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Foreword

In	Plato’s	great	dialogue	Meno,	written	about	2400	years	ago,	we	are	treated	to	a
wonderful	 teaching	 demonstration.	 Socrates	 demonstrates	 to	 Meno	 that	 it	 is
possible	to	teach	a	deep	truth	of	plane	geometry	to	a	relatively	uneducated	boy
(who	 knows	 simple	 arithmetic	 but	 only	 a	 little	 of	 geometry)	 by	 asking	 a
carefully	planned	sequence	of	leading	questions.	Socrates	first	shows	Meno	that
the	 boy	 certainly	 has	 some	 incorrect	 beliefs,	 both	 about	 geometry	 and	 about
what	 he	 does	 or	 does	 not	 know:	 although	 the	 boy	 thinks	 he	 can	 construct	 a
square	with	double	the	area	of	a	given	square,	he	doesn’t	even	know	that	his	idea
is	wrong.	 Socrates	 leads	 the	 boy	 to	 understand	 that	 his	 proposed	 construction
does	 not	work,	 then	 remarks	 to	Meno,	 “Mark	 now	 the	 farther	 development.	 I
shall	only	ask	him,	and	not	 teach	him,	and	he	shall	share	the	enquiry	with	me:
and	do	you	watch	and	see	if	you	find	me	telling	or	explaining	anything	to	him,
instead	 of	 eliciting	 his	 opinion.”	 By	 a	 deliberate	 and	 very	 detailed	 line	 of
questioning,	Socrates	leads	the	boy	to	confirm	the	steps	of	a	correct	construction.
Socrates	concludes	that	the	boy	really	knew	the	correct	result	all	along—that	the
knowledge	was	innate.

Nowadays	we	know	 (from	 the	 theory	of	NP-hard	problems,	 for	 example)
that	 it	 can	 be	 substantially	 harder	 to	 find	 the	 solution	 to	 a	 problem	 than	 to
confirm	 a	 proposed	 solution.	 Unlike	 Socrates	 himself,	 we	 regard	 “Socratic
dialogue”	as	a	form	of	teaching,	one	that	is	actually	quite	difficult	to	do	well.

For	over	four	decades,	since	his	book	The	Little	LISPer	appeared	in	1974,
Dan	 Friedman,	 working	 with	 many	 friends	 and	 students,	 has	 used	 superbly
constructed	Socratic	dialogue	to	teach	deep	truths	about	programming	by	asking
carefully	 planned	 sequences	 of	 leading	 questions.	 They	 take	 the	 reader	 on	 a
journey	 that	 is	 entertaining	 as	well	 as	 educational;	 as	 usual,	 the	 examples	 are
mostly	about	food.	While	working	through	this	book,	we	each	began	to	feel	that
we	already	knew	the	results	innately.	“I	see—I	knew	this	all	along!	How	could	it
be	otherwise?”	Perhaps	Socrates	was	right	after	all?

Earlier	books	from	Dan	and	company	taught	the	essentials	of	recursion	and
functional	 programming.	 The	 Reasoned	 Schemer	 goes	 deeper,	 taking	 a	 gentle



path	to	mastery	of	the	essentials	of	relational	programming	by	building	on	a	base
of	functional	programming.	By	the	end	of	the	book,	we	are	able	to	use	relational
methods	effectively;	but	even	better,	we	learn	how	to	erect	an	elegant	relational
language	on	the	functional	substrate.	It	was	not	obvious	up	front	that	this	could
be	done	 in	 a	manner	 so	 accessible	 and	pretty—but	 step	by	 step	we	 can	 easily
confirm	the	presented	solution.
	

	You	know,	don’t	you,	that	The	Little	Schemer,	like	The	Little
LISPer,	was	a	fun	read?

	And	is	it	not	true	that	you	like	to	read	about	food	and	about
programming?

	And	is	not	the	book	in	your	hands	exactly	that	sort	of	book,
the	kind	you	would	like	to	read?

Guy	Lewis	Steele	 Jr.	 and
Gerald	Jay	Sussman
Cambridge,
Massachusetts
August	2017



	

Preface

The	 Reasoned	 Schemer	 explores	 the	 often	 bizarre,	 sometimes	 frustrating,	 and
always	fascinating	world	of	relational	programming.

The	first	book	in	the	“little”	series,	The	Little	Schemer,	presents	ideas	from
functional	programming:	each	program	corresponds	to	a	mathematical	function.
A	simple	example	of	a	function	is	square,	which	multiplies	an	integer	by	itself:
square(4)	=	16,	and	so	forth.	In	contrast,	The	Reasoned	Schemer	presents	ideas
from	 relational	 programming,	 where	 programs	 correspond	 to	 relations	 that
generalize	mathematical	functions.	For	example,	the	relation	squareo	generalizes
square	 by	 relating	 pairs	 of	 integers:	 squareo(4,	 16)	 relates	 4	 with	 16,	 and	 so
forth.	We	call	a	relation	supplied	with	arguments,	such	as	squareo(4,	16),	a	goal.
A	goal	can	succeed,	fail,	or	have	no	value.

The	great	advantage	of	squareo	over	square	 is	 its	 flexibility.	By	passing	a
variable	 representing	 an	 unknown	 value—rather	 than	 a	 concrete	 integer—to
squareo,	 we	 can	 express	 a	 variety	 of	 problems	 involving	 integers	 and	 their
squares.	For	example,	the	goal	squareo(3,	x)	succeeds	by	associating	9	with	the
variable	x.	The	goal	squareo(y,	9)	succeeds	 twice,	by	separately	associating	−3
and	 then	 3	 with	 y.	 If	 we	 have	 written	 our	 squareo	 relation	 properly,	 the	 goal
squareo(z,	5)	 fails,	and	we	conclude	 that	 there	 is	no	 integer	whose	square	 is	5;
otherwise,	the	goal	has	no	value,	and	we	cannot	draw	any	conclusions	about	z.
Using	 two	 variables	 lets	 us	 create	 a	 goal	 squareo(w,	 v)	 that	 succeeds	 an
unbounded	 number	 of	 times,	 enumerating	 all	 pairs	 of	 integers	 such	 that	 the
second	 integer	 is	 the	 square	of	 the	 first.	Used	 together,	 the	goals	 squareo(x,	 y)
and	squareo(−3,	x)	succeed—regardless	of	the	ordering	of	the	goals—associating
9	 with	 x	 and	 81	 with	 y.	 Welcome	 to	 the	 strange	 and	 wonderful	 world	 of
relational	programming!

