col (car args) (id-column reference-id)))

(row (pin-down-row (cadr args) (id-row reference-id))))
(if (and (>= col 1) (<= col 26) (>= row 1) (<= row 30))

(make-id col row)
’out-of-bounds)))))

Chapter 25 Implementing the Spreadsheet Program 467

(define (pin-down-col new old)
(cond ((equal? new ’*) old)

((equal? (first new) ’>) (+ old (bf new)))
((equal? (first new) ’<) (- old (bf new)))
((letter? new) (letter->number new))
(else (error "What column?"))))

(define (pin-down-row new old)
(cond ((number? new) new)

((equal? new ’*) old)
((equal? (first new) ’>) (+ old (bf new)))
((equal? (first new) ’<) (- old (bf new)))
(else (error "What row?"))))

;;; Dependency Management

(define (put-expr expr-or-out-of-bounds id)
(let ((expr (if (equal? expr-or-out-of-bounds ’out-of-bounds)

’()
expr-or-out-of-bounds)))

(for-each (lambda (old-parent)
(set-cell-children!
old-parent
(remove id (cell-children old-parent))))

(cell-parents id))
(set-cell-expr! id expr)
(set-cell-parents! id (remdup (extract-ids expr)))
(for-each (lambda (new-parent)

(set-cell-children!
new-parent
(cons id (cell-children new-parent))))

(cell-parents id))
(figure id)))

(define (extract-ids expr)
(cond ((id? expr) (list expr))

((word? expr) ’())
((null? expr) ’())
(else (append (extract-ids (car expr))

(extract-ids (cdr expr))))))

(define (figure id)
(cond ((null? (cell-expr id)) (setvalue id ’()))

((all-evaluated? (cell-parents id))
(setvalue id (ss-eval (cell-expr id))))
(else (setvalue id ’()))))

468 Part VI Sequential Programming

(define (all-evaluated? ids)
(cond ((null? ids) #t)

((not (number? (cell-value (car ids)))) #f)
(else (all-evaluated? (cdr ids)))))

(define (setvalue id value)
(let ((old (cell-value id)))
(set-cell-value! id value)
(if (not (equal? old value))

(for-each figure (cell-children id))
’do-nothing)))

;;; Evaluating Expressions

(define (ss-eval expr)
(cond ((number? expr) expr)

((quoted? expr) (quoted-value expr))
((id? expr) (cell-value expr))
((invocation? expr)
(apply (get-function (car expr))

(map ss-eval (cdr expr))))
(else (error "Invalid expression:" expr))))

(define (quoted? expr)
(or (string? expr)

(and (list? expr) (equal? (car expr) ’quote))))

(define (quoted-value expr)
(if (string? expr)

expr
(cadr expr)))

(define (invocation? expr)
(list? expr))

(define (get-function name)
(let ((result (assoc name *the-functions*)))
(if (not result)

(error "No such function: " name)
(cadr result))))

Chapter 25 Implementing the Spreadsheet Program 469

(define *the-functions*
(list (list ’* *)

(list ’+ +)
(list ’- -)
(list ’/ /)
(list ’abs abs)
(list ’acos acos)
(list ’asin asin)
(list ’atan atan)
(list ’ceiling ceiling)
(list ’cos cos)
(list ’count count)
(list ’exp exp)
(list ’expt expt)
(list ’floor floor)
(list ’gcd gcd)
(list ’lcm lcm)
(list ’log log)
(list ’max max)
(list ’min min)
(list ’modulo modulo)
(list ’quotient quotient)
(list ’remainder remainder)
(list ’round round)
(list ’sin sin)
(list ’sqrt sqrt)
(list ’tan tan)
(list ’truncate truncate)))

;;; Printing the Screen

(define (print-screen)
(newline)
(newline)
(newline)
(show-column-labels (id-column (screen-corner-cell-id)))
(show-rows 20

(id-column (screen-corner-cell-id))
(id-row (screen-corner-cell-id)))

(display-cell-name (selection-cell-id))
(display ": ")
(show (cell-value (selection-cell-id)))
(display-expression (cell-expr (selection-cell-id)))
(newline)
(display "?? "))

(define (display-cell-name id)
(display (number->letter (id-column id)))
(display (id-row id)))

470 Part VI Sequential Programming

(define (show-column-labels col-number)
(display " ")
(show-label 6 col-number)
(newline))

(define (show-label to-go this-col-number)
(cond ((= to-go 0) ’())

(else
(display " -----")
(display (number->letter this-col-number))
(display "----")
(show-label (- to-go 1) (+ 1 this-col-number)))))

(define (show-rows to-go col row)
(cond ((= to-go 0) ’done)

(else
(display (align row 2 0))
(display " ")
(show-row 6 col row)
(newline)
(show-rows (- to-go 1) col (+ row 1)))))

(define (show-row to-go col row)
(cond ((= to-go 0) ’done)

(else
(display (if (selected-indices? col row) ">" " "))
(display-value (cell-value-from-indices col row))
(display (if (selected-indices? col row) "<" " "))
(show-row (- to-go 1) (+ 1 col) row))))

(define (selected-indices? col row)
(and (= col (id-column (selection-cell-id)))

(= row (id-row (selection-cell-id)))))

(define (display-value val)
(display (align (if (null? val) "" val) 10 2)))

(define (display-expression expr)
(cond ((null? expr) (display ’()))

((quoted? expr) (display (quoted-value expr)))
((word? expr) (display expr))
((id? expr)
(display-cell-name expr))
(else (display-invocation expr))))

Chapter 25 Implementing the Spreadsheet Program 471

(define (display-invocation expr)
(display "(")
(display-expression (car expr))
(for-each (lambda (subexpr)

(display " ")
(display-expression subexpr))

(cdr expr))
(display ")"))

;;; Abstract Data Types

;; Special cells: the selected cell and the screen corner

(define *special-cells* (make-vector 2))

(define (selection-cell-id)
(vector-ref *special-cells* 0))

(define (set-selection-cell-id! new-id)
(vector-set! *special-cells* 0 new-id))

(define (screen-corner-cell-id)
(vector-ref *special-cells* 1))

(define (set-screen-corner-cell-id! new-id)
(vector-set! *special-cells* 1 new-id))

;; Cell names

(define (cell-name? expr)
(and (word? expr)

(letter? (first expr))
(number? (bf expr))))

(define (cell-name-column cell-name)
(letter->number (first cell-name)))

(define (cell-name-row cell-name)
(bf cell-name))

472 Part VI Sequential Programming

(define (cell-name->id cell-name)
(make-id (cell-name-column cell-name)

(cell-name-row cell-name)))

;; Cell IDs

(define (make-id col row)
(list ’id col row))

(define (id-column id)
(cadr id))

(define (id-row id)
(caddr id))

(define (id? x)
(and (list? x)

(not (null? x))
(equal? ’id (car x))))

;; Cells

(define (make-cell)
(vector ’() ’() ’() ’()))

(define (cell-value id)
(vector-ref (cell-structure id) 0))

(define (cell-value-from-indices col row)
(vector-ref (cell-structure-from-indices col row) 0))

(define (cell-expr id)
(vector-ref (cell-structure id) 1))

(define (cell-parents id)
(vector-ref (cell-structure id) 2))

(define (cell-children id)
(vector-ref (cell-structure id) 3))

(define (set-cell-value! id val)
(vector-set! (cell-structure id) 0 val))

(define (set-cell-expr! id val)
(vector-set! (cell-structure id) 1 val))

(define (set-cell-parents! id val)
(vector-set! (cell-structure id) 2 val))

Chapter 25 Implementing the Spreadsheet Program 473

(define (set-cell-children! id val)
(vector-set! (cell-structure id) 3 val))

(define (cell-structure id)
(global-array-lookup (id-column id)

(id-row id)))

(define (cell-structure-from-indices col row)
(global-array-lookup col row))

(define *the-spreadsheet-array* (make-vector 30))

(define (global-array-lookup col row)
(if (and (<= row 30) (<= col 26))

(vector-ref (vector-ref *the-spreadsheet-array* (- row 1))
(- col 1))

(error "Out of bounds")))

(define (init-array)
(fill-array-with-rows 29))

(define (fill-array-with-rows n)
(if (< n 0)

’done
(begin (vector-set! *the-spreadsheet-array* n (make-vector 26))

(fill-row-with-cells
(vector-ref *the-spreadsheet-array* n) 25)
(fill-array-with-rows (- n 1)))))

(define (fill-row-with-cells vec n)
(if (< n 0)

’done
(begin (vector-set! vec n (make-cell))

(fill-row-with-cells vec (- n 1)))))

;;; Utility Functions

(define alphabet
’#(a b c d e f g h i j k l m n o p q r s t u v w x y z))

(define (letter? something)
(and (word? something)

(= 1 (count something))
(vector-member something alphabet)))

(define (number->letter num)
(vector-ref alphabet (- num 1)))

Exercises

25.1

25.2

25.3

25.4

474 Part VI Sequential Programming

total-cols total-rows

total-rows

z

get-function get-command

(define (letter->number letter)
(+ (vector-member letter alphabet) 1))

(define (vector-member thing vector)
(vector-member-helper thing vector 0))

(define (vector-member-helper thing vector index)
(cond ((= index (vector-length vector)) #f)

((equal? thing (vector-ref vector index)) index)
(else (vector-member-helper thing vector (+ 1 index)))))

(define (remdup lst)
(cond ((null? lst) ’())

((member (car lst) (cdr lst))
(remdup (cdr lst)))
(else (cons (car lst) (remdup (cdr lst))))))

(define (remove bad-item lst)
(filter (lambda (item) (not (equal? item bad-item)))

lst))

The “magic numbers” 26 and 30 (and some numbers derived from them) appear
many times in the text of this program. It’s easy to imagine wanting more rows or
columns.

Create global variables and with values 26 and 30 respectively.
Then modify the spreadsheet program to refer to these variables rather than to the
numbers 26 and 30 directly. When you’re done, redefine to be 40 and see
if it works.

Suggest a way to notate columns beyond . What procedures would have to change
to accommodate this?

Modify the program so that the spreadsheet array is kept as a single vector of 780
elements, instead of a vector of 30 vectors of 26 vectors. What procedures do you have to
change to make this work? (It shouldn’t be very many.)

The procedures and are almost identical in struc-
ture; both look for an argument in an association list. They differ, however, in their
handling of the situation in which the argument is not present in the list. Why?

25.5

25.6

25.7

25.8

25.9

25.10

25.11

> (make-id 4 2)
#(4 2)

14 cells modified

Chapter 25 Implementing the Spreadsheet Program 475

id

put

put

put

print-screen

undo
undo

put undo
put load

exit

accumulate

The reason we had to include the word in each cell ID was so we would be able
to distinguish a list representing a cell ID from a list of some other kind in an expression.
Another way to distinguish cell IDs would be to represent them as vectors, since vectors
do not otherwise appear within expressions. Change the implementation of cell IDs from
three-element lists to two-element vectors:

Make sure the rest of the program still works.

The command can be used to label a cell by using a quoted word as the
“formula.” How does that work? For example, how is such a formula translated into an
expression? How is that expression evaluated? What if the labeled cell has children?

Add commands to move the “window” of cells displayed on the screen without
changing the selected cell. (There are a lot of possible user interfaces for this feature;
pick anything reasonable.)

Modify the command so that after doing its work it prints

(but, of course, using the actual number of cells modified instead of 14). This number
may not be the entire length of a row or column because doesn’t change an existing
formula in a cell when you ask it to set an entire row or column.

Modify the program so that each column remembers the number of digits that
should be displayed after the decimal point (currently always 2). Add a command to set
this value for a specified column. And, of course, modify to use this
information.

Add an command, which causes the effect of the previous command to
be nullified. That is, if the previous command was a cell selection command, will
return to the previously selected cell. If the previous command was a , will
re- the previous expressions in every affected cell. You don’t need to undo or

commands. To do this, you’ll need to modify the way the other commands work.

Add an procedure that can be used as a function in formulas.
Instead of specifying a sequence of cells explicitly, in a formula like

25.12

pin-down accumulate

476 Part VI Sequential Programming

(put (+ c2 c3 c4 c5 c6 c7) c10)

(put (accumulate + c2 c7) c10)

(put (accumulate * a3 c5) d7)
(put (* a3 b3 c3 a4 b4 c4 a5 b5 c5) d7)

we want to be able to say

In general, the two cell names should be taken as corners of a rectangle, all of whose cells
should be included, so these two commands are equivalent:

Modify to convert the form into the corresponding spelled-out
form.

Add variable-width columns to the spreadsheet. There should be a command to
set the print width of a column. This may mean that the spreadsheet can display more or
fewer than six columns.

Project: A Database Program

A Sample Session with Our Database

database

records
fields.

database program

477

Name: Address: City: Potstickers:

Cal’s 1866 Euclid Berkeley nondescript
Hunan 924 Sansome San Francisco none
Mary Chung’s 464 Massachusetts Avenue Cambridge great
Shin Shin 1715 Solano Avenue Berkeley awesome
TC Garden 2507 Hearst Avenue Berkeley doughy
Yet Wah 2140 Clement San Francisco fantastic

A is a large file with lots of related data in it. For example, you might have a
database of your local Chinese restaurants, listing their names, their addresses, and how
good their potstickers are, like this:

There are six in this database, one for each restaurant. Each record contains
four pieces of information; we say that the database has four

A is a program that can create, store, modify, and examine databases.
At the very least, a database program must let you create new databases, enter records,
and save the database to a file. More sophisticated operations involve sorting the records
in a database by a particular field, printing out the contents of the database, counting the
number of records that satisfy a certain condition, taking statistics such as averages, and
so on.

There are many commercial database programs available; our version will have some
of the flavor of more sophisticated programs while leaving out a lot of the details.

Most database programs come with their own programming language built in. Our

"albums"

478 Part VI Sequential Programming

* The double-quote marks are necessary because will be used as a filename when we
save the database to a file.

** We don’t need a field because Matt likes all the albums in this database.

database program will use Scheme itself as the language; you will be able to perform
database commands by invoking Scheme procedures at the Scheme prompt. Here is a
sample session with our program:

First we loaded the database program, then we created a new database called *
with four fields.** Let’s enter some data:

(We used strings for the album titles but sentences for the artists, partly because one of
the titles has an apostrophe in it, but mainly just to demonstrate that fields can contain
any data type.)

> (load "database.scm")
#F
> (new-db "albums" ’(artist title year brian-likes?))
CREATED

> (insert)
Value for ARTIST--> (the beatles)
Value for TITLE--> "A Hard Day’s Night"
Value for YEAR--> 1964
Value for BRIAN-LIKES?--> #t
Insert another? yes
Value for ARTIST--> (the zombies)
Value for TITLE--> "Odessey and Oracle"
Value for YEAR--> 1967
Value for BRIAN-LIKES?--> #t
Insert another? y
Value for ARTIST--> (frank zappa)
Value for TITLE--> "Hot Rats"
Value for YEAR--> 1970
Value for BRIAN-LIKES?--> #f
Insert another? y
Value for ARTIST--> (the beatles)
Value for TITLE--> "Rubber Soul"
Value for YEAR--> 1965
Value for BRIAN-LIKES?--> #t
Insert another? no
INSERTED

albums

matt-likes?

Project: A Database Program 479

> (list-db)
RECORD 1
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T

RECORD 2
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F

RECORD 3
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T

RECORD 4
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night
YEAR: 1964
BRIAN-LIKES?: #T

LISTED
> (count-db)
4

At this point we start demonstrating features that aren’t actually in the version of the
program that we’ve provided. You will implement these features in this project. We’re
showing them now as if the project were finished to convey the overall flavor of how the
program should work.

We can print out the information in a database, and count the number of records:*

* Readers who are old enough to remember the days before compact discs may be disturbed by
the ambiguity of the word “record,” which could mean either a database record or a phonograph
record. Luckily, in our example it doesn’t matter, because each database record represents a
phonograph record. But we intend the word “record” to mean a database record; we’ll say “album”
if we mean the musical kind.

480 Part VI Sequential Programming

We can insert new records into the database later on:

We can sort the records of the database, basing the sorting order on a particular
field:

> (insert)
Value for ARTIST--> (the bill frisell band)
Value for TITLE--> "Where in the World?"
Value for YEAR--> 1991
Value for BRIAN-LIKES?--> #f
Insert another? no
INSERTED

> (sort-on ’year)
YEAR

> (list-db)
RECORD 1
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night
YEAR: 1964
BRIAN-LIKES?: #T

RECORD 2
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T

RECORD 3
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T

RECORD 4
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F

edit-record
#f

Project: A Database Program 481

How Databases Are Stored Internally

We can change the information in a record:

(The procedure takes a record number as its argument. In this case, we
wanted the first record. Also, the way you stop editing a record is by entering as the
field name.)

Finally, we can save a database to a file and retrieve it later:

Our program will store a database as a vector of three elements: the file name associated
with the database, a list of the names of the fields of the database, and a list of records in
the database.

RECORD 5
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

LISTED

> (edit-record 1)
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night
YEAR: 1964
BRIAN-LIKES?: #T

Edit which field? title
New value for TITLE--> "A Hard Day’s Night (original soundtrack)"
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night (original soundtrack)
YEAR: 1964
BRIAN-LIKES?: #T

Edit which field? #f
EDITED

> (save-db)
SAVED

> (load-db "albums")
LOADED

edit

cons

albums

482 Part VI Sequential Programming

#("albums"
(ARTIST TITLE YEAR BRIAN-LIKES?)
(#((THE BEATLES) "A Hard Day’s Night (original soundtrack)" 1964 #T)
#((THE BEATLES) "Rubber Soul" 1965 #T)
#((THE ZOMBIES) "Odessey and Oracle" 1967 #T)
#((FRANK ZAPPA) "Hot Rats" 1970 #F)
#((THE BILL FRISELL BAND) "Where in the World?" 1991 #F)))

;;; The database ADT: a filename, list of fields and list of records

(define (make-db filename fields records)
(vector filename fields records))

(define (db-filename db)
(vector-ref db 0))

(define (db-set-filename! db filename)
(vector-set! db 0 filename))

(define (db-fields db)
(vector-ref db 1))

(define (db-set-fields! db fields)
(vector-set! db 1 fields))

Each record of the database is itself a vector, containing values for the various fields.
(So the length of a record vector depends on the number of fields in the database.)

Why is each record a vector, but the collection of records a list? Records have to be
vectors because they are mutable; the command lets you change the value of a field
for a record. But there is no command to replace an entire record with a new one, so the
list of records doesn’t have to be mutable.

An advantage of storing the records in a list instead of a vector is that it’s easy to
insert new records. If you’ve got a new record and a list of the old records, you simply

the new record onto the old ones, and that’s the new list. You need to mutate the
vector that represents the entire database to contain this new list instead of the old one,
but you don’t need to mutate the list itself.