This	 book	 has	 three	 themes:	 how	 to	 understand,	 use,	 and	 create	 relations
and	goals	(chapters	1–8);	when	to	use	non-relational	operators	that	take	us	from
relational	programming	to	its	impure	variant	(chapter	9);	and	how	to	implement
a	complete	relational	programming	language	on	top	of	Scheme	(chapter	10	and



appendix	A).
We	show	how	to	 translate	Scheme	functions	from	most	of	 the	chapters	of

The	Little	Schemer	into	relations.	Once	the	power	of	programming	with	relations
is	 understood,	 we	 then	 exploit	 this	 power	 by	 defining	 in	 chapters	 7	 and	 8
familiar	arithmetic	operators	as	 relations.	The	+o	 relation	can	not	only	add	but
also	subtract;	∗o	can	not	only	multiply	but	also	factor	numbers;	and	logo	can	not
only	find	the	logarithm	given	a	number	and	a	base	but	also	find	the	base	given	a
logarithm	and	a	number.	Just	as	we	can	define	the	subtraction	relation	from	the
addition	 relation,	we	can	define	 the	exponentiation	 relation	 from	 the	 logarithm
relation.	In	general,	given	(∗o	x	y	z)	we	can	specify	what	we	know	about	these
numbers	(their	values,	whether	they	are	odd	or	even,	etc.)	and	ask	∗o	to	find	the
unspecified	 values.	 We	 don’t	 specify	 how	 to	 accomplish	 the	 task;	 rather,	 we
describe	what	we	want	in	the	result.

This	 relational	 thinking	 is	 yet	 another	way	 of	 understanding	 computation
and	it	can	be	expressed	using	a	tiny	low-level	language.	We	use	this	language	to
introduce	the	fundamental	notions	of	relational	programming	in	chapter	1,	and	as
the	foundation	of	our	implementation	in	chapter	10.	Later	in	chapter	1	we	switch
to	 a	 slightly	 friendlier	 syntax—inspired	 by	 Scheme’s	 equal?,	 let,	 cond,	 and
define—allowing	 us	 to	 more	 easily	 translate	 Scheme	 functions	 into	 relations.
Here	is	the	higher-level	syntax:

(≡	t0	t1)	(fresh	(x	…	)	g	…	)	(conde	(g	…	)	…	)	(defrel	(name	x	…	)	g	…	)

The	function	≡	is	defined	in	chapter	10;	fresh,	conde,	and	defrel	are	defined	in
the	 appendix	 Connecting	 the	 Wires	 using	 Scheme’s	 syntactic	 extension
mechanism.

The	 only	 requirement	 for	 understanding	 relational	 programming	 is
familiarity	with	lists	and	recursion.	The	implementation	in	chapter	10	requires	an
understanding	of	functions	as	values.	That	is,	a	function	can	be	both	an	argument
to	 and	 the	 value	 of	 a	 function	 call.	 And	 that’s	 it—we	 assume	 no	 further
knowledge	of	mathematics	or	logic.

We	 have	 taken	 certain	 liberties	 with	 punctuation	 to	 increase	 clarity.
Specifically,	we	have	omitted	question	marks	in	the	left-hand	side	of	frames	that
end	with	a	special	symbol	or	a	closing	right	parenthesis.	We	have	done	this,	for
example,	to	avoid	confusion	with	function	names	that	end	with	a	question	mark,
and	to	reduce	clutter	around	the	parentheses	of	lists.

Food	appears	in	examples	throughout	the	book	for	two	reasons.	First,	food
is	easier	to	visualize	than	abstract	symbols;	we	hope	the	food	imagery	helps	you
to	better	understand	 the	examples	and	concepts.	Second,	we	want	 to	provide	a



little	distraction.	We	know	how	frustrating	the	subject	matter	can	be,	thus	these
culinary	 diversions	 are	 for	 whetting	 your	 appetite.	 As	 such,	 we	 hope	 that
thinking	about	food	will	cause	you	to	stop	reading	and	have	a	bite.

You	are	now	ready	to	start.	Good	luck!	We	hope	you	enjoy	the	book.

Bon	appétit!

Daniel	P.	Friedman
Bloomington,	Indiana

William	E.	Byrd
Salt	Lake	City,	Utah

Oleg	Kiselyov
Sendai,	Japan

Jason	Hemann
Bloomington,	Indiana
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Since	the	First	Edition

Over	a	dozen	years	have	passed	since	the	first	edition	and	much	has	changed.
There	are	five	categories	of	changes	since	the	first	edition.	These	categories

include	changes	to	the	language,	changes	to	the	implementation,	changes	to	the
Laws	 and	Commandments,	 along	 with	 the	 introduction	 of	 the	 Translation,
changes	to	the	prose,	and	changes	to	how	we	express	quasiquoted	lists.