Here’s the database we created, as it looks to Scheme:

We’ll treat databases as an abstract data type; here is how we implement it:

#f

new-db

Project: A Database Program 483

The Current Database

Implementing the Database Program Commands

(define (db-records db)
(vector-ref db 2))

(define (db-set-records! db records)
(vector-set! db 2 records))

(define current-state (vector #f))

(define (no-db?)
(not (vector-ref current-state 0)))

(define (current-db)
(if (no-db?)

(error "No current database!")
(vector-ref current-state 0)))

(define (set-current-db! db)
(vector-set! current-state 0 db))

(define (current-fields)
(db-fields (current-db)))

(define (new-db filename fields)
(set-current-db! (make-db filename fields ’()))
’created)

The database program works on one database at a time. Every command implicitly refers
to the current database. Since the program might switch to a new database, it has to keep
the current database in a vector that it can mutate if necessary. For now, the current
database is the only state information that the program keeps, so it’s stored in a vector
of length one. If there is no current database (for example, when you start the database
program), the value is stored in this vector:

Once we have the basic structure of the database program, the work consists of inventing
the various database operations. Here is the procedure:

insert

Additions to the Program

484 Part VI Sequential Programming

(Remember that when you first create a database there are no records in it.)

Here’s the procedure:

The database program we’ve shown so far has the structure of a more sophisticated
program, but it’s missing almost every feature you’d want it to have. Some of the
following additions are ones that we’ve demonstrated, but for which we haven’t provided
an implementation; others are introduced here for the first time.

(define (insert)
(let ((new-record (get-record)))
(db-insert new-record (current-db)))

(if (ask "Insert another? ")
(insert)
’inserted))

(define (db-insert record db)
(db-set-records! db (cons record (db-records db))))

(define (get-record)
(get-record-loop 0

(make-vector (length (current-fields)))
(current-fields)))

(define (get-record-loop which-field record fields)
(if (null? fields)

record
(begin (display "Value for ")

(display (car fields))
(display "--> ")
(vector-set! record which-field (read))
(get-record-loop (+ which-field 1) record (cdr fields)))))

(define (ask question)
(display question)
(let ((answer (read)))
(cond ((equal? (first answer) ’y) #t)

((equal? (first answer) ’n) #f)
(else (show "Please type Y or N.")

(ask question)))))

and

Project: A Database Program 485

Count-db

List-db

Edit-record

Save-db Load-db

count-db

list-db

edit-record,

save-db load-db. Save-db

Load-db

save-db

write display show

In all of these additions, think about possible error conditions and how to handle
them. Try to find a balance between failing even on errors that are very likely to occur
and having an entirely safe program that has more error checking than actual content.

Implement the procedure. It should take no arguments, and it should return
the number of records in the current database.

Implement the procedure. It should take no arguments, and it should print
the current database in the format shown earlier.

Implement which takes a number between one and the number of
records in the current database as its argument. It should allow the user to interactively
edit the given record of the current database, as shown earlier.

Write and should take no arguments and should save the
current database into a file with the name that was given when the database was created.
Make sure to save the field names as well as the information in the records.

should take one argument, the filename of the database you want to load.
It should replace the current database with the one in the specified file. (Needless to say,
it should expect files to be in the format that creates.)

In order to save information to a file in a form that Scheme will be able to read
back later, you will need to use the procedure instead of or , as
discussed in Chapter 22.

Clear-current-db!

Get

486 Part VI Sequential Programming

#(SPROCKET 15 23 17 2)

> (get ’title ’#((the zombies) "Odessey and Oracle" 1967 #t))
"Odessey and Oracle"

new-db load-db New-db
load-db

clear-current-db!
clear-current-db!

save-db

new-db load-db clear-current-db!

price

get

Get
blank-record

blank-record
record-set!

The and procedures change the current database. creates a
new, blank database, while reads in an old database from a file. In both cases,
the program just throws out the current database. If you forgot to save it, you could lose
a lot of work.

Write a procedure that clears the current database. If there
is no current database, should do nothing. Otherwise, it should
ask the user whether to save the database, and if so it should call .

Modify and to invoke .

Many of the kinds of things that you would want to do to a database involve looking up
the information in a record by the field name. For example, the user might want to list
only the artists and titles of the album database, or sort it by year, or list only the albums
that Brian likes.

But this isn’t totally straightforward, since a record doesn’t contain any information
about names of fields. It doesn’t make sense to ask what value the field has in the
record

without knowing the names of the fields of the current database and their order.

Write a procedure that takes two arguments, a field name and a record, and
returns the given field of the given record. It should work by looking up the field name
in the list of field names of the current database.

can be thought of as a selector for the record data type. To continue
the implementation of a record ADT, write a constructor that takes no
arguments and returns a record with no values in its fields. (Why doesn’t
need any arguments?) Finally, write the mutator that takes three
arguments: a field name, a record, and a new value for the corresponding field.

Sort

sort

#t #f

Project: A Database Program 487

Modify the rest of the database program to use this ADT instead of directly manipu-
lating the records as vectors.

Write a command that takes a predicate as its argument and sorts the database
according to that predicate. The predicate should take two records as arguments and
return if the first record belongs before the second one, or otherwise. Here’s an
example:

> (sort (lambda (r1 r2) (before? (get ’title r1) (get ’title r2))))
SORTED

> (list-db)
RECORD 1
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night (original soundtrack)
YEAR: 1964
BRIAN-LIKES?: #T

RECORD 2
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F

RECORD 3
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T

RECORD 4
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T

RECORD 5
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

488 Part VI Sequential Programming

Note: Don’t invent a sorting algorithm for this problem. You can just use one of the
sorting procedures from Chapter 15 and modify it slightly to sort a list of records instead
of a sentence of words.

LISTED

> (sort (lambda (r1 r2) (< (get ’year r1) (get ’year r2))))
SORTED

> (list-db)
RECORD 1
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night (original soundtrack)
YEAR: 1964
BRIAN-LIKES?: #T

RECORD 2
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T

RECORD 3
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T

RECORD 4
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F

RECORD 5
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

LISTED

Sort-on-by

Generic-before?

Project: A Database Program 489

sort
sort-on-by

sort

sort

generic-before? #t

generic-before? <
generic-before? before?

artist
sent-before?

generic-before?

(sort-on-by ’title before?)

(sort-on-by ’year <)

> (generic-before? ’(magical mystery tour) ’(yellow submarine))
#T
> (generic-before? ’(is that you?) ’(before we were born))
#F
> (generic-before? ’(bass desires) ’(bass desires second sight))
#T

Although is a very general-purpose tool, the way that you have to specify how to sort
the database is cumbersome. Write a procedure that takes two arguments,
the name of a field and a predicate. It should invoke with an appropriate predicate
to achieve the desired sort. For example, you could say

and

instead of the two examples we showed earlier.

The next improvement is to eliminate the need to specify a predicate explicitly. Write a
procedure that takes two arguments of any types and returns if
the first comes before the second. The meaning of “before” depends on the types of the
arguments:

If the arguments are numbers, should use . If the arguments
are words that aren’t numbers, then should use to make
the comparison.

What if the arguments are lists? For example, suppose you want to sort on the
field in the albums example. The way to compare two lists is element by

element, just as in the procedure in Chapter 14.

But should also work for structured lists:

Sort-on

Add-field

490 Part VI Sequential Programming

sort-on
generic-before?

add-field
Add-field

> (generic-before? ’(norwegian wood (this bird has flown))
’(norwegian wood (tastes so good)))

#F

> (generic-before? ’(in line) ’rambler)
#T

> (generic-before? ’(news for lulu) ’cobra)
#F

> (add-field ’category ’rock)
ADDED

> (edit-record 5)
CATEGORY: ROCK
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

What if the two arguments are of different types? If you’re comparing a number and
a non-numeric word, compare them alphabetically. If you’re comparing a word to a list,
treat the word as a one-word list, like this:

Now write , which takes the name of a field as its argument and sorts the current
database on that field, using as the comparison predicate.

Sometimes you discover that you don’t have enough fields in your database. Write a
procedure that takes two arguments: the name of a new field and an initial
value for that field. should modify the current database to include the new
field. Any existing records in the database should be given the indicated initial value for
the field. Here’s an example:

Project: A Database Program 491

Edit which field? category
New value for CATEGORY--> jazz
CATEGORY: JAZZ
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

Edit which field? #f
EDITED

> (list-db)
RECORD 1
CATEGORY: ROCK
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night (original soundtrack)
YEAR: 1964
BRIAN-LIKES?: #T

RECORD 2
CATEGORY: ROCK
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T

RECORD 3
CATEGORY: ROCK
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T

RECORD 4
CATEGORY: ROCK
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F

492 Part VI Sequential Programming

add-field
#f

blank-record
get

adjoin-field
Adjoin-field
cons

RECORD 5
CATEGORY: JAZZ
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

LISTED

#((THE BEATLES) "Rubber Soul" 1965 #T)

#(ROCK (THE BEATLES) "Rubber Soul" 1965 #T)

If you like, you can write so that it will accept either one or two
arguments. If given only one argument, it should use as the default field value.

Note: We said earlier that each record is a vector but the collection of records is a
list because we generally want to mutate fields in a record, but not add new ones, whereas
we generally want to add new records, but not replace existing ones completely. This
problem is an exception; we’re asking you to add an element to a vector. To do this,
you’ll have to create a new, longer vector for each record. Your program will probably
run slowly as a result. This is okay because adding fields to an existing database is very
unusual. Commercial database programs are also slow at this; now you know why.

You can’t solve this problem in a way that respects the current version of the record
ADT. Think about trying to turn the record

into the record

It seems simple enough: Make a new record of the correct size, and fill in all the
values of the old fields from the old record. But does this happen before or after you
change the list of current fields in the database? If before, you can’t call
to create a new record of the correct size. If after, you can’t call to extract the field
values of the old record, because the field names have changed.

There are (at least) three solutions to this dilemma. One is to abandon the record
ADT, since it’s turning out to be more trouble than it’s worth. Using the underlying
vector tools, it would be easy to transform old-field records into new-field records.

The second solution is to create another constructor for records, .
would take a record and a new field value, and would be analogous to

.

Select-by

easy

select

Project: A Database Program 493

get record-set! blank-record

get record-set! blank-record

Add-field

current-state

count-selected
list-selected count-db list-db

select-by

(define (get fieldname record)
(get-with-these-fields fieldname record (current-fields)))

> (select-by (lambda (record) (get ’brian-likes? record)))
SELECTED

> (count-db)
5

The last solution is the most complicated, but perhaps the most elegant. The reason
our ADT doesn’t work is that , , and don’t just get
information from their arguments; they also examine the current fields of the database.
You could write a new ADT implementation in which each procedure took a list of
fields as an extra argument. Then , , and could be
implemented in this style:

could use the underlying ADT, and the rest of the program could continue
to use the existing version.

We’ve put a lot of effort into figuring out how to design this small part of the overall
project. Earlier we showed you examples in which using an ADT made it to modify a
program; those were realistic, but it’s also realistic that sometimes making an ADT work
can add to the effort.

Sometimes you only want to look at certain records in your database. For example,
suppose you just want to list the albums that Brian likes, or just the ones from before
1971. Also, you might want to save a portion of the database to a file, so that you could
have, for example, a database of nothing but Beatles albums. In general, you need a way
to certain records of the database.

To do this, change the vector to have another element: a selection
predicate. This predicate takes a record as its argument and returns whether or not
to include this record in the restricted database. Also write and

, which are just like and but include only those
records that satisfy the predicate. The initial predicate should include all records.

The procedure should take a predicate and put it into the right place.
Here’s an example:

Save-selection

494 Part VI Sequential Programming

* Even if you wanted to save the predicate, there’s no way to write a procedure into a file.

count-selected list-selected
current-selected-records

Save-db

save-selection save-db

> (count-selected)
3

> (select-by (lambda (record) (equal? (get ’category record) ’jazz)))
SELECTED

> (list-selected)
RECORD 5
CATEGORY: JAZZ
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F

LISTED

> (select-by (lambda (record) #t))
SELECTED

> (count-selected)
5

You can’t just throw away the records that aren’t selected. You have to keep them in
memory somehow, but make them invisible to and .
The way to do that is to create another selector, , that
returns a list of the selected records of the current database.

The selection predicate isn’t part of a database; it’s just a piece of state that’s part of
the user interface. So you don’t have to save the predicate when you save the database to
a file.* should save the entire database.

Write a procedure that’s similar to but saves only the
currently selected records. It should take a file name as its argument.

Merge-db

Project: A Database Program 495

merge-db

merge-db

"bands"

"albums"

Artist: Members:
(rush) (geddy alex neil)
(the beatles) (john paul george ringo)
(the bill frisell band) (bill hank kermit joey)
(the zombies) (rod chris colin hugh paul)

> (sort-on ’artist)
ARTIST

> (merge-db "bands" ’artist)
MERGED

> (list-db)
RECORD 1
CATEGORY: ROCK
ARTIST: (FRANK ZAPPA)
TITLE: Hot Rats
YEAR: 1970
BRIAN-LIKES?: #F
MEMBERS: #F

RECORD 2
CATEGORY: ROCK
ARTIST: (THE BEATLES)
TITLE: A Hard Day’s Night (original soundtrack)
YEAR: 1964
BRIAN-LIKES?: #T
MEMBERS: (JOHN PAUL GEORGE RINGO)

One of the most powerful operations on a database is to merge it with another database.
Write a procedure that takes two arguments: the file name of another database
and the name of a field that the given database has in common with the current database.
Both databases (the current one and the one specified) must already be sorted by the
given field.

The effect of the command is to add fields from the specified database
to the records of the current database. For example, suppose you had a database called

with the following information:

You should be able to do the following (assuming is the current database):

"bands" members
#f

join

496 Part VI Sequential Programming

Since there was no entry for Frank Zappa in the database, the field
was given the default value . If there are two or more records in the specified database
with the same value for the given field, just take the information from the first one.

(By the way, this problem has a lot in common with the procedure from
Exercise 22.8.)

This is a complicated problem, so we’re giving a hint:

RECORD 3
CATEGORY: ROCK
ARTIST: (THE BEATLES)
TITLE: Rubber Soul
YEAR: 1965
BRIAN-LIKES?: #T
MEMBERS: (JOHN PAUL GEORGE RINGO)

RECORD 4
CATEGORY: JAZZ
ARTIST: (THE BILL FRISELL BAND)
TITLE: Where in the World?
YEAR: 1991
BRIAN-LIKES?: #F
MEMBERS: (BILL HANK KERMIT JOEY)

RECORD 5
CATEGORY: ROCK
ARTIST: (THE ZOMBIES)
TITLE: Odessey and Oracle
YEAR: 1967
BRIAN-LIKES?: #T
MEMBERS: (ROD CHRIS COLIN HUGH PAUL)

LISTED

(define (merge-db other-name common-field)
(let ((other-db (read-db-from-disk other-name))

(original-fields (current-fields)))
(set-current-fields! (merge-fields original-fields

(db-fields other-db)))
(set-current-records! (merge-db-helper original-fields

(current-records)
(db-fields other-db)
(db-records other-db)
common-field))))

Extra Work for Hotshots

get-with-these-fields

Project: A Database Program 497

This procedure shows one possible overall structure for the program. You can fill
in the structure by writing the necessary subprocedures. (If you prefer to start with
a different overall design, that’s fine too.) Our earlier suggestion about writing a

procedure is relevant here also.

Compare your program to a real database program and see if you can add some of its
features. For example, many database programs have primitive facilities for averaging the
value of a field over certain records. Another feature you might want to try to implement
is two-dimensional printing, in which each column is a field and each row is a record.

498

Part VII
Conclusion: Computer Science

This is the end of the technical material in this book. We’ve explored the big ideas
of composition of functions, functions as data, recursion, abstraction, and sequential
programming. As a review, you might enjoy rereading Chapter 1 to see how the formerly
mysterious examples now make sense.

This book is intended both as a standalone programming course for people whose
main interest is in something else and as preparation for those who intend to continue
studying computer science. The final chapter is directed mainly at the latter group, to
tell them what to expect. We confess, though, to the hope that some of the former may
have enjoyed this experience enough to be lured into further study. If you’re in that
category, you’ll be particularly interested in a preview of coming attractions.

26 What’s Next?

The Best Computer Science Book

Structure and Interpretation of Computer Programs

SICP,

SICP
data abstraction

SICP.

501

We’ve concluded this introduction to computer science with two examples of “real world”
programming—spreadsheets and databases. What may have seemed like a pointless
game near the beginning of the book allowed us to write these serious programs.

But we’ve only begun to explore the ideas that make up computer science. If you’re
interested in learning more, where do you go from here?

The next step is to read by Harold Abelson
and Gerald Jay Sussman with Julie Sussman (MIT Press/McGraw-Hill, Second Edition,
1996). Our book was inspired by theirs, and our main goal in writing this book has been
to prepare you for that one. If you’re a student and your school offers a course based on

take it! If not, read the book on your own.

The big organizing idea of is abstraction. We’ve used this idea in several
ways. We’ve talked about such as inventing the sentence and tree data
types. We’ve also invented more specialized data types, such as positions in the tic-tac-
toe program and cells in the spreadsheet program. We’ve discussed how higher-order
procedures abstract a pattern of computation by using an extra argument to represent
the function that’s abstracted out.

What we’ve done in this book covers most of the main ideas in about the first
hundred pages of But don’t skip over those pages. In the footnotes alone you’ll find
ideas about numerical analysis, cryptography, epistemology (the study of what it means
to know something), number theory, programming language design, and the analysis of
algorithms.

functions

compute
ss-eval

is
SICP.

all

SICP:

sentence tree
SICP
pairs

SICP

SICP
SICP

objects

SICP Structure and Interpretation
of Computer Programs.

SICP

502 Part VII Conclusion: Computer Science

Because there some overlap between what we teach and what they teach, you may
think at first that you can breeze through a course based on Don’t fall into that trap;
even from the beginning there will be some ideas that are new to you, and after about
four weeks it will be new to you.

The core ideas of this book are in the first chapter of functions, recursion, the
substitution model, and higher-order functions. The second chapter is about lists and
data abstraction, extending the ladder of data abstractions in both directions. (That is,
in our book, lists are the fundamental data type used to construct the and
abstract data types. In you first learn that lists themselves are built of an even more
fundamental type, the that we mentioned in a pitfall in Chapter 17. Then you learn
about several more abstract data types that can be built out of lists.) The idea of data
abstraction extends beyond inventing new types. For example, uses data structures
not only to contain passive information but also to control the algorithms used in a
computation. You got a taste of this in the a-list of functions in the program.

The third chapter of is largely about non-functional programming, a topic we
only begin in this book. Specifically, introduces object-oriented programming, a
very popular technique in which the dichotomy between “smart” procedures and passive
data is broken down. Instead of a single program controlling the computation, there
are many that contain both algorithms and data; each object acts independently
of the others. (This is a metaphor; there is still one computer implementing all this
activity. The point is that the programmer is able to think in terms of the metaphor,
and the mechanism that simulates the independent objects is hidden behind the object
abstraction.)