There	 are	 seven	 changes	 to	 the	 language.	 First,	 we	 have	 generalized	 the
behavior	 of	 conde,	 fresh,	 and	 run*,	 which	 has	 allowed	 us	 to	 simplify	 the
language	 by	 removing	 three	 forms:	 condi,	 all,	 and	 alli.	 Second,	 we	 have
introduced	a	new	form,	defrel,	which	defines	relations,	and	which	replaces	uses
of	define.	Use	of	defrel	is	not	strictly	necessary—see	the	workaround	as	part	of
the	 footnote	 in	 frame	82	of	 chapter	1	 and	 in	 frame	61	of	 chapter	10.	 Third,	 ≡
now	calls	a	version	of	unify	 that	uses	occurs?	prior	to	extending	a	substitution.
Fourth,	 we	 made	 changes	 to	 the	 run*	 interface.	 run*	 can	 now	 take	 a	 single
identifier,	as	 in	 (run*	x	 (≡	5	x)),	which	 is	cleaner	 than	 the	notation	 in	 the	first
edition.	We	have	also	extended	run*	to	take	a	list	of	one	or	more	identifiers,	as
in	(run*	(x	y	z)	 (≡	x	y)).	These	 identifiers	are	bound	 to	unique	fresh	variables,
and	the	reified	value	of	these	variables	is	returned	in	a	list.	These	changes	apply
as	well	to	runn,	which	is	now	written	as	run	n.	Fifth,	we	have	dropped	the	else
keyword	from	conde,	conda,	and	condu,	making	every	line	in	these	forms	have
the	 same	 structure.	 Sixth,	 the	 operators,	 alwayso	 and	 nevero	 have	 become
relations	 of	 zero	 arguments,	 rather	 than	 goals.	 Last,	 in	 chapter	 1	 we	 have
introduced	 the	 low-level	 binary	 disjunction	 (disj2)	 and	 conjuction	 (conj2),	 but
only	as	a	way	to	explain	conde	and	fresh.

The	 implementation	 is	 fully	 described	 in	 chapter	10.	 Though	 in	 the	 early
part	of	 this	chapter	we	still	 explain	variables,	 substitutions,	and	other	concepts
related	to	unification.	We	then	explain	streams,	including	suspensions,	disj2,	and
conj2.	We	show	how	appendo	(introduced	in	chapter	4,	swapped	with	what	was
formerly	 chapter	 5)	 macro-expands	 to	 a	 relation	 in	 the	 lower-level	 language
introduced	 in	chapter	1.	Last,	we	 show	how	 to	write	 ifte	 (for	conda)	 and	once



(for	condu).
We	 define	 in	 chapter	 10	 as	 much	 of	 the	 implementation	 as	 possible	 as

Scheme	 functions.	 This	 allows	 us	 to	 greatly	 simplify	 the	 Scheme	 macros	 in
appendix	A	that	define	the	syntax	of	our	relational	language.	To	further	simplify
the	 implementation,	 appendix	A	defines	 two	 recursive	 help	macros:	disj,	 built
from	#u	and	disj2;	and	conj,	built	from	#s	and	conj2.	The	appendix	then	defines
the	 seven	user-level	macros,	of	which	only	 fresh	 and	conda	 are	 recursive.	We
have	also	added	a	short	guide	on	understanding	our	style	of	writing	macros.	In
the	 absence	 of	 macros,	 the	 functions	 in	 chapter	 10	 can	 be	 defined	 in	 any
language	that	supports	functions	as	values.

Next,	 we	 have	 clarified	 the	 Laws	 and	 Commandments.	 In	 addition	 to
these	improvements,	we	have	added	explicit	Translation	rules.	For	example,	we
now	demand	that,	in	any	function	we	transform	into	a	relation,	every	last	cond
line	begins	with	#t	instead	of	else.	This	makes	the	Laws	and	Commandments
more	uniform	and	easier	to	internalize.	In	addition,	this	simple	change	improves
understanding	 of	 the	 newly-added	 Translation,	 and	 makes	 it	 easier	 to
distinguish	those	Scheme	functions	that	use	#t	from	those	in	the	implementation
chapter	that	use	else.

We	have	made	many	changes	to	the	prose	of	the	book.	We	have	completely
rewritten	 chapter	 1.	 There	 we	 introduce	 the	 notion	 of	 fusing	 two	 variables,
meaning	a	reference	to	one	is	the	same	as	a	reference	to	the	other.	Chapters	2–5
have	been	re-ordered	and	restructured,	with	some	examples	dropped	and	others
added.	 In	 these	 four	 chapters	we	 explain	 and	 exploit	 the	Translation,	 so	 that
transforming	a	function,	written	with	our	aforementioned	changes	to	cond’s	else,
is	more	direct.	We	have	shortened	chapter	6,	which	now	focuses	exclusively	on
alwayso	 and	 nevero.	 Chapter	 7	 is	 mostly	 the	 same,	 with	 a	 few	 minor,	 yet
important,	modifications.	Chapter	8	 is	 also	mostly	 the	 same,	but	here	we	have
added	 a	 detailed	 description	 of	 splito.	 Understanding	 splito	 is	 necessary	 for
understanding	÷o	and	 logo,	 and	we	have	 re-organized	 some	of	 the	complicated
relations	so	that	they	can	be	read	more	easily.	Chapter	9,	swapped	with	what	was
formerly	chapter	10,	is	mostly	the	same.	The	first	half	places	more	emphasis	on
necessary	restrictions	by	using	new	Laws	and	Commandments	 for	conda	and
condu.	 The	 second	 half	 is	 mostly	 unchanged,	 but	 restricts	 the	 relations	 to	 be
first-order,	 to	mirror	 the	 rest	of	 the	book.	We,	however,	 finish	by	 shifting	 to	 a
higher-order	 relation,	 allowing	 the	 same	 relation	 enumerateo	 to	 enumerate	 +o,
∗o,	and	expo,	and	we	describe	how	the	remaining	relations,	÷o	and	logo,	can	also
be	enumerated.

Finally,	we	have	 replaced	 implicit	punctuation	of	quasiquoted	expressions



with	explicit	punctuation	(backtick	and	comma).
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Welcome	back. 1 It	is	good	to	be	here,	again.
Have	you	finished	The	Little	Schemer?†

_______________
†	Or	The	Little	LISPer.

2 #f.

That’s	okay.



Do	you	know	about

“Cons	the	Magnificent?”

3 #t.

Do	you	know	what	recursion	is? 4 Absolutely.
What	is	a	goal? 5 It	 is	 something	 that

either	succeeds,	 fails,	or
has	no	value.