You may have forgotten by now that stands for
We’ve been talking about the “structure” part: how a program

is organized to reflect the algorithm it implements. The “interpretation” half of the
book explains how a programming language like Scheme really works—how a computer
understands the program and carries out the activities that the program requests. The
centerpiece of the interpretation part of the book is the Scheme interpreter in the fourth
chapter, a program that takes any other Scheme program as its data and does what that
program specifies. (The procedure that evaluates arithmetic expression trees
in Chapter 18 and the procedure in our spreadsheet program give a hint of
what the Scheme evaluator is like.) The book goes on to implement different
programming languages and illustrate a variety of implementation techniques. Finally,
the fifth chapter introduces the study of machine organization: how computer hardware
carries out a program.

SICPBeyond

SICP

halting problem

Chapter 26 What’s Next? 503

* Many beginners think that studying computer science means learning a lot of different
programming languages. Perhaps you start with BASIC, then you learn Pascal, then C, and so on.
That’s not true. The crucial ideas in computer science can be expressed in any modern language;
it’s unusual for a computer science student to be taught more than two languages throughout
college.

Computer science can be broadly divided into three areas: software, hardware, and
theory. (Of course not everyone will agree with our division in detail.) This book is
about software. is also mostly about software, although it introduces some ideas
from the other two areas. More advanced computer science courses will concentrate on
one particular area.

Software includes programming languages, operating systems, and application pro-
grams. You know what a programming language is; there are courses on language
design questions (why one language is different from another) and implementation (for
example, how to write a Scheme interpreter).* An operating system is a program that
maintains disk file structures and allows different programs to run on a computer without
interfering with each other. Application programming techniques studied in computer
science courses include database management, graphics programming, user interfaces,
and artificial intelligence.

The study of computer hardware ranges from physical principles, through the
workings of electronic components such as transistors, to large-scale circuits such as
memories and adders, to the design of actual computers. This is a range of levels of
abstraction, just as there are levels of abstraction in programming. At the higher levels
of abstraction, you can think of an electronic circuit as a perfect representation of some
function that it implements; that is, the signals coming out the output wires are functions
of the signals coming in at the input wires. At a lower level of abstraction, you have
to think about the limitations of physical devices. (For example, a device may fail if its
output is attached to the inputs of too many other devices. It’s as if you could use the
return value from a function only a certain number of times.)

Theoretical computer science is a kind of applied mathematics. It includes analysis
of algorithms, which is the study of how fast one program runs compared to another.
(We touched on this topic when we mentioned that the simple selection sort is slower
than the more complicated mergesort. Analysis of algorithms provides the tools to show
exactly how much slower.) Theoreticians also study problems that can’t be solved by any
computer program at all; the most famous example is the of determining

•

•

•

Standard Scheme

Automata theory

numerical analysis,

Robotics

implementation

504 Part VII Conclusion: Computer Science

simply.scm

map
for-each read-line read-string
show show-line align close-all-ports

simply.scm

butfirst

show

in finite time whether some other program would run forever. is the study
of simplified pseudo-computers to prove theorems about the capabilities of computers in
general.

A few topics don’t fit readily into one of our three groups, such as
the study of how computers do arithmetic to ensure that the algorithms used really
give correct results. This field involves aspects of programming, hardware design, and
mathematics. involves artificial intelligence programming techniques along with
electrical and mechanical engineering.

As we’ve mentioned, this book uses a lot of “primitive” procedures that aren’t part of
standard Scheme. These are procedures we wrote in Scheme and included in the file

, which is listed in Appendix C.

When you use Scheme in some other context, it probably won’t come with these
procedures included. There are three things you can do about this:

Learn to love standard Scheme. That means not using the word and sentence functions,
not using our implementation of trees, not using our higher-order procedures (and

are the only standard ones), and not using , ,
, , , or . Also, you may find it necessary

to use data types we haven’t fully explained: characters, strings, and pairs.

Load our and continue to work in the style we’ve used in this book.
The advantage is that (in our humble opinion) we’ve provided some very convenient
facilities. The disadvantage is that other Scheme programmers won’t understand your
programs unless they’ve read our book.

Develop your own collection of tools to match the kind of programming you’re doing
in the new situations that come up. You can start with some of ours and add new
procedures that you invent.

Actually, all three of these are good ideas. If you are going to continue working with
Scheme, you’ll certainly need to know what’s in the standard and what’s an extension to
the language. After a while you’re bound to develop a collection of tools that fit with
your own preferred programming style. And sometimes will be just what you
need for some project.

You may be curious about the of our tool procedures. You’ve already
seen some of them, such as the higher-order procedures whose implementation is
described in Chapter 19. The input/output procedures (and its friends) are

5

Last Words

word first
"007"

Revised Report on the
Algorithmic Language Scheme.

IEEE Standard for the Scheme Programming Language,

Chapter 26 What’s Next? 505

straightforward once you’ve learned about the character data type. But you’ll find
that the implementation of words is quite complicated. Not only did we have to write
the obvious , , and so on, but we also had to rewrite all of the arithmetic
procedures so they work on words like as well as ordinary numbers.

There are two documents that specify exactly what makes up standard Scheme. The
first is updated fairly frequently to reflect ongoing experimentation in the language
design. As we go to press, the most recent edition is called the

The second document is meant to provide a more stable
basis for people who depend on a language that’s guaranteed not to become obsolete; it’s
IEEE Standard 1178-1990, published
by the Institute of Electrical and Electronic Engineers in 1991. Appendix A tells you how
to find both documents.

It’s hard to wrap up something like this without sounding preachy. Perhaps you’ll forgive
us this one section since we’ve been so cool all through the rest of the book.

We thought of two general points that we want to leave you with. First, in our
teaching experience at Berkeley we’ve seen many students learn the ideas of functional
programming in Scheme, then seem to forget all the ideas when they use another
programming language, such as C. Part of the skill of a computer scientist is to see past
surface differences in notation and understand, for example, that if the best way to solve
some problem in Scheme is with a recursive procedure, then it’s probably the best way in
C, too.

The second point is that it’s very easy to get a narrow technical education, learn lots
of great ideas about computer science, and still have a hard time dealing with the rest of
reality. The utilitarian way to put it is that when you work as a computer programmer
it’s rare that you can just sit in your corner and write programs. Instead, you have to
cooperate with other people on a team project; you have to write documentation both
for other programmers and for the people who will eventually use your program; you
have to talk with customers and find out what they really want the program to do, before
you write it. For all these reasons you have to work at developing communication skills
just as much as you work at your programming skills. But the utilitarian argument is just
our sneaky way of convincing you; the truth is that we want you to know about things
that have nothing to do with your technical work. Matt majored in music along with
computer science; Brian has a degree in clinical psychology. After you read Abelson and
Sussman, go on to read Freud and Marx.

Appendices

(+ 2 3) 5

A Running Scheme

shell finder explorer

507

The Program Development Cycle

The precise incantations needed to start Scheme depend on the particular version you’re
using and the model of computer and operating system you have. It’s beyond the scope
of this book to teach you the first steps in using a computer; we assume you’ve already
used other programs, if not Scheme. But in this appendix we suggest a few general ideas
and point out some knotty details.

One thing that beginners often forget is that a computer generally has many different
programs available, and each one has its own capabilities and its own method of operation.
If you think of yourself as interacting with “the computer,” you’re likely to try to use a
command suitable for one program when you’re actually using a different program. In
learning to program in Scheme, you’ll probably use at least three programs: Scheme
itself, the operating system’s (which is callled on the Macintosh and on
Windows), and a text editor. (The text editor may be part of the Scheme package or it
may be an entirely separate program.) The shell allows you to run other programs, such
as a printing utility or an electronic mail reader.

If you say to your text editor, it won’t respond by printing . Instead, it will
insert the seven characters that you typed into the file that you’re editing. If you type the
same thing to Scheme, it will evaluate the expression.

Scheme is an interactive language: You can write a program by typing its definition directly
into the Scheme interpreter. This ability to interact with Scheme is a great advantage
for one-time calculations and for exploratory work, but it’s not the best approach for the
systematic development of a large program.

>

.scmsomething

something

> (+ 2 3)
5

(load " .scm")

integrated

508 Appendix A Running Scheme

There are two issues to consider. First, when writing a large program, you generally
don’t get it perfect the first time. You make both typing errors and program logic errors,
and so you must be able to revise a definition. Typing directly to Scheme, the only way to
make such a revision is to retype the entire definition. Second, Scheme does not provide
a mechanism to save your work in a permanent file.

For these reasons, programs are generally typed into another program, a text editor,
rather than directly at the Scheme prompt. As we’ll explain in the next section, there
are several ways in which an editing program can be with Scheme, so that the
work you do in the editor can be communicated easily to Scheme. But the distinction
between Scheme and the editor is easiest to understand if we start by considering the
worst possible situation, in which the two are not integrated.

Imagine, therefore, that you have two separate programs available on your computer.
One program is a Scheme interpreter. When you start Scheme, you may see some initial
message, and then you see a prompt, which is a signal from Scheme that it’s ready for you
to type something. In this book we’ve used the character “ ” as the prompt. Then, as we
explain in the text, you can type an expression, and Scheme will compute and print the
value:

Your other program is a text editor. This might be a general-purpose word processing
program, with facilities for fancy text formatting, or it might be an editor intended
specifically for computer programs. Many editors “know” about Lisp programs and have
helpful features, such as automatic indentation, selection of complete expressions, and
showing you the matching open parenthesis when you type a close parenthesis.

To write a program, you use the editor. Although you are typing Scheme expressions,
you’re not talking to Scheme itself, and so the expressions are not evaluated as you type
them. Instead, they just appear on the screen like any other text. When you’re ready
to try out your program, you tell the editor to save the text in a file. (The command to
save the program text is the same as it would be for any other text; we assume that you
already know how to use the editor on your computer.) You can give the file any name
you want, although many people like to use names like to make it easy
to recognize files that contain Scheme programs.

Now you switch from the editor to Scheme. To read your program file into Scheme,
you enter the expression

Integrated Editing

Appendix A Running Scheme 509

load

ftp://prep.ai.mit.edu/pub/gnu/

* If you see an error message about “end of file” or “EOF,” it probably means that the file you
are trying to load contains unbalanced parentheses; you have started an expression with a left
parenthesis, and the file ended before Scheme saw a matching right parenthesis.

This tells Scheme to read expressions from the specified file.*

Once Scheme has read the program definitions from your file, you can continue
typing expressions to Scheme in order to test your program. If this testing uncovers an
error, you will want to change some definition. Instead of typing the changed definition
directly into Scheme, which would only make a temporary change in your program, you
switch back to the editor and make the change in your program file. Then switch back
to Scheme, and the corrected file.

This sequence of steps—edit a file, make changes, save the file, switch to Scheme,
load the file, test the program, find an error—is called a “development cycle” because
what comes after “find an error” is editing the file, beginning another round of the same
steps.

The development process can become much more convenient if Scheme and the editor
“know about” each other. For example, instead of having to reload an entire file when
you change one procedure definition, it’s faster if your editor can tell Scheme just the
one new definition. There are three general approaches to this integration: First, the
editor can be in overall charge, with the Scheme interpreter running under control of
the editor. Second, Scheme can be in charge, with the editor running under Scheme’s
supervision. Third, Scheme and the editor can be separate programs, both running
under control of a third program, such as a window system, that allows information to be
transferred between them.

If you’re using a Unix system, you will be able to take a separate editor program and
run Scheme from within that editor. The editor can copy any part of your program into the
running Scheme, as if you had typed it to Scheme yourself. We use Jove, a free, small, fast
version of EMACS. Most people use the more featureful GNU version of EMACS, which is
installed on most Unix systems and available at
and many mirror sites for download.

If you’re using a Macintosh or Windows version of Scheme, it will probably come
with its own text editor and instructions on how to use it. These editors typically provide
standard word-processing features such as cut and paste, search and replace, and saving

•

(load "simply.scm")

Getting Our Programs

510 Appendix A Running Scheme

README

simply.scm
functions.scm functions
ttt.scm
match.scm
spread.scm
database.scm
copyleft

simply.scm

ftp://anarres.cs.berkeley.edu/pub/scheme/

files. Also, they typically have a way to ask Scheme to evaluate an expression directly from
the editor.

If you’re using SCM under DOS, you should read the section “Editing Scheme Code”
in the file that comes with the SCM distribution. It will explain that editing can
be done in different ways depending on the precise software available to you. You can
buy a DOS editor that works like the Unix editors, or you can ask SCM to start a separate
editor program while SCM remains active.

Finally, if you’re running Scheme under Windows or another windowing operating
system (like X or the Macintosh Finder), you can run any editor in another window and
use the cut and paste facility to transfer information between the editor and Scheme.

This book uses some programs that we wrote in Scheme. You’ll want these files available
to you while reading the book:

extended Scheme primitives
the program of Chapters 2 and 21
the tic-tac-toe example from Chapter 10
the pattern matcher example from Chapter 16
the spreadsheet program example from Chapter 24
the beginning of the database project
the GNU General Public License (see Appendix D)

In particular, the file must be loaded into Scheme to allow anything
in the book to work. Some Scheme systems allow you to load such a “startup” file
permanently, so that it’ll be there automatically from then on. In other versions of
Scheme, you must say

at the beginning of every Scheme session.

There are three ways to get these program files:

If you have access to the Internet, the most recent versions of all these files can be
found at

•

•

Appendix A Running Scheme 511

Tuning Our Programs for Your System

> (random 5)

> (error "Your error is" "string")

(define (error-printform x) x)

random

random

simply.scm

simply.scm random

string
"string" simply.scm

error-printform

read

If you know someone who already has these files, you may copy them and distribute
them freely. (The programs are copyrighted but are provided under a license that
allows unlimited redistribution on a nonprofit basis; see Appendix D.)

If you’re stranded on a desert island with nothing but a computer and a copy of this
book, you can type them in yourself; complete listings for all six programs, plus the
GNU Public License, appear in the text of the book.

Almost all of the programs we distribute with this book will work without modification
in the popular versions of Scheme. We’ve included “defensive” procedures that allow
our programs to work even in versions that don’t conform to current Scheme standards
in various ways. However, there are a few details that we couldn’t make uniform in all
versions.

1. Many versions of Scheme include a procedure to generate random
numbers, but the standard does not require it, and so we’ve provided one just in case. If
your Scheme includes a primitive , it’s probably better than the one we provide,
because we have no way to choose a different starting value in each Scheme session.

Before loading into Scheme, do the following experiment:

If you get an error message, do nothing. If you get a random number as the result, edit
and remove the definition of .

2. Do the following experiment:

If the message you get doesn’t include quotation marks around the word , then
do nothing. But if you do see with quotation marks, edit and
change the definition of to

3. Although the Scheme standard says that the procedure should not read the
newline character following an expression that it reads, some old versions of Scheme get
this wrong.

512 Appendix A Running Scheme

> (read-line)

> (butfirst 1024)
"024"

> (+ 3 (butfirst 1024))
27

> (strings-are-numbers #f)

> (strings-are-numbers #t)

simply.scm

return enter
return enter

()
return enter

functions.scm read-line
functions

butfirst 024
24 butfirst

strings-are-numbers

After loading , do the following experiment:

End the line with the or key (whichever is appropriate in your version
of Scheme) as usual, but don’t type a second or yet. If Scheme prints

right away, skip this paragraph; your version of Scheme behaves correctly. If, on the
other hand, nothing happens, type another or . In this case you must
edit and remove the invocation of on the first line of the
body of the procedure.

4. There is a substantial loss of efficiency in treating strings of digits as numbers in
some contexts and as text in other contexts. When we’re treating 1024 as text, we want
to be able to take its , which should be 024. But in Scheme, is the same
as , so instead returns a string:

Yet we want to be able to do arithmetic on this value:

To accomplish this, we redefine all of Scheme’s arithmetic procedures to accept strings
of digits and convert them to numbers. This redefinition slows down all arithmetic, not
just arithmetic on strange numbers, and it’s only rarely important to the programs we
write. Therefore, we’ve provided a way to turn this part of the package off and on again.
If your programs run too slowly, try saying

If you find that some program doesn’t work because it tries to do arithmetic on a digit
string and gets an error message, you can say

to restore the original behavior of our programs. We recommend that you leave
true while exploring the first few chapters, so that the behavior

of the word data type will be consistent. When you get to the large example programs,
you may want to change to false.

Loading Our Programs

load

load

load

load book-load

Appendix A Running Scheme 513

* Suggestion for instructors: when we teach this class, we define a procedure like

so that students can just say

(define (book-load filename)
(load (string-append "/usr/cs3/progs-from-book/" filename)))

(book-load "functions.scm")

UNIX-SCHEME> (load "/usr/people/matt/scheme-stuff/simply.scm")

WINDOWS-SCHEME> (load "c:\\scheme\\simply.scm")

MAC-SCHEME> (load "Hard Disk:Scheme Folder:simply.scm")

Scheme’s procedure doesn’t scan your entire disk looking for the file you want
to load. Instead, it only looks in one particular directory (DOS/Unix) or folder
(Macintosh/Windows). If you want to load our programs, you have to make sure that
Scheme can find them.

The first way to accomplish this is to give the full “path” as part of the argument to
. Here are some examples:*

Under Unix, directories in a path are separated by forward slash characters. Under
Windows and DOS, directories are separated by backward slash characters, which have
a special meaning to Scheme. So you must use double backslashes as in our example
above. On a Macintosh, you separate the parts of a path with colons. (However, most
versions of Scheme for the Macintosh or Windows have a load command in one of the
menus that opens a standard file selection dialog box, so you can use that instead.)

The other possibility is to put the files in the place where your version of Scheme
looks for them. In many versions of Scheme, looks for files in the folder that
contains the Scheme program itself. Put our files in that folder.

On Unix, the default loading directory is whatever directory you’re in at the moment.
If you want to work on different projects in different directories, there’s no way to make it
so that will always find our files. (But see our suggestion about writing .)

n

•

•

•

•

init.scm load
simply.scm

trace

Versions of Scheme

Scheme Standards

http://swissnet.ai.mit.edu/scheme-home.html
http://www.schemers.org
http://www.cs.indiana.edu/scheme-repository

debugger

leave

initialization file

Revised Report on the
Algorithmic Language Scheme.

IEEE Standard for the Scheme Programming Language,

514 Appendix A Running Scheme

There are lots of them, both free and commercial. Three places to look for pointers are

In general, there are four things you should be sure to learn about whatever version
of Scheme you choose:

Most versions of Scheme include a to help you find program errors. If you
call a primitive with an argument not in its domain, for example, Scheme will start the
debugger, which will have features to let you find out where in your program the error
occurred. These debuggers vary greatly among versions of Scheme. The first thing you
should learn is how to the debugger, so you can get back to a Scheme prompt!