#s	is	a	goal	that	succeeds.	What	is	#u†

_______________
†	#s	is	written	succeed	and	#u	is	written	fail.	Each	operator’s	index
entry	shows	how	that	operator	should	be	written.	Also,	see	the	inside
front	page	for	how	to	write	various	expressions	from	the	book.

6 Is	it	a	goal	that	fails?

Exactly.	What	is	the	value	of

(run*	q
#u)

7 (),
since	 #u	 fails,	 and
because	 if	 g	 is	 a
goal	that	fails,	then
the	expression

(run*	q	g)

produces	the	empty
list.

	
What	is	(≡	'pea	'pod) 8 Is	it	also	a	goal?
Yes.	Does	the	goal	(≡†	'pea	'pod)	succeed	or	fail?

_______________
†	≡	is	written	==	and	is	pronounced	“equals.”

9 It	fails,
because	 pea	 is	 not
the	same	as	pod.

Correct.	What	is	the	value	of

(run*	q
(≡	'pea	'pod))

10 (),
since	 the	 goal	 (≡
'pea	'pod)	fails.



What	 is	 the
value	of

(run*	q
(≡	 q
'pea))

11 (pea).
The	goal	(≡	q	 'pea)	succeeds,	associating	pea	with	 the
fresh	variable	q.

If	g	is	a	goal	that	succeeds,	then	the	expression

(run*	q	g)

produces	a	non-empty	list	of	values	associated	with	q.



Is	the	value	of

(run*	q
(≡	'pea	q))

the	 same	 as	 the	 value
of

(run*	q
(≡	q	'pea))

12Yes,	they	both	have	the	value	(pea),
because	 the	 order	 of	 arguments	 to	 ≡	 does	 not
matter.

	

The	First	Law	of	≡

(≡	v	w)	can	be	replaced	by	(≡	w	v).

We	use	 the	phrase	what	 value	 is	 associated	with	 to	mean
the	same	thing	as	the	phrase	what	is	the	value	of,	but	with
the	 outer	 parentheses	 removed	 from	 the	 resulting	 value.
This	 lets	us	avoid	one	pair	of	matching	parentheses	when
describing	the	value	of	a	run*	expression.

13 That’s	 important
to	remember!

What	value	is	associated	with	q	in

(run*	q
(≡	'pea	q))

14 pea.
The	value	of
the	 run*
expression	is
(pea),	and	so
the	 value
associated
with	 q	 is
pea.

Does	the	variable	q	remain	fresh	in

(run*	q
(≡	'pea	q))

15No.
In	 this
expression	q
does	 not
remain	 fresh
because	 the
value	 pea	 is
associated



with	q.
We	 must	 mind
our	peas	and	qs.

Does	the	variable	q	remain	fresh	in

(run*	q
#s)

16Yes.
	

Every	 variable	 is	 initially	 fresh.	 A	 variable	 is	 no
longer	 fresh	 if	 it	 becomes	 associated	 with	 a	 non-
variable	 value	 or	 if	 it	 becomes	 associated	 with	 a
variable	that,	itself,	is	no	longer	fresh.



What	is	the	value	of

(run*	q
#s)

17 (−0).
In	the	value	of	a	run*	expression,	each
fresh	variable	is	reified	by	appearing	as
the	 underscore	 symbol	 followed	 by	 a
numeric	subscript.

In	the	value	(−0),	what	variable	is
reified	as	−0†

_______________
†	This	 symbol	 is	written	_0,	 and	 is	 created
using	(reify-name	0).	We	define	reify-name
in	 10:93	 (our	 notation	 for	 frame	 93	 of
chapter	10).

18 The	fresh	variable	q.



What	is	the	value
of

(run*	q
(≡	'pea	'
pea))

19 (−0).
Although	 the	 run*	 expression	 produces	 a	 nonempty
list,	q	remains	fresh.



What	is	the	value	of

(run*	q
(≡	q	q))

20 (−0).
Although	 the	 run*	 expression
produces	 a	 nonempty	 list,	 the
successful	 goal	 (≡	 q	 q)	 does	 not
associate	any	value	with	the	variable	q.

	
We	 can	 introduce	 a	 new	 fresh
variable	with	 fresh.	What	value
is	associated	with	q	in

(run*	q
(fresh	(x)

(≡	'pea	q)))

21 pea.
Introducing	 an	 unused	 variable	 does
not	 change	 the	 value	 associated	 with
any	other	variable.

Is	x	the	only	variable	that	begins
fresh	in

(run*	q
(fresh	(x)

(≡	'pea	q)))

22No,
since	 q	 also	 starts	 out	 fresh.	 All
variables	 introduced	 by	 fresh	 or	 run*
begin	fresh.

Is	 x	 the	 only	 variable	 that
remains	fresh	in

(run*	q
(fresh	(x)

(≡	'pea	q)))

23Yes,
since	pea	is	associated	with	q.

Suppose	that	we	instead	use	x	in
the	≡	expression.	What	value	 is
associated	with	q	in

(run*	q
(fresh	(x)

(≡	'pea	x)))

24
−0,

since	q	remains	fresh.

Suppose	 that	we	use	both	x	and
q.	What	value	is	associated	with
q	in

(run*	q
(fresh	(x)

(≡	 (	 cons	 x	 '())
q)))

25 (−0).
The	 value	 of	 (cons	 x	 '())	 is	 associated
with	q,	although	x	remains	fresh.

	



What	value	 is	associated	with	q
in

(run*	q
(fresh	(x)

(≡	‘(,x)	q)))

26 (−0),
since	 ‘(,x)	 is	 a	 shorthand	 for	 (cons	 x
'()).

Is	this	a	bit	subtle? 27 Indeed.
Commas	 (,),	 as	 in	 the	 run*
expression	in	frame	26,	can	only
precede	variables.	Thus,	what	is
not	 a	 variable	 behaves	 as	 if	 it
were	quoted.

28 In	 that	 case,	 reading	 off	 the	 values	 of
backtick	(	‘)	expressions	 should	not	be	 too
difficult.

Two	 different	 fresh	 variables
can	be	made	the	same	by	fusing
them.

29How	 can	 we	 fuse	 two	 different	 fresh
variables?

We	 fuse	 two	 different	 fresh
variables	 using	 ≡.	 In	 the
expression

(run*	q
(fresh	(x)

(≡	x	q)))

x	 and	 q	 are	 different	 fresh
variables,	 so	 they	 are	 fused
when	the	goal	(≡	x	q)	succeeds.

30Okay.

What	value	 is	associated	with	q
in

(run*	q
(fresh	(x)

(≡	x	q)))

31
−0.

x	 and	 q	 are	 fused,	 but	 remain	 fresh.
Fused	 variables	 get	 the	 same
association	 if	 a	 value	 (including
another	 variable)	 is	 associated	 later
with	either	variable.

What	value	 is	associated	with	q
in

(run*	q
(≡	 '(((	 pea))	 pod)
'(((pea))	pod)))

32
−0.
	

What	value	 is	associated	with	q 33 pod.



in

(run*	q
(≡	 '(((	 pea))	 pod)
‘(((pea))	,q)))

What	value	 is	associated	with	q
in

(run*	q
(≡	 ‘(((,q))	 pod)
'(((pea))	pod)))

34 pea.

What	value	 is	associated	with	q
in

(run*	q
(fresh	(x)

(≡	 ‘(((,q))	 pod)
‘(((,x))	pod))))

35
−0,

since	q	remains	fresh,	even	though	x	 is
fused	with	q.

What	value	 is	associated	with	q
in

(run*	q
(fresh	(x)

(≡	 ‘(((,q))	 ,x)
‘(((,x))	pod))))

36 pod,
because	 pod	 is	 associated	 with	 x,	 and
because	x	is	fused	with	q.

What	value	 is	associated	with	q
in

(run*	q
(fresh	(x)

(≡	‘(,x	,x)	q)))

37 (−0	−0).
In	 the	 value	 of	 a	 run*	 expression,
every	 instance	 of	 the	 same	 fresh
variable	is	replaced	by	the	same	reified
variable.

What	value	 is	associated	with	q
in

(run*	q
(fresh	(x)

(fresh	(y)
(≡	 ‘(,q	 ,y)	 ‘((,x
,y)	,x)))))

38 (−0	−0),
because	 the	 value	 of	 ‘(,x	 ,y)	 is
associated	 with	 q,	 and	 because	 y	 is
fused	with	x,	making	y	the	same	as	x.

	

When	 are	 two	 variables 39 Two	variables	are	different	if	 they	have	not



different? been	fused.

Every	 variable	 introduced	 by	 fresh	 (or
run*)	is	 initially	different	from	every	other
variable.

Are	 q	 and	 x	 different	 variables
in

(run*	q
(fresh	(x)

(≡	'pea	q)))

40Yes,	they	are	different.

What	value	 is	associated	with	q
in

(run*	q
(fresh	(x)

(fresh	(y)
(≡	‘(,x	,y)	q))))

41 (−0	−1).
In	the	value	of	a	run*	expression,	each
different	 fresh	 variable	 is	 reified	 with
an	 underscore	 followed	 by	 a	 distinct
numeric	subscript.

What	value	 is	 associated	with	 s
in

(run*	s
(fresh	(t)

(fresh	(u)
(≡	‘(,t	,u)	s))))

42 (−0	−1).
This	 expression	 and	 the	 previous
expression	differ	 only	 in	 the	names	of
their	 lexical	 variables.	 Such
expressions	have	the	same	values.

What	value	 is	associated	with	q
in

(run*	q
(fresh	(x)

(fresh	(y)
(≡	‘(,x	,y	,x)	q))))

43 (−0	−1	−0).
x	and	y	remain	fresh,	and	since	they	are
different	 variables,	 they	 are	 reified
differently.	 Reified	 variables	 are
indexed	by	the	order	they	appear	in	the
value	produced	by	a	run*	expression.



Does

(≡	'(pea)	'pea)

succeed?

44No,	since	(pea)	is	not	the	same	as	pea.
	



Does

(≡	‘(,x)	x)

succeed	if	(	pea	pod)	is	associated	with	x

45No,	 since	 ((	 pea	 pod))	 is
not	the	same	as	(pea	pod).

Is	there	any	value	of	x	for	which

(≡	‘(,x)	x)

succeeds?

46No.
But	what	if	x	were	fresh?

Even	then,	(≡	‘(,x)	x)	could	not	succeed.	No	matter
what	value	is	associated	with	x,	x	cannot	be	equal
to	a	list	in	which	x	occurs.

47What	 does	 it	 mean	 for	 x
to	occur?

A	variable	x	occurs	in	a	variable	y	when	x	 (or	any
variable	 fused	 with	 x)	 appears	 in	 the	 value
associated	with	y.

48When	 do	 we	 say	 a
variable	occurs	in	a	list?

A	 variable	 x	 occurs	 in	 a	 list	 l	 when	 x	 (or	 any
variable	fused	with	x)	is	an	element	of	l,	or	when	x
occurs	in	an	element	of	l.

Does	x	occur	in

‘(pea	(,x)	pod)

49Yes,	 because	 x	 is	 in	 the
value	of	‘(,x),	 the	second
element	of	the	list.

The	Second	Law	of	≡

If	x	is	fresh,	then	(≡	v	x)	succeeds	and	associates	v	with
x,	unless	x	occurs	in	v.

	



What	is	the	value	of

(run*	q
(conj2†	#s	#s))

_______________
†	 conj2	 is	 short	 for	 two-argument
conjunction,	and	is	written	conj2.

50 (−0),
because	the	goal	(conj2	g1	g2)	succeeds	if
the	goals	g1	and	g2	both	succeed.