Many versions of Scheme will read an if you create one. That is,
when you start Scheme, it will look for a file of a particular name (something like

, but not usually exactly that), and if there is such a file, Scheme will
it automatically. You can copy our file to the proper filename for your
version, and you’ll have our added primitives available every time you start Scheme.

Most versions of Scheme provide a capability, but the format of the trace results
are quite different from one version to another.

If you are using a Macintosh, one thing to watch out for is that some versions of Scheme
expect you to use the ENTER key at the end of an expression, while others expect you
to use the RETURN key.

The Web sites listed above will provide the latest version of the
You can get the document in either Postscript or HTML

format.

IEEE Standard 1178-1990, may
be ordered from IEEE by calling 1-800-678-IEEE or 908-981-1393 or writing IEEE Service
Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, and using order
number SH14209 ($28 for IEEE members, $40 for others). ISBN 1-55937-125-0.

515

B Common Lisp

Why Common Lisp Exists

sort
number-name substitute

The two most popular dialects of Lisp are Scheme and Common Lisp. This appendix,
which assumes that you have finished the rest of this book, describes the most important
differences between Scheme and Common Lisp so that you will be able to use Common
Lisp if you need to. Common Lisp is the most popular language among Artificial
Intelligence researchers, so AI courses often use Common Lisp.

Since the beginning of Lisp, many versions of the language were developed. Each dialect
reflected different ideas about the most important capabilities to include in the language.
This diversity made Lisp an exciting arena for research, but it also meant that a Lisp
program written for one dialect couldn’t be used elsewhere.

In 1984, a group of Lisp developers decided to define a version of Lisp that would
combine the capabilities of all their favorite dialects, so that in the future they would all
use the same language; thus the name “Common” Lisp. Common Lisp was not the first
attempt at a universal Lisp dialect, but it was more successful than earlier efforts. In 1985
a revision of the language was begun under the aegis of ANSI, the American National
Standards Institute. This ANSI sponsorship gave Common Lisp an official status that has
contributed to its growing acceptance.

Since Common Lisp was designed by combining the capabilities of many earlier
dialects, it’s an enormous language with nearly 1000 primitives, including versions of
several programs in this book. There is a primitive procedure, a procedure like

that spells numbers in English, and a procedure identical
to the one you wrote in an exercise, to name a few.

516 Appendix B Common Lisp

define

defun
defvar

defvar
defvar setq

p

null? null nullp

Defining Procedures and Variables

The Naming Convention for Predicates

(defun square (x)
(* x x))

(define (square x)
(* x x))

common-lisp> (defvar x 6)
6

common-lisp> x
6

If you’re writing your own programs in Common Lisp, you can ignore all the extra
features and just use the capabilities you already know from Scheme. If you’re trying
to read someone else’s Common Lisp program, we expect that you will have to look up
many primitive procedures in a reference manual.

One minor difference between Scheme and Common Lisp is in the way procedures are
defined. In Common Lisp,

means the same as Scheme’s

In Scheme, is used both for procedures and for variables whose values aren’t
procedures. In Common Lisp, procedures are given names by a mechanism separate
from the general variable mechanism; is only for procedures. To define a variable,
use :

In Common Lisp, returns the name of the variable you define. If a variable has
already been defined, will not change its value; for that you must use .

In Common Lisp, names of predicate procedures end in a “ ” (for “predicate”) instead
of a question mark. Unfortunately, this convention isn’t followed strictly. For example,
Common Lisp’s version of the predicate is just “ ,” not “ .”

do

Appendix B Common Lisp 517

No Words or Sentences

True and False

accumulate appearances before? bf bl butfirst butlast count
empty? every first item keep last member? se sentence word
word? map
reduce append

#t #f
nil

Nil
t

nil

common-lisp> (= 2 3)
NIL

common-lisp> (cdr ’(one-word-list))
NIL

common-lisp> ’()
NIL

common-lisp> ’nil
NIL

common-lisp> nil
NIL

common-lisp> t
T

common-lisp> (if (cdr ’(one-word-list)) ’yes ’no)

We’ve mentioned that Scheme doesn’t really have words and sentences built in; neither
does Common Lisp. So none of the following procedures have Common Lisp equiva-
lents: , , , , , , , ,

, , , , , , , , , , and
. (Common Lisp does have lists, though, and list-related procedures such as ,

, , and so on have equivalents.)

Common Lisp doesn’t have the Boolean values and . Instead, it has a single false
value, , which is also the empty list.

is a strange beast in Common Lisp. It isn’t a variable with the empty list as its
value; it’s a special self-evaluating symbol. There is also , a self-evaluating symbol with a
true value.

Like Scheme, Common Lisp treats every non-false (i.e., non-) value as true. But
be careful; in Common Lisp

Files

anything

518 Appendix B Common Lisp

NO nil

cond else
t

close

read read

nil read

(defun sign (n)
(cond ((> n 0) ’positive)

((= n 0) ’zero)
(t ’negative)))

common-lisp> (defvar out-stream (open "outfile" :direction :output))
#<OUTPUT STREAM "outfile">

common-lisp> (close out-stream)
T

common-lisp> (defvar in-stream (open "infile" :direction :input))
#<INPUT STREAM "infile">

common-lisp> (close in-stream)
T

common-lisp> (read stream nil)

(let ((next (read stream nil ’xyzzy)))
(if (equalp next ’xyzzy)

’done
(do-something next)))

has the value , because the empty list is .

In Common Lisp’s , there is no equivalent to ; Common Lisp programmers
instead use as the condition for their last clause, like this:

Common Lisp’s mechanism for dealing with files is trivially different from Scheme’s.
What Scheme calls “ports,” Common Lisp calls “streams.” Also, there is only one
procedure for opening streams; the direction is specified this way:

Note that the procedure closes both input streams and output streams.

To from an input stream, you must invoke with three arguments:

The indicates that reaching the end of the file should not be an error. If does
reach the end of the file, instead of returning a special end-of-file object it returns its
third argument. It’s possible to choose any value as the indicator for reaching the end of
the file:

Scheme Common Lisp

array

Appendix B Common Lisp 519

Arrays

Equivalents to Scheme Primitives

align format
begin progn
boolean?
c...r (c...r nil) nil
children
close-...-port close
close-all-ports
cond else t
datum
define defun defvar
display princ
eof-object?
equal? equalp
even? evenp
filter remove-if-not
for-each mapc
integer? integerp
lambda
list? listp listp
list-ref nth
list->vector
make-node
make-vector

Common Lisp’s primitive has a similar purpose.

Doesn’t exist; see the section in this appendix about true and false values.
The same, but is instead of an error.
You can use our version from Chapter 18.

Doesn’t exist.
The same, except for ; use instead.
You can use our version from Chapter 18.
Either , for procedures, or , otherwise.

See the section on files.

Discussed later in this appendix.
, except that also returns true for improper lists.

, except that the arguments come in reverse order.
See the section about arrays.
You can use our version from Chapter 18.
See the section about arrays.

It’s important to choose an end-of-file indicator that couldn’t otherwise appear as a value
in the file.

In Common Lisp, vectors are just a special case of the multidimensional data type
that you invented in Exercise 23.15. There are quite a few differences between Common
Lisp arrays and Scheme vectors, none very difficult, but too numerous to describe here.
If you need to use arrays, read about them in a Common Lisp book.

Other than the word and sentence procedures, here is a table of the Scheme primitives
from the table on page 553 that have different names, slightly different behavior, or do
not exist at all in Common Lisp. Scheme procedures not in this list (other than the word
and sentence ones) can be used identically in Common Lisp.

list

anything

two

520 Appendix B Common Lisp

A Separate Name Space for Procedures

See the section on files.

Identical except for end of file. See the section on files.
Doesn’t exist. (Common Lisp’s is like our .)

The same, but computes instead of .

Doesn’t exist.
Doesn’t exist but easy to write.
Doesn’t exist.
See the section about arrays.

map mapcar
newline terpri
null? null
number? numberp
odd? oddp
open-...-file
procedure? functionp
quotient truncate
read
read-line read-line read-string
read-string read-line
reduce (f (f a b) c) (f a (f b c))
remainder rem
repeated
show
show-line
vector-
write prin1

(defun three-copies (list)
(list list list list))

common-lisp> (three-copies ’(drive my car))
((DRIVE MY CAR) (DRIVE MY CAR) (DRIVE MY CAR))

All of the differences noted in this table are fairly minor ones, in the sense that the
translation needed to account for these differences requires little more than renaming.
There is one major conceptual difference between the two languages, however, in the
way they treat names of procedures. Common Lisp allows a procedure and a variable to
have the same name. For example, the program

is perfectly legal.

How can Common Lisp tell that one of the s means the primitive procedure,
but the other ones mean the formal parameter? Symbols in the first position in a list
(right after an open parenthesis) are taken to be names of globally defined procedures.

In Chapter 7 we introduced the image of a blackboard with all the global variables
written on it, which all the Scheme little people can see. In Common Lisp, there are
blackboards: one for global variables, just as in Scheme, and another one for procedures.

Lambda

Appendix B Common Lisp 521

defun

map mapcar

sqrt function

Function Function

lambda

* Common Lisp uses the word “function” to mean “procedure,” whether or not the procedure
implements a function.

common-lisp> (sqrt 144)
12

common-lisp> (mapcar sqrt ’(9 16 25 36))
ERROR: The variable SQRT is unbound.

common-lisp> (function sqrt)
#<PROCEDURE>

common-lisp> (mapcar (function sqrt) ’(9 16 25 36))
(3 4 5 6)

common-lisp> ((lambda (x) (* x x)) 4)
16

The procedure blackboard contains the primitive procedures and the procedures you
define with . Names in the first position of an expression are looked up on the
procedure blackboard.

Therefore, the names of procedures are not variables and cannot be used as actual
argument expressions:

(Common Lisp’s equivalent of is named .)

How, then, do you tell Common Lisp that you want to use the procedure named
as data? You must use the special form.*

’s job is to look up names on the procedure blackboard. (actually
has a more general definition, as you’ll see in a few paragraphs.)

In Common Lisp, as in Scheme, procedures can be named or unnamed. Just as
procedure names in Common Lisp are meaningful only in certain contexts, so are

expressions. They make sense at the beginning of an expression:

FunctionMore about

522 Appendix B Common Lisp

function

function

lambda
Function

function

common-lisp> (function (lambda (x) (* x x)))
#<PROCEDURE>

common-lisp> (mapcar (function (lambda (x) (* x x))) ’(3 4 5 6))
(9 16 25 36)

common-lisp> (lambda (x) (* x x))
ERROR: LAMBDA is not a function

common-lisp> (mapcar (lambda (x) (* x x)) ’(3 4 5 6))
ERROR: LAMBDA is not a function

common-lisp> (mapcar #’(lambda (x) (* x x)) ’(3 4 5 6))
(9 16 25 36)

common-lisp> (mapcar #’cdr ’((hey jude) (eleanor rigby) (yes it is)))
((JUDE) (RIGBY) (IT IS))

#’(lambda (x) (* x x))

’#(lambda (x) (* x x))

or as the argument to :

but they’re meaningless on their own:

The official rule is that returns the “functional interpretation” of its argument.
If the argument is a symbol, that means looking up the procedure associated with that
name. If the argument is a expression, it means creating a new procedure.

uses the same rule that’s used to interpret the first element of a procedure
invocation.

Since is a very commonly used special form, it has an abbreviation:

Don’t confuse

with

The first of these is a function that squares its argument; the second is an array containing
three elements.

Appendix B Common Lisp 523

Writing Higher-Order Procedures

function
function quote

map

null
defun

fn lst
#’square ’(1 2 3 4 5)

fn
fn

funcall

(defun map (fn lst) ;; wrong!
(if (null lst)

’()
(cons (fn (car lst))

(map fn (cdr lst)))))

(map #’square ’(1 2 3 4 5))

(if (null ’(1 2 3 4 5))
’()
(cons (fn (car ’(1 2 3 4 5))

(map #’square (cdr ’(1 2 3 4 5))))))

common-lisp> (map #’square ’(1 2 3 4 5))
ERROR: FN is not a procedure.

It’s unfortunate that the abbreviation for contains a single quote mark,
because the job of is nothing like the job of . You’ll just have to get
used to the “hashquote” notation.

Think about this attempted translation of the procedure:

(In Common Lisp, is one of the predicates whose names don’t end in “p.”
Otherwise, this is the same program we showed you in Chapter 19, except for the ,
of course.)

According to our rule about names in the front of a list, this procedure doesn’t work.
Think about what happens when we say

According to the substitution model, the parameters and are replaced in the
body with and . But Common Lisp makes an exception for
the first element of a compound expression. It uses the procedure blackboard instead of
substitution:

Note that one of the appearances of was left unchanged. Since there is no global
procedure named , this program will produce an error:

How, then, do you write higher-order procedures in Common Lisp? The answer is
that you must use :

Funcall

fn
#’square

524 Appendix B Common Lisp

common-lisp> (funcall #’+ 1 2 3)
6

common-lisp> (apply #’+ ’(1 2 3))
6

(defun map (fn lst)
(if (null lst)

’()
(cons (funcall fn (car lst))

(map fn (cdr lst)))))

apply

+ funcall
+ apply Apply

takes one or more arguments. The first is a procedure and the rest are
arguments for that procedure. It applies that procedure to the given arguments.* Since

is no longer at the beginning of a compound expression, the corresponding argument,
, is substituted for it.

* This is a lot like , you may have noticed. Look at the difference:

In the first case, each argument to is a separate argument to . In the second case, a list
of the arguments to is a single argument to . always takes exactly two arguments,
the procedure and the argument list.

525

C Scheme Initialization File

Many of the procedures we talk about in this book aren’t part of standard Scheme; we
wrote them ourselves. Here is a listing of the definitions of those procedures.

;;; simply.scm version 3.13 (8/11/98)

;;; This file uses Scheme features we don’t talk about in _Simply_Scheme_.
;;; Read at your own risk.

(if (equal? ’foo (symbol->string ’foo))
(error "Simply.scm already loaded!!")
#f)

;; Make number->string remove leading "+" if necessary

(if (char=? #\+ (string-ref (number->string 1.0) 0))
(let ((old-ns number->string) (char=? char=?) (string-ref string-ref)

(substring substring) (string-length string-length))
(set! number->string

(lambda args
(let ((result (apply old-ns args)))

(if (char=? #\+ (string-ref result 0))
(substring result 1 (string-length result))
result)))))

’no-problem)

(define number->string
(let ((old-ns number->string) (string? string?))

(lambda args
(if (string? (car args))

(car args)
(apply old-ns args)))))

526 Appendix C Scheme Initialization File

;; Get strings in error messages to print nicely (especially "")

(define whoops
(let ((string? string?) (string-append string-append) (error error)

(cons cons) (map map) (apply apply))
(define (error-printform x)

(if (string? x)
(string-append "\"" x "\"")
x))

(lambda (string . args)
(apply error (cons string (map error-printform args))))))

;; ROUND returns an inexact integer if its argument is inexact,
;; but we think it should always return an exact integer.
;; (It matters because some Schemes print inexact integers as "+1.0".)
;; The (exact 1) test is for PC Scheme, in which nothing is exact.
(if (and (inexact? (round (sqrt 2))) (exact? 1))

(let ((old-round round) (inexact->exact inexact->exact))
(set! round

(lambda (number)
(inexact->exact (old-round number)))))

’no-problem)

;; Remainder and quotient blow up if their argument isn’t an integer.
;; Unfortunately, in SCM, (* 365.25 24 60 60) *isn’t* an integer.

(if (inexact? (* .25 4))
(let ((rem remainder) (quo quotient) (inexact->exact inexact->exact)

(integer? integer?))
(set! remainder

(lambda (x y)
(rem (if (integer? x) (inexact->exact x) x)

(if (integer? y) (inexact->exact y) y))))
(set! quotient

(lambda (x y)
(quo (if (integer? x) (inexact->exact x) x)

(if (integer? y) (inexact->exact y) y)))))
’done)

Appendix C Scheme Initialization File 527

;; Random
;; If your version of Scheme has RANDOM, you should take this out.
;; (It gives the same sequence of random numbers every time.)

(define random
(let ((*seed* 1) (quotient quotient) (modulo modulo) (+ +) (- -) (* *) (> >))

(lambda (x)
(let* ((hi (quotient *seed* 127773))

(low (modulo *seed* 127773))
(test (- (* 16807 low) (* 2836 hi))))

(if (> test 0)
(set! *seed* test)
(set! *seed* (+ test 2147483647))))

(modulo *seed* x))))

;;; Logo-style word/sentence implementation

(define word?
(let ((number? number?) (symbol? symbol?) (string? string?))

(lambda (x)
(or (symbol? x) (number? x) (string? x)))))

(define sentence?
(let ((null? null?) (pair? pair?) (word? word?) (car car) (cdr cdr))

(define (list-of-words? l)
(cond ((null? l) #t)

((pair? l)
(and (word? (car l)) (list-of-words? (cdr l))))

(else #f)))
list-of-words?))

(define empty?
(let ((null? null?) (string? string?) (string=? string=?))

(lambda (x)
(or (null? x)

(and (string? x) (string=? x ""))))))

528 Appendix C Scheme Initialization File

(define char-rank
;; 0 Letter in good case or special initial
;; 1 ., + or -
;; 2 Digit
;; 3 Letter in bad case or weird character
(let ((*the-char-ranks* (make-vector 256 3))

(= =) (+ +) (string-ref string-ref) (string-length string-length)
(vector-set! vector-set!) (char->integer char->integer)
(symbol->string symbol->string) (vector-ref vector-ref))

(define (rank-string str rank)
(define (helper i len)

(if (= i len)
’done
(begin (vector-set! *the-char-ranks*

(char->integer (string-ref str i))
rank)

(helper (+ i 1) len))))
(helper 0 (string-length str)))

(rank-string (symbol->string ’abcdefghijklmnopqrstuvwxyz) 0)
(rank-string "!$%&*/:<=>?~_^" 0)
(rank-string "+-." 1)
(rank-string "0123456789" 2)
(lambda (char) ;; value of char-rank

(vector-ref *the-char-ranks* (char->integer char)))))

(define string->word
(let ((= =) (<= <=) (+ +) (- -) (char-rank char-rank) (string-ref string-ref)

(string-length string-length) (string=? string=?) (not not)
(char=? char=?) (string->number string->number)
(string->symbol string->symbol))

(lambda (string)
(define (subsequents? string i length)

(cond ((= i length) #t)
((<= (char-rank (string-ref string i)) 2)
(subsequents? string (+ i 1) length))

(else #f)))
(define (special-id? string)

(or (string=? string "+")
(string=? string "-")
(string=? string "...")))

(define (ok-symbol? string)
(if (string=? string "")

#f
(let ((rank1 (char-rank (string-ref string 0))))
(cond ((= rank1 0) (subsequents? string 1 (string-length string)))

((= rank1 1) (special-id? string))
(else #f)))))

Appendix C Scheme Initialization File 529

(define (nn-helper string i len seen-point?)
(cond ((= i len)

(if seen-point?
(not (char=? (string-ref string (- len 1)) #\0))
#t))

((char=? #\. (string-ref string i))
(cond (seen-point? #f)

((= (+ i 2) len) #t) ; Accepts "23.0"
(else (nn-helper string (+ i 1) len #t))))

((= 2 (char-rank (string-ref string i)))
(nn-helper string (+ i 1) len seen-point?))

(else #f)))
(define (narrow-number? string)

(if (string=? string "")
#f
(let* ((c0 (string-ref string 0))

(start 0)
(len (string-length string))
(cn (string-ref string (- len 1))))

(if (and (char=? c0 #\-) (not (= len 1)))
(begin
(set! start 1)
(set! c0 (string-ref string 1)))

#f)
(cond ((not (= (char-rank cn) 2)) #f) ; Rejects "-" among others

((char=? c0 #\.) #f)
((char=? c0 #\0)
(cond ((= len 1) #t) ; Accepts "0" but not "-0"

((= len 2) #f) ; Rejects "-0" and "03"
((char=? (string-ref string (+ start 1)) #\.)
(nn-helper string (+ start 2) len #t))

(else #f)))
(else (nn-helper string start len #f))))))

;; The body of string->word:
(cond ((narrow-number? string) (string->number string))

((ok-symbol? string) (string->symbol string))
(else string)))))

(define char->word
(let ((= =) (char-rank char-rank) (make-string make-string) (char=? char=?)

(string->symbol string->symbol) (string->number string->number))
(lambda (char)

(let ((rank (char-rank char))
(string (make-string 1 char)))

(cond ((= rank 0) (string->symbol string))
((= rank 2) (string->number string))
((char=? char #\+) ’+)
((char=? char #\-) ’-)
(else string))))))

530 Appendix C Scheme Initialization File

(define word->string
(let ((number? number?) (string? string?) (number->string number->string)

(symbol->string symbol->string))
(lambda (wd)

(cond ((string? wd) wd)
((number? wd) (number->string wd))
(else (symbol->string wd))))))

(define count
(let ((word? word?) (string-length string-length)

(word->string word->string) (length length))
(lambda (stuff)

(if (word? stuff)
(string-length (word->string stuff))
(length stuff)))))

(define word
(let ((string->word string->word) (apply apply) (string-append string-append)

(map map) (word? word?) (word->string word->string) (whoops whoops))
(lambda x

(string->word
(apply string-append

(map (lambda (arg)
(if (word? arg)

(word->string arg)
(whoops "Invalid argument to WORD: " arg)))

x))))))

(define se
(let ((pair? pair?) (null? null?) (word? word?) (car car) (cons cons)

(cdr cdr) (whoops whoops))
(define (paranoid-append a original-a b)

(cond ((null? a) b)
((word? (car a))
(cons (car a) (paranoid-append (cdr a) original-a b)))

(else (whoops "Argument to SENTENCE not a word or sentence"
original-a))))

(define (combine-two a b) ;; Note: b is always a list
(cond ((pair? a) (paranoid-append a a b))

((null? a) b)
((word? a) (cons a b))
(else (whoops "Argument to SENTENCE not a word or sentence:" a))))

;; Helper function so recursive calls don’t show up in TRACE
(define (real-se args)

(if (null? args)
’()
(combine-two (car args) (real-se (cdr args)))))

(lambda args
(real-se args))))

Appendix C Scheme Initialization File 531

(define sentence se)

(define first
(let ((pair? pair?) (char->word char->word) (string-ref string-ref)

(word->string word->string) (car car) (empty? empty?)
(whoops whoops) (word? word?))

(define (word-first wd)
(char->word (string-ref (word->string wd) 0)))

(lambda (x)
(cond ((pair? x) (car x))

((empty? x) (whoops "Invalid argument to FIRST: " x))
((word? x) (word-first x))
(else (whoops "Invalid argument to FIRST: " x))))))

(define last
(let ((pair? pair?) (- -) (word->string word->string) (char->word char->word)

(string-ref string-ref) (string-length string-length) (empty? empty?)
(cdr cdr) (car car) (whoops whoops) (word? word?))

(define (word-last wd)
(let ((s (word->string wd)))

(char->word (string-ref s (- (string-length s) 1)))))
(define (list-last lst)

(if (empty? (cdr lst))
(car lst)
(list-last (cdr lst))))

(lambda (x)
(cond ((pair? x) (list-last x))

((empty? x) (whoops "Invalid argument to LAST: " x))
((word? x) (word-last x))
(else (whoops "Invalid argument to LAST: " x))))))

(define bf
(let ((pair? pair?) (substring substring) (string-length string-length)

(string->word string->word) (word->string word->string) (cdr cdr)
(empty? empty?) (whoops whoops) (word? word?))

(define string-bf
(lambda (s)
(substring s 1 (string-length s))))

(define (word-bf wd)
(string->word (string-bf (word->string wd))))

(lambda (x)
(cond ((pair? x) (cdr x))

((empty? x) (whoops "Invalid argument to BUTFIRST: " x))
((word? x) (word-bf x))
(else (whoops "Invalid argument to BUTFIRST: " x))))))

(define butfirst bf)

532 Appendix C Scheme Initialization File

(define bl
(let ((pair? pair?) (- -) (cdr cdr) (cons cons) (car car) (substring substring)

(string-length string-length) (string->word string->word)
(word->string word->string) (empty? empty?) (whoops whoops) (word? word?))

(define (list-bl list)
(if (null? (cdr list))

’()
(cons (car list) (list-bl (cdr list)))))

(define (string-bl s)
(substring s 0 (- (string-length s) 1)))

(define (word-bl wd)
(string->word (string-bl (word->string wd))))

(lambda (x)
(cond ((pair? x) (list-bl x))

((empty? x) (whoops "Invalid argument to BUTLAST: " x))
((word? x) (word-bl x))
(else (whoops "Invalid argument to BUTLAST: " x))))))

(define butlast bl)

(define item
(let ((> >) (- -) (< <) (integer? integer?) (list-ref list-ref)

(char->word char->word) (string-ref string-ref)
(word->string word->string) (not not) (whoops whoops)
(count count) (word? word?) (list? list?))

(define (word-item n wd)
(char->word (string-ref (word->string wd) (- n 1))))

(lambda (n stuff)
(cond ((not (integer? n))

(whoops "Invalid first argument to ITEM (must be an integer): "
n))

((< n 1)
(whoops "Invalid first argument to ITEM (must be positive): "

n))
((> n (count stuff))
(whoops "No such item: " n stuff))

((word? stuff) (word-item n stuff))
((list? stuff) (list-ref stuff (- n 1)))
(else (whoops "Invalid second argument to ITEM: " stuff))))))

Appendix C Scheme Initialization File 533

(define equal?
;; Note that EQUAL? assumes strings are numbers.
;; (strings-are-numbers #f) doesn’t change this behavior.
(let ((vector-length vector-length) (= =) (vector-ref vector-ref)

(+ +) (string? string?) (symbol? symbol?) (null? null?) (pair? pair?)
(car car) (cdr cdr) (eq? eq?) (string=? string=?)
(symbol->string symbol->string) (number? number?)
(string->word string->word) (vector? vector?) (eqv? eqv?))

(define (vector-equal? v1 v2)
(let ((len1 (vector-length v1))

(len2 (vector-length v2)))
(define (helper i)

(if (= i len1)
#t
(and (equal? (vector-ref v1 i) (vector-ref v2 i))

(helper (+ i 1)))))
(if (= len1 len2)

(helper 0)
#f)))

(lambda (x y)
(cond ((null? x) (null? y))

((null? y) #f)
((pair? x)
(and (pair? y)

(equal? (car x) (car y))
(equal? (cdr x) (cdr y))))

((pair? y) #f)
((symbol? x)
(or (and (symbol? y) (eq? x y))

(and (string? y) (string=? (symbol->string x) y))))
((symbol? y)
(and (string? x) (string=? x (symbol->string y))))

((number? x)
(or (and (number? y) (= x y))

(and (string? y)
(let ((possible-num (string->word y)))

(and (number? possible-num)
(= x possible-num))))))

((number? y)
(and (string? x)

(let ((possible-num (string->word x)))
(and (number? possible-num)

(= possible-num y)))))
((string? x) (and (string? y) (string=? x y)))
((string? y) #f)
((vector? x) (and (vector? y) (vector-equal? x y)))
((vector? y) #f)
(else (eqv? x y))))))

534 Appendix C Scheme Initialization File

(define member?
(let ((> >) (- -) (< <) (null? null?) (symbol? symbol?) (eq? eq?) (car car)

(not not) (symbol->string symbol->string) (string=? string=?)
(cdr cdr) (equal? equal?) (word->string word->string)
(string-length string-length) (whoops whoops) (string-ref string-ref)
(char=? char=?) (list? list?) (number? number?) (empty? empty?)
(word? word?) (string? string?))

(define (symbol-in-list? symbol string lst)
(cond ((null? lst) #f)

((and (symbol? (car lst))
(eq? symbol (car lst))))

((string? (car lst))
(cond ((not string)

(symbol-in-list? symbol (symbol->string symbol) lst))
((string=? string (car lst)) #t)
(else (symbol-in-list? symbol string (cdr lst)))))

(else (symbol-in-list? symbol string (cdr lst)))))
(define (word-in-list? wd lst)

(cond ((null? lst) #f)
((equal? wd (car lst)) #t)
(else (word-in-list? wd (cdr lst)))))

(define (word-in-word? small big)
(let ((one-letter-str (word->string small)))

(if (> (string-length one-letter-str) 1)
(whoops "Invalid arguments to MEMBER?: " small big)
(let ((big-str (word->string big)))
(char-in-string? (string-ref one-letter-str 0)

big-str
(- (string-length big-str) 1))))))

(define (char-in-string? char string i)
(cond ((< i 0) #f)

((char=? char (string-ref string i)) #t)
(else (char-in-string? char string (- i 1)))))

(lambda (x stuff)
(cond ((empty? stuff) #f)

((word? stuff) (word-in-word? x stuff))
((not (list? stuff))
(whoops "Invalid second argument to MEMBER?: " stuff))

((symbol? x) (symbol-in-list? x #f stuff))
((or (number? x) (string? x))
(word-in-list? x stuff))

(else (whoops "Invalid first argument to MEMBER?: " x))))))

Appendix C Scheme Initialization File 535

(define before?
(let ((not not) (word? word?) (whoops whoops) (string<? string<?)

(word->string word->string))
(lambda (wd1 wd2)

(cond ((not (word? wd1))
(whoops "Invalid first argument to BEFORE? (not a word): " wd1))

((not (word? wd2))
(whoops "Invalid second argument to BEFORE? (not a word): " wd2))

(else (string<? (word->string wd1) (word->string wd2)))))))

;;; Higher Order Functions

(define filter
(let ((null? null?) (car car) (cons cons) (cdr cdr) (not not)

(procedure? procedure?) (whoops whoops) (list? list?))
(lambda (pred l)

;; Helper function so recursive calls don’t show up in TRACE
(define (real-filter l)

(cond ((null? l) ’())
((pred (car l))
(cons (car l) (real-filter (cdr l))))

(else (real-filter (cdr l)))))
(cond ((not (procedure? pred))

(whoops "Invalid first argument to FILTER (not a procedure): "
pred))

((not (list? l))
(whoops "Invalid second argument to FILTER (not a list): " l))

(else (real-filter l))))))

536 Appendix C Scheme Initialization File

(define keep
(let ((+ +) (= =) (pair? pair?) (substring substring)

(char->word char->word) (string-ref string-ref)
(string-set! string-set!) (word->string word->string)
(string-length string-length) (string->word string->word)
(make-string make-string) (procedure? procedure?)
(whoops whoops) (word? word?) (null? null?))

(lambda (pred w-or-s)
(define (keep-string in i out out-len len)

(cond ((= i len) (substring out 0 out-len))
((pred (char->word (string-ref in i)))
(string-set! out out-len (string-ref in i))
(keep-string in (+ i 1) out (+ out-len 1) len))

(else (keep-string in (+ i 1) out out-len len))))
(define (keep-word wd)

(let* ((string (word->string wd))
(len (string-length string)))

(string->word
(keep-string string 0 (make-string len) 0 len))))

(cond ((not (procedure? pred))
(whoops "Invalid first argument to KEEP (not a procedure): "

pred))
((pair? w-or-s) (filter pred w-or-s))
((word? w-or-s) (keep-word w-or-s))
((null? w-or-s) ’())
(else
(whoops "Bad second argument to KEEP (not a word or sentence): "

w-or-s))))))

(define appearances
(let ((count count) (keep keep) (equal? equal?))

(lambda (item aggregate)
(count (keep (lambda (element) (equal? item element)) aggregate)))))

Appendix C Scheme Initialization File 537

(define every
(let ((= =) (+ +) (se se) (char->word char->word) (string-ref string-ref)

(empty? empty?) (first first) (bf bf) (not not) (procedure? procedure?)
(whoops whoops) (word? word?) (word->string word->string)
(string-length string-length))

(lambda (fn stuff)
(define (string-every string i length)

(if (= i length)
’()
(se (fn (char->word (string-ref string i)))

(string-every string (+ i 1) length))))
(define (sent-every sent)

;; This proc. can’t be optimized or else it will break the
;; exercise where we ask them to reimplement sentences as
;; vectors and then see if every still works.
(if (empty? sent)

sent ; Can’t be ’() or exercise breaks.
(se (fn (first sent))

(sent-every (bf sent)))))
(cond ((not (procedure? fn))

(whoops "Invalid first argument to EVERY (not a procedure):"
fn))

((word? stuff)
(let ((string (word->string stuff)))
(string-every string 0 (string-length string))))

(else (sent-every stuff))))))

(define accumulate
(let ((not not) (empty? empty?) (bf bf) (first first) (procedure? procedure?)

(whoops whoops) (member member) (list list))
(lambda (combiner stuff)

(define (real-accumulate stuff)
(if (empty? (bf stuff))

(first stuff)
(combiner (first stuff) (real-accumulate (bf stuff)))))

(cond ((not (procedure? combiner))
(whoops "Invalid first argument to ACCUMULATE (not a procedure):"

combiner))
((not (empty? stuff)) (real-accumulate stuff))
((member combiner (list + * word se)) (combiner))
(else
(whoops "Can’t accumulate empty input with that combiner"))))))

538 Appendix C Scheme Initialization File

(define reduce
(let ((null? null?) (cdr cdr) (car car) (not not) (procedure? procedure?)

(whoops whoops) (member member) (list list))
(lambda (combiner stuff)

(define (real-reduce stuff)
(if (null? (cdr stuff))

(car stuff)
(combiner (car stuff) (real-reduce (cdr stuff)))))

(cond ((not (procedure? combiner))
(whoops "Invalid first argument to REDUCE (not a procedure):"

combiner))
((not (null? stuff)) (real-reduce stuff))
((member combiner (list + * word se append)) (combiner))
(else (whoops "Can’t reduce empty input with that combiner"))))))

(define repeated
(let ((= =) (- -))

(lambda (fn number)
(if (= number 0)

(lambda (x) x)
(lambda (x)

((repeated fn (- number 1)) (fn x)))))))

;; Tree stuff
(define make-node cons)
(define datum car)
(define children cdr)

;; I/O

(define show
(let ((= =) (length length) (display display) (car car) (newline newline)

(not not) (output-port? output-port?) (apply apply) (whoops whoops))
(lambda args

(cond
((= (length args) 1)
(display (car args))
(newline))

((= (length args) 2)
(if (not (output-port? (car (cdr args))))

(whoops "Invalid second argument to SHOW (not an output port): "
(car (cdr args))))

(apply display args)
(newline (car (cdr args))))

(else (whoops "Incorrect number of arguments to procedure SHOW"))))))

Appendix C Scheme Initialization File 539

(define show-line
(let ((>= >=) (length length) (whoops whoops) (null? null?)

(current-output-port current-output-port) (car car) (not not)
(list? list?) (display display) (for-each for-each) (cdr cdr)
(newline newline))

(lambda (line . args)
(if (>= (length args) 2)

(whoops "Too many arguments to show-line")
(let ((port (if (null? args) (current-output-port) (car args))))

(cond ((not (list? line))
(whoops "Invalid argument to SHOW-LINE (not a list):" line))

((null? line) #f)
(else
(display (car line) port)
(for-each (lambda (wd) (display " " port) (display wd port))

(cdr line))))
(newline port))))))

540 Appendix C Scheme Initialization File

(define read-string
(let ((read-char read-char) (eqv? eqv?) (apply apply)

(string-append string-append) (substring substring) (reverse reverse)
(cons cons) (>= >=) (+ +) (string-set! string-set!) (length length)
(whoops whoops) (null? null?) (current-input-port current-input-port)
(car car) (cdr cdr) (eof-object? eof-object?) (list list)
(make-string make-string) (peek-char peek-char))

(define (read-string-helper chars all-length chunk-length port)
(let ((char (read-char port))

(string (car chars)))
(cond ((or (eof-object? char) (eqv? char #\newline))

(apply string-append
(reverse
(cons
(substring (car chars) 0 chunk-length)
(cdr chars)))))

((>= chunk-length 80)
(let ((newstring (make-string 80)))

(string-set! newstring 0 char)
(read-string-helper (cons newstring chars)

(+ all-length 1)
1
port)))

(else
(string-set! string chunk-length char)
(read-string-helper chars

(+ all-length 1)
(+ chunk-length 1)
port)))))

(lambda args
(if (>= (length args) 2)

(whoops "Too many arguments to read-string")
(let ((port (if (null? args) (current-input-port) (car args))))

(if (eof-object? (peek-char port))
(read-char port)
(read-string-helper (list (make-string 80)) 0 0 port)))))))

Appendix C Scheme Initialization File 541

(define read-line
(let ((= =) (list list) (string->word string->word) (substring substring)

(char-whitespace? char-whitespace?) (string-ref string-ref)
(+ +) (string-length string-length) (apply apply)
(read-string read-string))

(lambda args
(define (tokenize string)

(define (helper i start len)
(cond ((= i len)

(if (= i start)
’()
(list (string->word (substring string start i)))))

((char-whitespace? (string-ref string i))
(if (= i start)

(helper (+ i 1) (+ i 1) len)
(cons (string->word (substring string start i))

(helper (+ i 1) (+ i 1) len))))
(else (helper (+ i 1) start len))))

(if (eof-object? string)
string
(helper 0 0 (string-length string))))

(tokenize (apply read-string args)))))

(define *the-open-inports* ’())
(define *the-open-outports* ’())

542 Appendix C Scheme Initialization File

(define align
(let ((< <) (abs abs) (* *) (expt expt) (>= >=) (- -) (+ +) (= =)

(null? null?) (car car) (round round) (number->string number->string)
(string-length string-length) (string-append string-append)
(make-string make-string) (substring substring)
(string-set! string-set!) (number? number?)
(word->string word->string))

(lambda (obj width . rest)
(define (align-number obj width rest)

(let* ((sign (< obj 0))
(num (abs obj))
(prec (if (null? rest) 0 (car rest)))
(big (round (* num (expt 10 prec))))
(cvt0 (number->string big))
(cvt (if (< num 1) (string-append "0" cvt0) cvt0))
(pos-str (if (>= (string-length cvt0) prec)

cvt
(string-append
(make-string (- prec (string-length cvt0)) #\0)
cvt)))

(string (if sign (string-append "-" pos-str) pos-str))
(length (+ (string-length string)

(if (= prec 0) 0 1)))
(left (- length (+ 1 prec)))
(result (if (= prec 0)

string
(string-append
(substring string 0 left)
"."
(substring string left (- length 1))))))

(cond ((= length width) result)
((< length width)
(string-append (make-string (- width length) #\space) result))

(else (let ((new (substring result 0 width)))
(string-set! new (- width 1) #\+)
new)))))

(define (align-word string)
(let ((length (string-length string)))

(cond ((= length width) string)
((< length width)
(string-append string (make-string (- width length) #\space)))

(else (let ((new (substring string 0 width)))
(string-set! new (- width 1) #\+)
new)))))

(if (number? obj)
(align-number obj width rest)
(align-word (word->string obj))))))

Appendix C Scheme Initialization File 543

(define open-output-file
(let ((oof open-output-file) (cons cons))

(lambda (filename)
(let ((port (oof filename)))

(set! *the-open-outports* (cons port *the-open-outports*))
port))))

(define open-input-file
(let ((oif open-input-file) (cons cons))

(lambda (filename)
(let ((port (oif filename)))

(set! *the-open-inports* (cons port *the-open-inports*))
port))))

(define remove!
(let ((null? null?) (cdr cdr) (eq? eq?) (set-cdr! set-cdr!) (car car))

(lambda (thing lst)
(define (r! prev)

(cond ((null? (cdr prev)) lst)
((eq? thing (car (cdr prev)))
(set-cdr! prev (cdr (cdr prev)))
lst)

(else (r! (cdr prev)))))
(cond ((null? lst) lst)

((eq? thing (car lst)) (cdr lst))
(else (r! lst))))))

(define close-input-port
(let ((cip close-input-port) (remove! remove!))