What	value	is	associated	with
q	in

(run*	q
(	 conj2	 #s	 (≡	 'corn
q)))

51 corn,
because	corn	is	associated	with	q	when	(≡
'corn	q)	succeeds.



What	is	the	value	of

(run*	q
(	conj2	#u	(≡	'corn	q)))

52 (),
because	 the	 goal	 (conj2	 g1
g2)	fails	if	g1	fails.

Yes.	The	goal	 (conj2	g1	g2)	also	fails	 if	g1
succeeds	and	g2	fails.



What	 is	 the
value	of

(run*	q
(
conj2
(≡
'corn
q)	 (≡
'meal
q)))

53 ().
In	order	for	the	conj2	to	succeed,	(≡	'corn	q)	and	(≡	'meal
q)	 must	 both	 succeed.	 The	 first	 goal	 succeeds,
associating	 corn	 with	 q.	 The	 second	 goal	 cannot	 then
associate	meal	with	q,	since	q	is	no	longer	fresh.



What	 is	 the
value	of

(run*	q
(
conj2
(≡
'corn
q)	 (≡
'corn
q)))

54 (corn).
The	 first	 goal	 succeeds,	 associating	 corn	 with	 q.	 The
second	goal	 succeeds	 because	 although	q	 is	 no	 longer
fresh,	the	value	associated	with	q	is	corn.

	



What	is	the	value	of

(run*	q
(disj2†	#u	#u))

_______________
†	disj2	 is	 short	 for	 two-argument	 disjunction,
and	is	written	disj2.

55 (),
because	the	goal	(disj2	g1	g2)	 fails	 if
both	g1	and	g2	fail.



What	is	the	value	of

(run*	q
(	 disj2	 (≡
'olive	q)	#u))

56 (olive),
because	the	goal	(disj2	g1	g2)	succeeds	if	either
g1	or	g2	succeeds.



What	is	the	value	of

(run*	q
(	disj2	 #u	 (≡
'oil	q)))

57 (oil),
because	 the	goal	 (disj2	g1	g2)	 succeeds	 if	 either
g1	or	g2	succeeds.



What	 is	 the
value	of

(run*	q
(
disj2
(≡
'olive
q)	 (≡
'oil
q)))

58 (olive	oil),	a	list	of	two	values.
Both	goals	contribute	values.	(≡	 'olive	q)	succeeds,	and
olive	 is	 the	 first	value	associated	with	q.	 (≡	 'oil	q)	also
succeeds,	and	oil	is	the	second	value	associated	with	q.



What	is	the	value	of

(run*	q
(fresh	(x)

(fresh	(y)
(disj2

(≡	‘(,x	,y)	q)
(≡	‘(,y	,x)	q)))))

59 ((−0	−1)	(−0	−1)),
because	 disj2
contributes	 two
values.	 In	 the	 first
value,	x	is	reified	as	−0
and	 y	 is	 reified	 as	 −1.
In	the	second	value,	y
is	reified	as	−0	and	x	is
reified	as	−1.

	
Correct!

The	variables	x	and	y	are	not	fused	in	the	previous
run*	 expression,	 however.	 Each	 value	 produced
by	a	run*	 expression	 is	 reified	 independently	 of
any	other	values.	This	means	 that	 the	numbering
of	 reified	 variables	 begins	 again,	 from	 0,	within
each	reified	value.

60Okay.



Do	we	consider

(run*	x
(disj2	(≡	'olive	x)	(≡	'oil	x)))



and

(run*	x
(disj2
(≡
'oil
x)	 (≡
'olive
x)))

to	be	the	same?

61Yes,
because	 the	 first	 run*	 expression	 produces	 (olive	 oil),
the	 second	 run*	 expression	 produces	 (oil	 olive),	 and
because	the	order	of	the	values	does	not	matter.



What	is	the	value	of

(run*	x
(disj2

(conj2	(≡	'olive	x)	#u)
(≡	'oil	x)))

62 (	oil).



What	is	the	value	of

(run*	x
(disj2

(conj2	(≡	'olive	x)	#s)
(≡	'oil	x)))

63 (	olive	oil).



What	is	the	value	of

(run*	x
(disj2

(≡	'oil	x)
(	conj2	(≡	'olive	x)	#s)))

64 (oil	olive).
	



What	is	the	value	of

(run*	x
(disj2

(conj2	 (≡	 'virgin	 x)
#u)
(disj2
(≡	'olive	x)
(disj2

#s
(≡	'oil	x)))))

65 (olive	−0	oil).
The	 goal	 (conj2	 (≡	 'virgin	 x)	 #u)
fails.	 Therefore,	 the	 body	 of	 the
run*	behaves	the	same	as	the	second
disj2,

(disj2
(≡	'olive	x)
(disj2

#s
(≡	'oil	x))).

In	the	previous	frame’s	expression,
whose	value	 is	 (	 olive	 −0	oil),	how
do	we	end	up	with	−0

66 Through	the	#s	in	the	innermost	disj2,
which	succeeds	without	associating	a
value	with	x.

What	 is	 the	 value	 of	 this	 run*
expression?

(run*	r
(fresh	(x)

(fresh	(y)
(conj2

(≡	'split	x)
(conj2

(≡	'pea	y)
(≡	‘(,x	 ,y)
r))))))

67 ((	split	pea)).

Is	 the	 value	 of	 this	 run*
expression

(run*	r
(fresh	(x)

(fresh	(y)
(conj2

(conj2
(≡	'split	x)
(≡	'pea	y))

(≡	 ‘(,x	 ,y)
r)))))

68Yes.

Can	 we	 make	 this	 run*	 expression
shorter?
	



the	 same	 as	 that	 of	 the	 previous
frame?
Is	this,

(run*	r
(fresh	(x)

(fresh	(y)
(conj2

(conj2
(≡	'split	x)
(≡	'pea	y))

(≡	‘(,x	,y)	r)))))

shorter?

69Very	funny.

Is	there	another	way	to	simplify	this	run*
expression?