(lambda (port)
(set! *the-open-inports* (remove! port *the-open-inports*))
(cip port))))

(define close-output-port
(let ((cop close-output-port) (remove! remove!))

(lambda (port)
(set! *the-open-outports* (remove! port *the-open-outports*))
(cop port))))

(define close-all-ports
(let ((for-each for-each)

(close-input-port close-input-port)
(close-output-port close-output-port))

(lambda ()
(for-each close-input-port *the-open-inports*)
(for-each close-output-port *the-open-outports*)
’closed)))

544 Appendix C Scheme Initialization File

;; Make arithmetic work on numbers in string form:
(define maybe-num
(let ((string? string?) (string->number string->number))

(lambda (arg)
(if (string? arg)

(let ((num (string->number arg)))
(if num num arg))

arg))))

(define logoize
(let ((apply apply) (map map) (maybe-num maybe-num))

(lambda (fn)
(lambda args

(apply fn (map maybe-num args))))))

;; special case versions of logoize, since (lambda args ...) is expensive
(define logoize-1
(let ((maybe-num maybe-num))

(lambda (fn)
(lambda (x) (fn (maybe-num x))))))

(define logoize-2
(let ((maybe-num maybe-num))

(lambda (fn)
(lambda (x y) (fn (maybe-num x) (maybe-num y))))))

(define strings-are-numbers
(let ((are-they? #f)

(real-* *) (real-+ +) (real-- -) (real-/ /) (real-< <)
(real-<= <=) (real-= =) (real-> >) (real->= >=) (real-abs abs)
(real-acos acos) (real-asin asin) (real-atan atan)
(real-ceiling ceiling) (real-cos cos) (real-even? even?)
(real-exp exp) (real-expt expt) (real-floor floor) (real-align align)
(real-gcd gcd) (real-integer? integer?) (real-item item)
(real-lcm lcm) (real-list-ref list-ref) (real-log log)
(real-make-vector make-vector) (real-max max) (real-min min)
(real-modulo modulo) (real-negative? negative?)
(real-number? number?) (real-odd? odd?) (real-positive? positive?)
(real-quotient quotient) (real-random random) (real-remainder remainder)
(real-repeated repeated) (real-round round) (real-sin sin)
(real-sqrt sqrt) (real-tan tan) (real-truncate truncate)
(real-vector-ref vector-ref) (real-vector-set! vector-set!)
(real-zero? zero?) (maybe-num maybe-num) (number->string number->string)
(cons cons) (car car) (cdr cdr) (eq? eq?) (show show) (logoize logoize)
(logoize-1 logoize-1) (logoize-2 logoize-2) (not not) (whoops whoops))

Appendix C Scheme Initialization File 545

(lambda (yesno)
(cond ((and are-they? (eq? yesno #t))

(show "Strings are already numbers"))
((eq? yesno #t)
(set! are-they? #t)
(set! * (logoize real-*))
(set! + (logoize real-+))
(set! - (logoize real--))
(set! / (logoize real-/))
(set! < (logoize real-<))
(set! <= (logoize real-<=))
(set! = (logoize real-=))
(set! > (logoize real->))
(set! >= (logoize real->=))
(set! abs (logoize-1 real-abs))
(set! acos (logoize-1 real-acos))
(set! asin (logoize-1 real-asin))
(set! atan (logoize real-atan))
(set! ceiling (logoize-1 real-ceiling))
(set! cos (logoize-1 real-cos))
(set! even? (logoize-1 real-even?))
(set! exp (logoize-1 real-exp))
(set! expt (logoize-2 real-expt))
(set! floor (logoize-1 real-floor))
(set! align (logoize align))
(set! gcd (logoize real-gcd))
(set! integer? (logoize-1 real-integer?))
(set! item (lambda (n stuff)

(real-item (maybe-num n) stuff)))
(set! lcm (logoize real-lcm))
(set! list-ref (lambda (lst k)

(real-list-ref lst (maybe-num k))))
(set! log (logoize-1 real-log))
(set! max (logoize real-max))
(set! min (logoize real-min))
(set! modulo (logoize-2 real-modulo))
(set! negative? (logoize-1 real-negative?))
(set! number? (logoize-1 real-number?))
(set! odd? (logoize-1 real-odd?))
(set! positive? (logoize-1 real-positive?))
(set! quotient (logoize-2 real-quotient))
(set! random (logoize real-random))
(set! remainder (logoize-2 real-remainder))
(set! round (logoize-1 real-round))
(set! sin (logoize-1 real-sin))
(set! sqrt (logoize-1 real-sqrt))

546 Appendix C Scheme Initialization File

(set! tan (logoize-1 real-tan))
(set! truncate (logoize-1 real-truncate))
(set! zero? (logoize-1 real-zero?))
(set! vector-ref

(lambda (vec i) (real-vector-ref vec (maybe-num i))))
(set! vector-set!

(lambda (vec i val)
(real-vector-set! vec (maybe-num i) val)))

(set! make-vector
(lambda (num . args)

(apply real-make-vector (cons (maybe-num num)
args))))

(set! list-ref
(lambda (lst i) (real-list-ref lst (maybe-num i))))

(set! repeated
(lambda (fn n) (real-repeated fn (maybe-num n)))))

((and (not are-they?) (not yesno))
(show "Strings are already not numbers"))

((not yesno)
(set! are-they? #f) (set! * real-*) (set! + real-+)
(set! - real--) (set! / real-/) (set! < real-<)
(set! <= real-<=) (set! = real-=) (set! > real->)
(set! >= real->=) (set! abs real-abs) (set! acos real-acos)
(set! asin real-asin) (set! atan real-atan)
(set! ceiling real-ceiling) (set! cos real-cos)
(set! even? real-even?)
(set! exp real-exp) (set! expt real-expt)
(set! floor real-floor) (set! align real-align)
(set! gcd real-gcd) (set! integer? real-integer?)
(set! item real-item)
(set! lcm real-lcm) (set! list-ref real-list-ref)
(set! log real-log) (set! max real-max) (set! min real-min)
(set! modulo real-modulo) (set! odd? real-odd?)
(set! quotient real-quotient) (set! random real-random)
(set! remainder real-remainder) (set! round real-round)
(set! sin real-sin) (set! sqrt real-sqrt) (set! tan real-tan)
(set! truncate real-truncate) (set! zero? real-zero?)
(set! positive? real-positive?) (set! negative? real-negative?)
(set! number? real-number?) (set! vector-ref real-vector-ref)
(set! vector-set! real-vector-set!)
(set! make-vector real-make-vector)
(set! list-ref real-list-ref) (set! item real-item)
(set! repeated real-repeated))

(else (whoops "Strings-are-numbers: give a #t or a #f")))
are-they?)))

;; By default, strings are numbers:
(strings-are-numbers #t)

547

D GNU General Public License

The following software license, written by the Free Software Foundation, applies to the
Scheme programs in this book. We chose to use this license in order to encourage the
free sharing of software—our own and, we hope, yours.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation,
Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to
take away your freedom to share and change it. By
contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free
software—to make sure the software is free for all its
users. This General Public License applies to most
of the Free Software Foundation’s software and to
any other program whose authors commit to using
it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom
to distribute copies of free software (and charge for
this service if you wish), that you receive source code
or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restric-
tions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restric-

tions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify
it.

For example, if you distribute copies of such a
program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source
code. And you must show them these terms so they
know their rights.

We protect your rights with two steps: (1) copy-
right the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we
want to make certain that everyone understands that
there is no warranty for this free software. If the
software is modified by someone else and passed on,
we want its recipients to know that what they have
is not the original, so that any problems introduced
by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened con-
stantly by software patents. We wish to avoid the
danger that redistributors of a free program will in-
dividually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying,
distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

548 Appendix D GNU General Public License

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other
work which contains a notice placed by the copy-
right holder saying it may be distributed under the
terms of this General Public License. The “Pro-
gram”, below, refers to any such program or work,
and a “work based on the Program” means either the
Program or any derivative work under copyright law:
that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications
and/or translated into another language. (Here-
inafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed
as “you”.

Activities other than copying, distribution and
modification are not covered by this License; they are
outside its scope. The act of running the Program
is not restricted, and the output from the Program is
covered only if its contents constitute a work based on
the Program (independent of having been made by
running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies
of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and
to the absence of any warranty; and give any other
recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of
transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the
Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such
modifications or work under the terms of Section
1 above, provided that you also meet all of these
conditions:

a) You must cause the modified files to carry
prominent notices stating that you changed the
files and the date of any change.

b) You must cause any work that you dis-
tribute or publish, that in whole or in part con-
tains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to
all third parties under the terms of this License.

c) If the modified program normally reads
commands interactively when run, you must cause
it, when started running for such interactive use
in the most ordinary way, to print or display an an-

nouncement including an appropriate copyright
notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that
users may redistribute the program under these
conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself
is interactive but does not normally print such an
announcement, your work based on the Program
is not required to print an announcement.)

These requirements apply to the modified work
as a whole. If identifiable sections of that work are
not derived from the Program, and can be reason-
ably considered independent and separate works in
themselves, then this License, and its terms, do not
apply to those sections when you distribute them as
separate works. But when you distribute the same
sections as part of a whole which is a work based on
the Program, the distribution of the whole must be
on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus
to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim
rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right
to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work
not based on the Program with the Program (or with
a work based on the Program) on a volume of a
storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or
a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

a) Accompany it with the complete corre-
sponding machine-readable source code, which
must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for
at least three years, to give any third party, for a
charge no more than your cost of physically per-
forming source distribution, a complete machine-
readable copy of the corresponding source code,
to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for
software interchange; or,

c) Accompany it with the information you re-
ceived as to the offer to distribute corresponding
source code. (This alternative is allowed only for
noncommercial distribution and only if you re-
ceived the program in object code or executable
form with such an offer, in accord with Subsection
b above.)

Appendix D GNU General Public License 549

The source code for a work means the preferred
form of the work for making modifications to it. For
an executable work, complete source code means all
the source code for all modules it contains, plus any
associated interface definition files, plus the scripts
used to control compilation and installation of the
executable. However, as a special exception, the
source code distributed need not include anything
that is normally distributed (in either source or bi-
nary form) with the major components (compiler,
kernel, and so on) of the operating system on which
the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is
made by offering access to copy from a designated
place, then offering equivalent access to copy the
source code from the same place counts as distribu-
tion of the source code, even though third parties
are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or
distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under
this License. However, parties who have received
copies, or rights, from you under this License will not
have their licenses terminated so long as such parties
remain in full compliance.

5. You are not required to accept this License,
since you have not signed it. However, nothing else
grants you permission to modify or distribute the
Program or its derivative works. These actions are
prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate
your acceptance of this License to do so, and all
its terms and conditions for copying, distributing or
modifying the Program or works based on it.

6. Each time you redistribute the Program (or
any work based on the Program), the recipient auto-
matically receives a license from the original licensor
to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or
allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this Li-

cense and any other pertinent obligations, then as a
consequence you may not distribute the Program at
all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this
License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or
unenforceable under any particular circumstance,
the balance of the section is intended to apply and
the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you
to infringe any patents or other property right claims
or to contest validity of any such claims; this section
has the sole purpose of protecting the integrity of
the free software distribution system, which is imple-
mented by public license practices. Many people
have made generous contributions to the wide range
of software distributed through that system in re-
liance on consistent application of that system; it is
up to the author/donor to decide if he or she is will-
ing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly
clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program
is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright
holder who places the Program under this License
may add an explicit geographical distribution limita-
tion excluding those countries, so that distribution
is permitted only in or among countries not thus
excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish
revised and/or new versions of the General Public
License from time to time. Such new versions will be
similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version
number. If the Program specifies a version number
of this License which applies to it and “any later
version”, you have the option of following the terms
and conditions either of that version or of any later
version published by the Free Software Foundation.
If the Program does not specify a version number
of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the
Program into other free programs whose distribution
conditions are different, write to the author to ask
for permission. For software which is copyrighted

550 Appendix D GNU General Public License

<one line to give the program’s name
and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can
redistribute it and/or modify it under the terms
of the GNU General Public License as published
by the Free Software Foundation; either version
2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU
General Public License along with this program;
if not, write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Gnomovision version 69,
Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for
details type ‘show w’. This is free software, and
you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse
of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED
FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY
APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it
to be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the
program. It is safest to attach them to the start
of each source file to most effectively convey the
exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the

full notice is found.

Also add information on how to contact you by
electronic and paper mail.

If the program is interactive, make it output a
short notice like this when it starts in an interactive
mode:

The hypothetical commands ‘show w’ and ‘show
c’ should show the appropriate parts of the General
Public License. Of course, the commands you use
may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu
items—whatever suits your program.

You should also get your employer (if you work
as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

This General Public License does not permit
incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you
may consider it more useful to permit linking pro-
prietary applications with the library. If this is what
you want to do, use the GNU Library General Public
License instead of this License.



TM

Credits

Through the Looking-Glass, and What Alice
Found There,

Printgallery,

551

Many of the examples in this book revolve around titles of songs, especially Beatles songs.
Since titles aren’t covered by copyright, we didn’t need official permission for this, but
nevertheless we want to acknowledge the debt we owe to the great musicians who’ve
added so much pleasure to our lives. The use of their names here does not mean that
they’ve endorsed our work; rather, we mean to show our respect for them.

The cover and the illustrations on pages 4, 10, 34 (top), 102, 90, 91, 216, and 280 were
drawn by Polly Jordan.

The illustration on page 16 was drawn using Mathematica .

The illustrations on pages 28, 70, 342, 386, and 438 appear courtesy of the Bettmann
Archive.

The illustration on page 40 appears courtesy of the Computer Museum, Boston. Photo-
graph by Ben G.

The quotations on pages 44 and 70 are from
by Lewis Carroll (Macmillan, 1871).

The Far Side cartoons on page 56 are reprinted by permission of Chronicle Features, San
Francisco, CA. All rights reserved.

The photograph on page 126 appears courtesy of UCLA, Department of Philosophy.

The photograph on page 146 appears courtesy of the Computer Museum, Boston.

The photograph on page 88 appears courtesy of UPI/Bettmann.

The illustration on page 172 is by M. C. Escher. 1956 M. C. Escher
Foundation–Baarn–Holland.







Drawing Hands,

Fractals
Everywhere,

Pattern Recognition,

Flowering Apple Tree,

The Wizard of Oz,

552 Credits

The quotation on page 173 (top) is from “I Know an Old Lady,” a traditional song of
which a recent version is copyright 1952, 1954 by Rose Bonne (words) and Alan Mills
(music).

The illustration on page 188 is by M. C. Escher. 1948 M. C. Escher
Foundation–Baarn–Holland.

The illustration on page 234 is reprinted with permission from Michael Barnsley,
Academic Press, 1988, page 319.

The illustration on page 248 is reprinted from page 234 of M. Bongard,
Spartan Books, 1970.

The illustration on page 304 is by Piet Mondrian, 1912. Courtesy of
Collection Haags Gemeentemuseum, The Hague.

The illustration on page 326 is a photograph by Ben G.

The illustration on page 366 is from 1939. Courtesy of Turner Home
Entertainment.

553

Alphabetical Table of Scheme Primitives

’ (quote)
*
+
-
/
<
<=
= equal?
>
>=
abs
accumulate
align
and #f
appearances
append
apply
assoc
before?
begin
bf butfirst
bl butlast
boolean? #t #f
butfirst
butlast
c...r car cdr
car

This table does not represent the complete Scheme language. It includes the nonstandard
Scheme primitives that we use in this book, and it omits many standard ones that are not
needed here.

. . .Abbreviation for .
Multiply numbers.
Add numbers.
Subtract numbers.
Divide numbers.
Is the first argument less than the second?
Is the first argument less than or equal to the second?
Are two numbers equal? (Like but works only for numbers).
Is the first argument greater than the second?
Is the first argument greater than or equal to the second?
Return the absolute value of the argument.
Apply a combining function to all elements (see p. 108).
Return a string spaced to a given width (see p. 358).
(Special form) Are all of the arguments true values (i.e., not)?
Return the number of times the first argument is in the second.
Return a list containing the elements of the argument lists.
Apply a function to the arguments in a list.
Return association list entry matching key.
Does the first argument come alphabetically before the second?
(Special form) Carry out a sequence of instructions (see p. 348).
Abbreviation for .
Abbreviation for .
Return true if the argument is or .
Return all but the first letter of a word, or word of a sentence.
Return all but the last letter of a word, or word of a sentence.
Combinations of and (see p. 286).
Return the first element of a list.

n n

554 Alphabetical Table of Scheme Primitives

cdr
ceiling
children
close-all-ports
close-input-port
close-output-port
cond
cons
cos
count
datum
define
display
empty? "" ()
eof-object?
equal?
error
even?
every
expt
filter
first
floor
for-each
if
integer?
item
keep
lambda
last
length
let
list
list->vector
list-ref
list?
load
log
make-node
make-vector
map
max
member #f
member?
min

Return all but the first element of a list.
Round a number up to the nearest integer.
Return a list of the children of a tree node.
Close all open input and output ports.
Close an input port.
Close an output port.
(Special form) Choose among several alternatives (see p. 78).
Prepend an element to a list.
Return the cosine of a number (from trigonometry).
Return the number of letters in a word or number of words in a sentence.
Return the datum of a tree node.
(Special form) Create a global name (for a procedure or other value).
Print the argument without starting a new line.
Is the argument empty, i.e., the empty word or the empty sentence ?
Is the argument an end-of-file object?
Are the two arguments the same thing?
Print an error message and return to the Scheme prompt.
Is the argument an even integer?
Apply a function to each element of a word or sentence (see p. 104).
Raise the first argument to the power of the second.
Select a subset of a list (see p. 289).
Return first letter of a word, or first word of a sentence.
Round a number down to the nearest integer.
Perform a computation for each element of a list.
(Special form) Choose between two alternatives (see p. 71).
Is the argument an integer?
Return the th letter of a word, or th word of a sentence.
Select a subset of a word or sentence (see p. 107).
(Special form) Create a new procedure (see Chapter 9).
Return last letter of a word, or last word of a sentence.
Return the number of elements in a list.
(Special form) Give temporary names to values (see p. 95).
Return a list containing the arguments.
Return a vector with the same elements as the list.
Select an element from a list (counting from zero).
Is the argument a list?
Read a program file into Scheme.
Return the logarithm of a number.
Create a new node of a tree.
Create a new vector of the given length.
Apply a function to each element of a list (see p. 289).
Return the largest of the arguments.
Return subset of a list starting with selected element, or .
Is the first argument an element of the second? (see p. 73).
Return the smallest of the arguments.

≥

⋅ ⋅ ⋅

0

(((())))f f f x

Alphabetical Table of Scheme Primitives 555

newline
not #t #f #f
null?
number?
odd?
open-input-file
open-output-file
or #f
procedure?
quote
quotient
random
read
read-line
read-string
reduce
remainder
repeated
round
se sentence
sentence
sentence?
show
show-line
sin
sqrt
square (define (square x) (* x x))
trace
untrace trace
vector
vector->list
vector-length
vector-ref
vector-set!
vector?
vowel? (define (vowel? x) (member? x ’(a e i o u)))
word
word?
write

Go to a new line of printing.
Return if argument is ; return otherwise.
Is the argument the empty list?
Is the argument a number?
Is the argument an odd integer?
Open a file for reading, return a port.
Open a file for writing, return a port.
(Special form) Are any of the arguments true values (i.e., not)?
Is the argument a procedure?
(Special form) Return the argument, unevaluated (see p. 57).
Divide numbers, but round down to integer.
Return a random number and smaller than the argument.
Read an expression from the keyboard (or a file).
Read a line from the keyboard (or a file), returning a sentence.
Read a line from the keyboard (or a file), returning a string.
Apply a combining function to all elements of list (see p. 290).
Return the remainder from dividing the first number by the second.
Return the function described by (see p. 113).
Round a number to the nearest integer.
Abbreviation for .
Join the arguments together into a big sentence.
Is the argument a sentence?
Print the argument and start a new line.
Show the argument sentence without surrounding parentheses.
Return the sine of a number (from trigonometry).
Return the square root of a number.
Not a primitive!
Report on all future invocations of a procedure.
Undo the effect of .
Create a vector with the arguments as elements.
Return a list with the same elements as the vector.
Return the number of elements in a vector.
Return an element of a vector (counting from zero).
Replace an element in a vector.
Is the argument a vector?
Not a primitive!
Joins words into one big word.
Is the argument a word? (Note: numbers are words.)
Print the argument in machine-readable form (see p. 400).

Glossary

(+ 2 (* 3 5)) (* 3 5)
+

(+ 2 (* 3 5)) 15

abstract data type.

association list.

type

selectors constructors mutators.

557

ADT:

a-list:

abstract data type:

abstraction:

actual argument expression:

actual argument value:

aggregate:

See

Synonym for

A that isn’t provided automatically by Scheme, but that the
programmer invents. In order to create an abstract data type, a programmer must define

and for that type, and possibly also

An approach to complex problems in which the solution is built in
layers. The structures needed to solve the problem (algorithms and data structures) are
implemented using lower-level capabilities and given names that can then be used as if
they were primitive facilities.

An expression that produces an actual argument value.
In , the subexpression is an actual argument expression, since
it provides an argument for the invocation of .

A value used as an argument to a procedure. For example, in
the expression , the number is an actual argument value.

An object that consists of a number of other objects. For example, a
sentence is an aggregate whose elements are words. Lists and vectors are also aggregates.
A word can be thought of, for some purposes, as an aggregate whose elements are
one-letter words.

(define (square x)
(* x x))

+
3 4

(square 13) 13
square

(* x x) square

#t #f

invoke

name
value.

tree node children. leaf node.

not

invoke.

spreadsheet.

558 Glossary

algorithm:

apply:

argument:

association list:

atomic expression:

backtracking:

base case:

body:

Boolean:

branch node:

bug:

call:

cell:

A method for solving a problem. A computer program is the expression of
an algorithm in a particular programming language; the same algorithm might also be
expressed in a different language.

To a procedure with arguments. For example, “Apply the procedure to
the arguments and .”

A datum provided to a procedure. For example, in , is
the argument to .

A list in which each element contains a and a corresponding
The list is used to look up a value, given a name.

An expression that isn’t composed of smaller pieces.

A programming technique in which the program tries one possible
solution to a problem, but tries a different solution if the first isn’t successful.

In a recursive procedure, the part that solves the smallest possible version
of the problem without needing a recursive invocation.

An expression, part of the definition of a procedure, that is evaluated when that
procedure is invoked. For example, in

the expression is the body of the procedure.

The value , meaning “true,” or , meaning “false.”

A with The opposite of a

An error in a program. This word did originate with Grace Hopper finding
an actual insect inside a malfunctioning computer; she may have done so, but the
terminology predates computers by centuries.

Synonym for

One location in a

(+ 2 (* 3 5)) *
+

word

vector-set!

count

nodes tree. siblings parent.

atomic
expression.

primitive

selector mutator abstract data type.

abstract data types.

Glossary 559

children:

composition of functions:

compound expression:

compound procedure:

constructor:

data abstraction:

data structure:

database program:

datum:

debugging:

destructive:

domain:

The directly under this one, in a (See also and)

Using the value returned by a function as an argument to
another. In the expression , the value returned by the function is used
as an argument to the function.

An expression that contains subexpressions. Opposite of

A procedure that a programmer defines. This is the opposite
of a procedure.

A procedure that returns a new object of a certain type. For example, the
procedure is a constructor that takes words as arguments and returns a new word.

See also , , and

The invention of

A mechanism through which several pieces of information are combined
into one larger unit. The most appropriate mechanism will depend on the ways in which
the small pieces are used in the program, for example, sequentially or in arbitrary order.

A program that maintains an organized collection of data, with
facilities to modify or delete old entries, add new entries, and select certain entries for
display.

The piece of information stored in each node of a tree.

The process by which a programmer finds and corrects mistakes in a
program. No interesting program works the first time; debugging is a skill to develop,
not something to be ashamed of.

A destructive procedure is one that modifies its arguments. Since the only
data type in this book that can be modified is the vector, all destructive procedures call

.

The set of all legal arguments to a function. For example, the domain of the
function is the set of all sentences and all words.

•
•
•
•

()

""

345 x

(+ 3 4)

x
square

(define (square x)
(* x x))

atomic expression,
compound expression

record.

trees.

name

560 Glossary

effect:

empty sentence:

empty word:

end-of-file object:

expression:

field:

first-class data:

forest:

formal parameter:

Something a procedure does other than return a value. For example, a
procedure might create a file on disk, or print something to the screen, or change the
contents of a vector.

The sentence , which has no words in it.

The word , which has no letters in it.

What the file-reading procedures return if asked to read a file with
no more unread data.

The representation in Scheme notation of a request to perform a
computation. An expression is either an such as or , or a

consisting of one or more subexpressions enclosed in parentheses,
such as .

A single component of a database For example, “title” is a field in our
example database of albums.

Data with the following four properties:

It can be the argument to a procedure.
It can be the return value from a procedure.
It can be given a name.
It can be part of a data aggregate.

In Scheme, words, lists, sentences, trees, vectors, ports, end-of-file objects, Booleans, and
procedures are all first-class.

A list of

In a procedure definition, the name given to refer to an argu-
ment. In

is the formal parameter. (Note that this is not the same thing as an actual argument!
When we invoke later, the argument will be a number, such as 5. The parameter
is the for that number, not the number itself.)

define

+ + 3
4

return value
argument values. algorithms

sequential programming.

local variable.

helper
procedure

special form.

Glossary 561

function:

functional programming:

global variable:

helper procedure:

higher-order procedure:

index:

initialization procedure:

interactive:

invoke:

keyword:

kludge:

A transformation of information that associates a with some
number of There may be many different that compute the
same function; the function itself is the relationship between argument values and return
value, no matter how it may be implemented.

A style of programming in which programs are expressed as
compositions of functions, emphasizing their arguments and return values. Compare to

A variable created with , which has meaning everywhere in the
program. The opposite of a

A procedure that exists to help another procedure do its work.
Normally, a user does not invoke a helper procedure directly. Instead, the user invokes
a top-level procedure, which invokes the helper procedure to assist it in coming up with
the answer.

A procedure whose domain or range includes other proce-
dures.

A number used to select one of the elements of a vector.

A procedure that doesn’t do any work except to invoke a
with appropriate argument values.

An interactive program or programming language does its work in response
to messages typed by the user at a keyboard (or perhaps indicated with a pointing device
like a mouse). Each message from the user causes the program to respond in some way.
By contrast, a non-interactive program works with input data that have been prepared in
advance.

To ask a procedure to do its work and come up with a return value. For
example, “Invoke the procedure,” or “Invoke the procedure with the arguments
and .”

The name of a

A method that gets the job done but isn’t very elegant. Usually the result is a
program that can’t be extended the next time a new feature is needed.

let

vector-set!

leaf node:

leap of faith:

list:

local variable:

mutable:

mutator:

mutual recursion:

node:

parent:

pattern matcher:

plumbing diagram:

port:

portable:

tree node children. branch node.

global
variable.

selector, constructor, abstract data type.

tree. datum children.

tree. children siblings.

562 Glossary

A with no The opposite of a

A method for understanding recursion in which you say to yourself, “I’m
going to assume that the recursive call always returns the right answer,” and then use the
answer from the recursive call to produce the answer to the entire problem.

A data aggregate containing elements that may be of any type.

A variable that associates a formal parameter name with an actual
argument value. It’s “local” because the variable exists only within one procedure
invocation. (This includes variables created by .) This is the opposite of a

A data structure is mutable if its contents can change.

A procedure that changes the value of a data object. In this book, the
only mutable data objects we use are vectors, so every mutator is implemented using

. See also and

The program structure in which one procedure invokes another,
and the second invokes the first.

An element of a A node has a and zero or more

The node above this one, in a (See also and)

A program that takes a pattern and a piece of data as inputs and says
whether or not that piece of data is one that the pattern describes. We present a pattern
matcher in Chapter 16.

A pictorial representation of the composition of functions, with
the return value from one procedure connected to an argument intake of another.

An object that Scheme uses to keep track of a file that is currently open for
reading or writing.

A portable program is one that can be run in more than one version of
Scheme or on more than one computer.

equal?

>

count

(a b . x) x

Boolean

compound

reads
evaluates

prints

fields.

recursion.

base case.

Glossary 563

potsticker:

predicate:

primitive procedure:

procedure:

prompt:

random access:

range:

read-eval-print loop:

record:

recursion:

recursive case:

rest parameter:

A Chinese dumpling stuffed with meat and vegetables, first steamed and
then pan-fried, or sometimes first pan-fried and then simmered in water added to the
pan.

A procedure that always returns a value. By convention, Scheme
predicates have names like “ ” that end in a question mark.

A procedure that is already defined when a Scheme session
begins. By contrast, a procedure is one that the programmer defines in
Scheme.

The expression of an algorithm in Scheme notation.

A character or characters that an interactive program prints to tell the user
that it’s ready for the user to type something. In many versions of Scheme, the prompt is
a character.

A data structure allows random access if the time required to locate an
element of the structure is independent of its position within the structure.

The set of all possible return values from a function. For example, the range of
the function is the set of non-negative integers.

The overall structure of a Scheme interpreter. It an
expression from the keyboard, the expression by invoking procedures, etc., and

the resulting value. The same process repeats forever.

One complete entry in a database. For example, one album in our database of
albums. A record contains several

Solving a big problem by reducing it to smaller problems of the same kind.
If something is defined recursively, then it’s defined in terms of itself. See

In a recursive procedure, the part that requires a recursive invocation.
The opposite of the

A parameter that represents a variable number of arguments. In the
formal parameter list , is a rest parameter.

first

#f
#t

member

and begin cond define if lambda let or
quote

node tree.

constructor,
mutator, abstract data type.

effects.

functional programming.

nodes tree children
parent.

effect.

keyword

564 Glossary

result replacement:

robust:

root node:

selector:

self-evaluating:

semipredicate:

sequencing:

sequential programming:

siblings:

side effect:

special form:

A technique people can use to figure out the value of a complicated
Scheme expression by rewriting the expression repeatedly, each time replacing some small
subexpression with a simpler expression that has the same value, until all that’s left is a
single quoted or self-evaluating value.

Able to function despite user errors. Robust programs check for likely errors
and recover from them gracefully.

The at the very top of a

A procedure that takes an object as its argument and returns some part of
that object. For example, the selector takes a word or sentence as argument and
returns the first letter of the word or first word of the sentence. See also

and

An expression is self-evaluating if, when evaluated, it has as its value
the expression itself. Numbers, Booleans, and strings are the only self-evaluating objects
we use in this book.

A procedure that answers a yes-no question by returning for “no,”
but instead of returning for “yes,” it returns some additional piece of information. The
primitive procedure is a good example of a semipredicate. (“Semipredicate”
isn’t a common term; we made it up for this book.)

Evaluating two or more expressions one after the other, for the sake of
their

A style of programming in which programs say, “First do this,
then do that, then do that other thing.” (Compare to)

Two of a that are the children of the same node. (See also
and)

See

A Scheme expression that begins with a and is evaluated using
a special rule. In particular, some of the subexpressions might not be evaluated. The
keywords used in this book are , , , , , , , , and

. (The keyword itself is also sometimes called a special form.)

"A Hard Day’s Night"
"000123"

(+ (* 2 3) 4) + (* 2 3) 4

(c d)
(a b (c d) e)

word

sublists.

compound expression.

global local.

Glossary 565

spreadsheet program:

state:

string:

structured list:

subexpression:

sublist:

substitution model:

subtree:

symbol:

symbolic computing:

tree:

tree recursion:

type:

variable:

vector:

A program that maintains a two-dimensional display of data can
compute some elements automatically, based on the values of other elements.

A program’s memory of what has happened in the past.

A delimited by double-quote marks, such as or
.

A list with

An element of a For example, the expression
has three subexpressions: , , and .

An element of a list that is itself a smaller list. For example, is a sublist
of the list .

The way we’ve explained how Scheme evaluates function invoca-
tions. According to the substitution model, when a compound procedure is invoked,
Scheme goes through the body of that procedure and replaces every copy of a formal
parameter with the corresponding actual argument value. Then Scheme evaluates the
resulting expression.

A tree that is part of a larger tree.

A word that isn’t a number or a string.

Computing that is about words, sentences, and ideas instead of
just numbers.

A two-dimensional data structure used to represent hierarchical information.

A form of recursion in which a procedure calls itself recursively more
than one time in each level of the recursion.

A category of data. For example, words, sentences, Booleans, and procedures
are types. Some types overlap: All numbers are also words, for example.

A connection between a name and a value. Variables can be or

A primitive data structure that is mutable and allows random access.

word:

566 Glossary

A sequence of characters, including letters, digits, or punctuation. Numbers are
a special case of words.

A

B

567

Index of Defined Procedures

-
-
-
-
- - -
-

-
-
-

-

-

-
- -
-
-

-
-
- -

- -
-
-
- -

-

74
332

8, 9, 110, 223
269

221
(exercise) 490

353
109, 222

127
127

455
353
(exercise) 169

109
(exercise) 122

(exercise) 84
115

(exercise) 140
(exercise) 140

(exercise) 139

(exercise) 205
328

370
362
364

354
(exercise) 484

46

135
(exercise) 124, 204

117
(exercise) 301

166
164

164
165

(exercise) 420
344

449

abs
accumulate
acronym
add
addup
add field
add move
add numbers
add three
add three to each
all evaluated?
already won?
already won?
always one
amazify
american-time
any numbers?
aplize
apl sqrt
appearances

arabic
area
arg count
ask for name
ask question
ask user
ask
average

backwards
base grade
beatle number
before in list?
best free square
best move
best square
best square helper
bill
bottles
bound check

This index contains example procedures whose definitions are in the text and procedures
that you are asked to write as exercises. (The exercises are marked as such in the index.)
Other sources of information are the general index, which contains technical terms
and primitive procedures (for which there is no Scheme definition); the glossary, which
defines many technical terms; and the Alphabetical Table of Scheme Primitives on
page 553.