Yes.	 If	 fresh	 were	 able	 to	 create
any	 number	 of	 variables,	 how
might	 we	 rewrite	 the	 run*
expression	in	the	previous	frame?

70 Like	this,

(run*	r
(fresh	(x	y)

(conj2
(conj2

(≡	'split	x)
(≡	'pea	y))

(≡	‘(,x	,y)	r)))).
Does	 the	 simplified	 expression	 in
the	 previous	 frame	 still	 produce
the	value	((	split	pea))

71Yes.

Can	we	keep	simplifying	this	expression?

Sure.	 If	 run*	 were	 able	 to	 create
any	 number	 of	 fresh	 variables,
how	 might	 we	 rewrite	 the
expression	from	frame	70?

72As	this	simpler	expression,

(run*	(r	x	y)
(conj2

(conj2
(≡	'split	x)
(≡	'pea	y))
(≡	‘(,x	,y)	r))).

Does	 the	 expression	 in	 the
previous	 frame	 still	 produce	 the
value	((	split	pea))

73No.
The	 previous	 frame’s	 run*
expression	 produces	 (((split	 pea)
split	pea)),	which	is	a	list	containing
the	values	associated	with	r,	x,	and	y,
respectively.

	



How	can	we	change	the	expression
in	 frame	 72	 to	 get	 back	 the	 value
from	frame	70,	((	split	pea))

74We	 can	 begin	 by	 removing	 r	 from	 the
run*	variable	list.

Okay,	 so	 far.	 What	 else	 must	 we
do,	 once	 we	 remove	 r	 from	 the
run*	variable	list?

75We	must	remove	(≡	‘(,x	,y)	r),	which	uses
r,	and	the	outer	conj2,	since	conj2	expects
two	 goals.	 Here	 is	 the	 new	 run*
expression,

(run*	(x	y)
(conj2

(≡	'split	x)
(≡	'pea	y))).



What	is	the	value	of

(run*	(x	y)
(disj2

(conj2	(≡	'split	x)	(≡	'pea	y))
(	conj2	(≡	'red	x)	(≡	'bean	y))))

76 The	 list	 ((	 split	 pea)	 (red
bean)).

Good	guess!	What	is	the	value	of

(run*	r
(fresh	(x	y)

(conj2
(disj2

(conj2	 (≡	 'split	 x)	 (≡	 'pea
y))
(conj2	 (≡	 'red	 x)	 (≡	 'bean
y)))

(≡	‘(,x	,y	soup)	r))))

77



The	list

((split	pea	soup)	(red	bean	soup)).

Can	we	simplify	this	run*	expression?
	
Yes.	fresh	can	take	two	goals,	in	which	case	it	acts	like
a	conj2.

How	 might	 we	 rewrite	 the	 run*	 expression	 in	 the
previous	frame?

78 Like	this,

(run*	r
(fresh	 (x
y)

(disj2
(conj2
(≡
'split
x)	 (≡
'pea
y))
(conj2
(≡
'red
x)	 (≡
'bean
y)))
(≡
‘(,x	,y
soup)
r))).

Can	fresh	have	more
than	two	goals?

Yes.

Rewrite	the	fresh	expression

(fresh	(x	…	)
(conj2

g1
(conj2

79Can	 the	 expression
be	rewritten	as

(fresh	(x	…	)
g1
g2
g3)?



g2
g3)))

to	not	use	conj2.
Yes,	it	can.

This	 expression	 produces	 the	 value	 ((split	 pea	 soup)
(red	bean	soup)),	just	like	the	run*	expression	in	frame
78.

(run*	(x	y	z)
(conj2

(disj2
(conj2	(≡	'split	x)	(≡	'pea	y))
(conj2	(≡	'red	x)	(≡	'bean	y)))
(≡	'soup	z)))

Can	this	run*	expression	be	simplified?

80Yes.

We	 can	 allow	 run*
to	 have	 more	 than
one	goal	and	act	like
a	 conj2,	 just	 as	 we
did	with	fresh,

(run*	(x	y	z)
(disj2

(conj2
(≡
'split
x)	 (≡
'pea
y))
(conj2
(≡
'red
x)	 (≡
'bean
y)))

(≡	 'soup
z)).

	
How	can	we	simplify	this	run*	expression	from	frame
75?

(run*	(x	y)
(conj2

(≡	'split	x)
(≡	'pea	y)))

81 Like	this,

(run*	(x	y)
(≡	'split	x)
(≡	'pea	y)).

Consider	this	very	simple	definition.

(defrel†	(teacupo	t)

82What	is	a	relation?



(disj2	(≡	'tea	t)	(≡	'cup	t)))

The	name	defrel	is	short	for	define	relation.

_______________
†	 The	defrel	 form	 is	 implemented	 as	 a	macro	 (page	 177).	We	 can	write
relations	without	defrel	using	define	and	two	lambdas.	See	the	right	hand
side	for	an	example	showing	how	teacupo	would	be	written.

	
(define	(teacupo	t)

(lambda	(s)
(lambda	()

((disj2	(≡	'tea	t)	(≡	'cup	t))
s)))).

When	using	define	in	this	way,	s	is	passed	to	the	goal,	(disj2	…	).	We	have
to	ensure	that	s	does	not	appear	either	in	the	goal	expression	itself,	or	as	an
argument	 (here,	 t)	 to	 the	 relation.	 Because	 hygienic	 macros	 avoid
inadvertent	variable	capture,	we	do	not	have	these	problems	when	we	use
defrel	 instead	 of	 define.	 For	 more,	 see	 chapter	 10	 for	 implementation
details.

A	 relation	 is	 a	 kind	 of	 function†	 that,	 when	 given
arguments,	produces	a	goal.



What	is	the	value	of

(run*	x
(teacupo	x))

_______________
†	Thanks,	Robert	A.	Kowalski	(1941–).

83 (tea	cup).
	