C

D

E

568 Index of Defined Procedures

-

-
-
-
-
-
-
-
-

-
-
-

- -

-
-

- -

-
-
- - -
-
-
-
-
-

-
-
-
-
- -
- -
- -
-
-
-

-

-

-

-

-
-

-

-
- -

-

-

(exercise) 302
(exercise) 144

288
288

74

411
(exercise) 142

461
460

461
460

460
395

315
12

(exercise) 122
158

134, 327
134

309
(exercise) 486

13
441
(exercise) 138

(exercise) 139
323

(exercise) 401
(exercise) 364

228
(exercise) 187

110
(exercise) 187

(exercise) 230
(exercise) 485

310
310

(exercise) 324
(exercise) 143

(exercise) 124, 185
(exercise) 483

(exercise) 483

315
(exercise) 482

(exercise) 482
(exercise) 484

(exercise) 483
(exercise) 482

(exercise) 482
(exercise) 483
297

335
297, 334

(exercise) 324
(exercise) 87
(exercise) 205

(exercise) 137
(exercise) 230

219
75

105, 114
220

201
174, 178, 195

236
354

(exercise) 485
346

107
(exercise) 122

(exercise) 68
(exercise) 84

195
(exercise) 122

329
224

224, 228
(exercise) 123, 204

443
443
181

161

branch
bridge val
butfirst
butlast
buzz

card list
card val
cell children
cell expr
cell parents
cell structure
cell value
char count
children
choices
choose beatles
choose win
circle area
circumference
cities
clear current db!
combinations
command loop
common words
compose
compute
concatenate
converse
copies
copies
count
countdown
count adjacent duplicates

count db
count leaves
count leaves in forest
count nodes
count suit
count ums
current db
current fields

datum
db fields
db filename
db insert
db records
db set fields!
db set filename!
db set records!
deep appearances
deep map
deep pigl
depth
describe-time
describe time
describe
differences
disjoint pairs
divisible?
double
doubles
down
downup

earliest word
echo
edit record
effect
ends e?
ends vowel?
ends
european-time
evens
even count?
every
every nth
every nth helper
exaggerate
execute command
exhibit
explode
extract digit

F

G

H

I

J

K

L

Index of Defined Procedures 569

-
-

-
-
- -
- - -
- - -

-

-
- -
-
-
-
-

-
-

-

-

-
-
-
- -
-
-
-

- -

- -
-

-
-

- -

- -

-
-

-
-
-
-

- -
- -
- -

-

454
395

14, 194
213

455
397

398
392

392
461

462
331

154
288

166
160

(exercise) 139
104

225
(exercise) 67

(exercise) 302
130

132
237, 238

367

(exercise) 489
(exercise) 98

377
368

378
(exercise) 484

(exercise) 484
390

269
(exercise) 486

460
(exercise) 124, 204

71
(exercise) 87

(exercise) 144
(exercise) 138

(exercise) 138
222

328
(exercise) 142

108
50, 91

292
(exercise) 85

408
(exercise) 187

461
(exercise) 68

(exercise) 484
77

371
313

312, 313
115

164
159

157

(exercise) 403
395

136
136
(exercise) 68

409
288

393

extract ids
extra spaces

factorial
fib
figure
filemerge
filemerge helper
file map
file map helper
fill array with rows
fill row with cells
filter
find triples
first
first choice
first if any
first last
first letters
first number
first two
flatten
flip
fourth power
from binary
functions loop

generic before?
gertrude
get arg
get args
get fn
get record loop
get record
get song
get value
get
global array lookup
gpa
greet
greet

hand dist points
hang letter
hang
has vowel?
hexagon area
high card points
hyphenate
hypotenuse

increasing?
indef-article
initialize lap vector
initials
init array
insert and
insert
integer quotient
in domain?
in forest?
in tree?
item
i can advance?
i can fork?
i can win?

join
justify

keeper
keep h
knight

lap
last
lastfirst

M

N

O

P

570 Index of Defined Procedures

-
-

- -
-
-

-
-

- -

-

- -
- -

-
-
-
-

-
- - -

-
- -

-
-

-
-

-
-

-
-
-
-
-

-
- -

- - -

-

- -

-

-
-
-

-
- -

-
- -

-

-
-
-
- -

(exercise) 420
309

310
(exercise) 138

(exercise) 123, 229
181, 218

(exercise) 137
414

(exercise) 485
268

(exercise) 485
314

314
352
(exercise) 230

267
269, 286
(exercise) 402

347
347

129
(exercise) 482

412
314

330
266

267
267

(exercise) 301
355

371
239

238
398

(exercise) 495
(exercise) 231

(exercise) 69
358

(exercise) 300
156

160

373
373
360

(exercise) 483
(exercise) 483

(exercise) 204
(exercise) 233

375
76

(exercise) 229
239
156

158
281
(exercise) 420

239

396
(exercise) 402

322
(exercise) 325

(exercise) 244
(exercise) 124, 186

134
10, 181

448
450

160
352

352
75, 105
(exercise) 87

(exercise) 245
285

12, 240
443

390
397

leader
leaf
leaf?
letterwords
letter count
letter pairs
let it be
list >vector
list db
lm helper
load db
locate
locate in forest
location
location
longest match
lookup
lookup
lots of effect
lots of value

make adder
make db
make deck
make node
map
match
match special
match using known values
max2
maybe display
member types ok?
merge
mergesort
merge copy
merge db
merge
middle names
music critic
mystery
my pair?
my single?

named every
named keep
name table
new db
no db?
numbers
number name
number of arguments
num divisible by 4?

odds
one half
opponent
opponent can win?
order
order
other half

pad
page
parse
parse scheme
phone spell
phone unspell
pi
pigl
pin down
pin down cell
pivots
play ttt
play ttt helper
plural
plural
poker value
praise
prepend every
prev row
print file
print file helper

Q

R

S

Index of Defined Procedures 571

-
-
-
-
-

-

- - - -
- - - -
- -
-
- - -

-

-
-
-

- -

-
-

-
-

-
-
- -
-
-
-

-
-
-

-
-
-
- - -

- -
- -
- -
- -
- -
- -
-
- -
-
-

-
-

-
-

-
-
- -
-

-
-

-

-
-

355
355

458
442

393
(exercise) 231

(exercise) 324
445

445
445

445
453

447

(exercise) 69
457

457

332
9, 108
(exercise) 205

(exercise) 229

(exercise) 230
236
(exercise) 229

(exercise) 205
161

79
96

11

222
(exercise) 140

129
(exercise) 485

370
221

60

(exercise) 139
(exercise) 493

444
(exercise) 138

(exercise) 301
227

252
221

106
455

461
461

461
460
(exercise) 483

443
350

361
368

351
412

(exercise) 84
390
269

236
(exercise) 86

162
(exercise) 490

(exercise) 487
396

(exercise) 204
116
327

134
134

461
41, 131

327
456

352
241

153
154

(exercise) 139
(exercise) 243

print position
print row
print screen
process command
process grades
progressive squares?
prune
put
put all cells in col
put all cells in row
put all helper
put expr
put formula in cell

query
quoted?
quoted value

real accumulate
real word?
real words
remdup
remove adjacent duplicates

remove once
remove once
remove
repeated numbers
roman value
roots
rotate

safe pigl
safe sqrt
same arg twice
save db
scheme procedure
scrunch words
second

second
select by
select id!
sentence version
sentence
sent before?
sent equal?
sent max
sent of first two
setvalue
set cell children!
set cell expr!
set cell parents!
set cell value!
set current db!
set selected row!
show addition
show and return
show answer
show list
shuffle!
sign
skip songs
skip value
sort
sort2
sort digits
sort on
sort
spaces
spell-number
spell digit
sphere area
sphere surface area
sphere volume
spreadsheet
square
square area
ss eval
stupid ttt
subsets
substitute letter
substitute triple
substitute
substring?

T

U

V

W

572 Index of Defined Procedures

-
- -
-
-

- -

-
-
-

-

- -
- - -
- - -
-

-
-
- -
-

-

-
-

- -
-

-
-
-
-
-

substrings
subword
subword
suit counts
suit dist points
sum square
sum vector
superlative
syllables

teen?
third person singular
third
thismany
three firsts
tie game?
tie game?
transform beatles
translate
truefalse
true for all?
true for all pairs?
true for any pair?
try putting
ttt
ttt choose
two firsts
two first sent
two first

two numbers?
type-of
type check
type predicate

unabbrev
unscramble
up
utensil

valid-date?
valid fn name?
valid infix?
value
vector append
vector fill!
vector map!
vector map
vector swap!
verse
vowel?

who
words

(exercise) 243
355
(exercise) 124

(exercise) 143
(exercise) 143

(exercise) 99
(exercise) 419

(exercise) 98
(exercise) 232

(exercise) 85
(exercise) 83

(exercise) 67
(exercise) 86

103
353
(exercise) 169

(exercise) 122
286, 292
80

(exercise) 124
(exercise) 337

(exercise) 337
445

148, 155
163
103

(exercise) 68
(exercise) 68

371
(exercise) 85

(exercise) 140
370

(exercise) 139
(exercise) 244

(exercise) 229
(exercise) 84

(exercise) 86
375

(exercise) 303
346

(exercise) 419
(exercise) 419

(exercise) 419
(exercise) 419

412
345, 350

107

(exercise) 137
(exercise) 123

A

B

573

General Index

#f
#t
’
*
+
-
/
<
<=
=
>
>=

abs

accumulate

align
and

append
apply

assoc

This index contains technical terms and primitive procedures. Other sources of informa-
tion are the index of defined procedures, which contains procedures whose definitions
are in the text and procedures that you are asked to write as exercises; the glossary,
which defines many technical terms; and the Alphabetical Table of Scheme Primitives on
page 553.

71
71

58
553
553
74, 553
553
73

73
73
73

73

Abelson, Harold xxi, xxxi, 209, 501
74

abstract data type 270, 287, 315, 441
abstraction 5, 47, 134, 270, 434, 501

108, 110, 331
actual argument 45
actual argument expression 45
actual argument value 45

ADT 270, 287, 315, 441
algorithm 13, 238

358
75, 76

apostrophe 58
283

293
argument 6, 32
argument, actual 45
arguments, variable number of 292
arithmetic function 18
array 406, 421
artificial intelligence xviii

291
association list 291
atomic expression 29

backtracking 256, 270
base case 178
base cases, simplifying 197
Baskerville, John iv

C

D

E
- -
- -
- -

574 General Index

before?
begin
bf

bl

boolean?

butfirst
butlast

c
c...r
cadr
car

cdr
ceiling

children

close all ports
close input port
close output port

cond

cons

cos
count

datum

define

display

else

Beatles xxxii, 551
73

348
61

binary number 237
61

body 42
Bonne, Rose 552
Boole, George 21
Boolean 21, 71

73
boring exercise xxiii
bottom-up 142
branch node 305
bridge points 141

60
60

347
286

287
282

Carroll, Lewis 45, 551
case, base 178
case, recursive 178

282
554

cell 425
chalkboard model 93, 94
child (in spreadsheet program) 451
children 306

308
Chinese food xxxii
Clancy, Michael xxxi
clause, cond 79
Clinger, William 394

401
388

388
comments 32
complexity, control of 5
composition of functions 26, 47
compound expression 29

compound procedure 8
computing, symbolic xviii, 14

78, 157
cond clause 79
condition 79

283
consequent 79
constant, named 89
constructor 61, 282, 283, 307
control of complexity 5
conversational program 343

554
109

data abstraction violation 316
data file 387
data structure 149
data type, abstract 270, 287, 315, 441
database 265, 477
datum 306

308
Dave Dee, Dozy, Beaky, Mick, and Tich

xxxii
debugger 7
debugging xxiii
Dee, Dave xxxii

41, 130
definition, global 131
diagram, plumbing 34
Dijkstra, Edsger xvii

350, 387
Dodgson, Charles 551
domain 20
double-quote marks 58, 61
Dubinsky, Ed xxxii, xxxi

effect, side 345
Ehling, Terry xxxi

80
EMACS 429, 436
empty sentence 61, 72

-

-

F

G

H

I

General Index 575

empty?

eof object?
equal?
error

eval

even?
every

exit

expt

file-map
filter
first

floor

for each

functions

if

73
end-of-file object 390
engineering, software xx

391
72

554
error messages 7

456
evaluation, order of 31

554
104, 110

exclusive, mutually 80
exercise, boring xxiii
exercise, real xxiii

7
expression 29
expression, actual argument 45
expression, atomic 29
expression, compound 29
expression, self-evaluating 30, 61, 62

554
extensibility 435
extensions to Scheme xxiv, 59, 525

factorial 14, 192
false 71
Fibonacci numbers 213
field 477
file, data 387

391
289, 331

60
first-class 63, 113

554
food, Chinese xxxii
forest 308
fork 159
form, special 42, 58, 76, 78, 95, 128, 348
formal parameter 45
forms, special 214
formula 426, 431
Fortran 335

351

Free Software Foundation 547
Freud, Sigmund 505
Friedman, Daniel P. xxi, xxxi, 406
Frisell, Bill xxxii
function 17
function as argument 104
function as data 21
function as object 23
function as process 23
function composition 26, 47
function machine 33, 106
function vs. procedure 43, 104
function, arithmetic 18
function, higher-order 23, 106, 289, 327
function, unnamed 133
functional programming 17, 27, 89, 348

367

generalization 46, 327, 392, 434
global variable 131

Harvey, Brian 209
Harvey, Tessa xxxi
helper procedure 224
Hennessy, John L. xxxii
higher-order function 23, 106, 289, 327
Hofstadter, Douglas R. xxxii
Hypercard 435

ice cream xxxii
identity element 119, 221, 332

71, 76
IFSMACSE xxxii
imperative programming 417
indentation 35
indentation in a program 11
Indianapolis 405
infix notation 317
initialization procedure 224

J

K

L

M

N

O

-
-

-
-

- -

576 General Index

integer?

item

keep
keep

lambda

last

length

let

list

list?
list >vector
list ref

load

log

make node
make vector

map

max

member
member?

min

newline

not
null?

number?

odd?
open input file

554
intelligence, artificial xviii
interactive programming 343
interface, user 360

114

join 402
justify 394

Katz, Yehuda xxxi
107, 110
pattern 220

keyboard 343
keyword 42
kludge 157, 162, 165, 333
Knuth, Donald iv

127
lambda calculus 128

60
Latin, Pig 10, 179
leaf node 305

291
Leron, Uri xxxii

95
lines of a program 10
Lisp xix
list 281

283
list, association 291
list, structured 282, 335

290
411

291
little people 30, 49, 90, 207

554
local variable 93

554
Logo xxxi

machine, function 33, 106
307

406
Manilow, Barry 57

289
mapping 289
Marx, Karl 505
matcher, pattern 249
matrix 421

554
McCarthy, John xix

290
73, 82

mergesort 238
metaphor 434
Mills, Alan 552

554
model, chalkboard 93
moon, phase of the 212
mutator 407
mutual recursion 310
mutually exclusive 80

named constant 89
naming a value 89, 130

350, 387
node 305
node, branch 305
node, leaf 305
node, root 305

75
283

number, binary 237
73

numbers, Fibonacci 213

object, end-of-file 390
555

388

P

Q

R

- -

cond
let

-

General Index 577

open output file
or

keep

procedure?

quote
quotient

random

read

read-string
read line

reduce

remainder
repeated

round

388
76

order of evaluation 31

parameter, formal 45
parameter, rest 293
parent 306
parent (in spreadsheet program) 451
parentheses 36
parentheses, for procedure invocation 6,

32, 119
parentheses, for clauses 79
parentheses, for variables 96
Pascal xxi
pattern matcher 249
pattern, recursive 217
pattern: 220
Patterson, David A. xxxii
Payne, Jonathan iv
phase of the moon 212
Pig Latin 10, 179
Pisano, Leonardo 213
pivot 159
placeholder 250
plumbing diagram 34
points, bridge 141
port 387
portable 428
position 148
predicate 72
prefix notation 317
primitive procedure 8
printed twice, return value 211
printing 343, 362
Prior, Robert xxxi
procedure 6
procedure as argument 104
procedure vs. function 43, 104
procedure, compound 8
procedure, helper 224
procedure, higher-order 327
procedure, initialization 224
procedure, primitive 8

555
program, conversational 343
programming, functional 17, 27, 89, 348
programming, imperative 417
programming, interactive 343
programming, structured xx
programming, symbolic xviii, 14
prompt 6

quadratic formula 94
quotation marks, double 58

57
555

410, 555
range 20

354, 387
read-eval-print loop 29, 343, 367

396
356, 387

real exercise xxiii
record 477
recursion 174, 577
recursion, mutual 310
recursion, tree 312
recursive case 178
recursive pattern 217

290, 332
Rees, Jonathan 394

555
113

replacement, result 33
representation 150
rest parameter 293
result replacement 33
return 17
robust 334
Rogers, Annika xxxi
root node 305

555

-

-
-
-

S

T

U

V

W

578 General Index

Structure and Interpretation of Computer
Programs

se

sentence

sentence?

show
show line

sin

sqrt

trace

untrace

vector
vector-fill!
vector-length
vector?
vector >list
vector ref
vector set!

word

Scheme xix, xviii, 394
Scheme, extensions to xxiv, 59, 525
screen 343

62
selector 59, 282, 308
self-evaluating expression 30, 61, 62
semicolon 32
semipredicate 77, 291
sentence 21

61
sentence, empty 61, 72

74
sequencing 347

344, 387, 388
358, 387

shuffle 410
sibling 306
side effect 345
simplifying base cases 197

555
software engineering xx
sorting 235, 238
special form 42, 58, 76, 78, 95, 128, 348
special forms 214
spreadsheet 425
Springer, George xxi

555
state 405
strategy 148
string 36, 58, 61, 154, 350

xxi, 501
structure, data 149
structured list 282, 335
structured programming xx
subexpression 29
sublist 282
subsets 239
substitution 48, 94
substitution model 94
substitution model and global variables

131
subtree 307

Sussman, Gerald Jay xxi, xxxi, 209, 501
Sussman, Julie xxi, xxxi, 209, 501
symbol 58
symbolic programming xviii, 14

template 217
top-down 142

210
tree 305
tree recursion 312
triple 150
true 71
type 19
type, abstract 270, 287, 315, 441

unnamed function 133
211

user interface 360

value, actual argument 45
variable 89
variable number of arguments 292
variable, global 131
variable, local 93
vector 406

413
419

413
413

411
407

407

Wirth, Niklaus xxi
word 19

61
word, empty 61

Zword?

write

General Index 579

74
Wright, Matthew 209

400 Zabel, David xxxii

Table of Scheme Primitives by Category

*
*

*
*

*
*

*
*
*

*

*
*

*
*

*

*

*
*

*

Not part of
standard Scheme

, , ,
, , , ,

*
*

*

*

*
*

*

*
*

*
*

*

Use this table if you’ve forgotten the name of a primitive. Then look in the index to find
more about how to use the primitive.

Words and Sentences

Lists

Trees

Arithmetic

True and False

Variables

Vectors

Procedures

Higher Order
Procedures

Control

Input/Output

Files and Ports

appearances
before?
butfirst (bf)
butlast (bl)
count
empty?
equal?
first
item
last
member?
quote
sentence (se)
sentence?
word
word?

append
assoc
car
cdr
c...r
cons
filter
for-each
length
list
list?
list-ref
map
member
null?
reduce

children
datum
make-node

*

+ - * /
< <= = > >=
abs
ceiling
cos
even?
expt
floor
integer?
log
max
min
number?
odd?
quotient
random
remainder
round
sin
sqrt

and
boolean?
cond
if
not
or

define
let

list->vector
make-vector
vector
vector?
vector-length
vector->list
vector-ref
vector-set!

apply
lambda
procedure?

-

accumulate
every
filter
for-each
keep
map
reduce
repeated

begin
error
load
trace
untrace

align
display
newline
read
read-line
read-string
show
show-line
write

close-all-ports
close-input-port
close-output-port
eof-object?
open-input-file
open-output-file