What	is	the	value	of

(run*	(x	y)
(disj2

(conj2
(teacupo†	x)	(≡
#t	y))
(conj2	(≡	#f	x)
(≡	#t	y))))

_______________
†	 teacupo	 is	 written	 teacupo.
Henceforth,	 consult	 the	 index	 for	 how
we	write	the	names	of	relations.

84 ((#f	#t)	(tea	#t)	(cup	#t)).†
First	 (≡	 #f	 x)	 associates	 #f	 with	 x,	 then
(teacupo	 x)	 associates	 tea	 with	 x,	 and
finally	(teacupo	x)	associates	cup	with	x.

_______________
†	Remember	 that	 the	order	of	 the	values	does	not	matter	 (see
frame	61).



What	is	the	value	of

(run*	(x	y)
(teacupo	x)
(	teacupo	y))

85 ((	tea	tea)	(tea	cup)	(cup	tea)	(cup	cup)).



What	is	the	value	of

(run*	(x	y)
(teacupo	x)
(	teacupo	x))

86 ((tea	−0)	(cup	−0)).
The	 first	 (teacupo	 x)	 associates	 tea
with	x	and	then	associates	cup	with
x,	 while	 the	 second	 (teacupo	 x)
already	 has	 the	 correct	 associations
for	 x,	 so	 it	 succeeds	 without
associating	 anything.	 y	 remains
fresh.

And	what	is	the	value	of

(run*	(x	y)
(disj2

(conj2	 (teacupo	 x)
(teacupo	x))
(	 conj2	 (≡	 #f	 x)
(teacupo	y))))

87 ((#f	tea)	(#f	cup)	(tea	−0)	(cup	−0)).
	

The	 run*	 expression	 in	 the
previous	 frame	 has	 a	 pattern	 that
appears	 frequently:	 a	 disj2
containing	 conj2s.	 This	 pattern
appears	so	often	that	we	introduce	a
new	form,	conde.†

(run*	(x	y)
(conde

((teacupo	x)	(teacupo
x))
((≡	 #f	 x)	 (teacupo
y))))

Revise	 the	run*	 expression	below,
from	frame	76,	to	use	conde	instead
of	disj2	or	conj2.

(run*	(x	y)
(disj2

(conj2	 (≡	 'split	x)	 (≡
'pea	y))

88Here	it	is:

(run*	(x	y)
(conde

((≡	'split	x)	(≡	'pea	y))
((≡	'red	x)	(≡	'bean	y)))).



(conj2	 (≡	 'red	 x)	 (≡
'bean	y))))

_______________
†	 conde	 is	 written	 conde	 and	 is	 pronounced
“con-dee.”

conde	can	be	used	in	place	of	disj2,
even	when	one	of	the	goals	in	disj2
is	 not	 a	 conj2.	 Rewrite	 this	 run*
expression	 from	 frame	 62	 to	 use
conde.

(run*	x
(disj2

(conj2	 (≡	 'olive	 x)
#u)
(≡	'oil	x)))

89 Like	this,

(run*	x
(conde

((≡	'olive	x)	#u)
((≡	'oil	x)))).



What	is	the	value	of

(run*	(x	y)
(conde

((fresh
(z)
(≡	 'lentil
z)))
((≡	 x
y))))

90 ((−0	−1)	(−0	−0)).
In	the	first	conde	line	x	 remains	different	 from
y,	and	both	are	fresh.	lentil	is	associated	with	z,
which	 is	 not	 reified.	 In	 the	 second	conde	 line,
both	x	and	y	remain	fresh,	but	x	is	fused	with	y.

	

We	 can	 extend	 the
number	 of	 lines	 in	 a
conde.	 What	 is	 the
value	of

(run*	(x	y)
(conde

((≡	 'split
x)	(≡	'pea
y))
((≡	 'red
x)	 (≡
'bean	y))
((≡
'green	 x)
(≡	 'lentil
y))))

91 ((split	pea)	(red	bean)	(green	lentil)).

Does	that	mean	disj2	and	conj2	are	unnecessary?

Correct.	 We	 won’t	 see
disj2	or	conj2	again	until
we	 go	 “Under	 the
Hood”	in	chapter	10.

92What	does	the	“	e”	in	conde	stand	for?

It	stands	for	every,	since
every	successful	cond	 e
line	 contributes	 one	 or
more	values.

93Hmm,	interesting.

The	Law	of	conde



Every	 successful	 conde	 line	 contributes	 one	 or	more
values.

⇒	Now	go	make	an	almond	butter	and	jam	sandwich.	⇐
	

This	space	reserved	for

JAM	STAINS!



	



What	is	the	value	of

(	car	'(grape	raisin	pear))

1 grape.



What	is	the	value	of

(	 car	 '(a	 c	 o	 r
n))

2 a.

What	 value	 is
associated	with	q	in

(run*	q
(	 caro	 '(a
c	 o	 r	 n)
q))

3 a,
because	a	is	the	car	of	(a	c	o	r	n).

What	 value	 is
associated	with	q	in

(run*	q
(	 caro	 '(a
c	 o	 r	 n)
'a))

4
−0	,

because	a	is	the	car	of	(a	c	o	r	n).

What	 value	 is
associated	with	r	in

(run*	r
(fresh	 (x
y)

(caro
‘(,r
,y)
x)
(≡
'pear
x)))

5 pear.
Since	the	car	of	‘(,r	,y),	which	is	the	fresh	variable	r,
is	fused	with	x.	Then	pear	is	associated	with	x,	which
in	turn	associates	pear	with	r.

Here	is	caro.

(defrel	(caro	p
a)
(fresh	(d)

(≡	 (cons
a	d)	p)))

What	 is	 unusual

6Whereas	car	expects	one	argument,	caro	expects	two.



about	 this
definition?



What	is	the	value	of

(cons
(car	 '(grape
raisin	pear))
(	 car	 '((a)	 (b)
(c))))

7 That’s	familiar:	(grape	a).
	

What	value	is	associated
with	r	in

(run*	r
(fresh	(x	y)

(caro
'(grape
raisin
pear)	x)
(caro	 '((a)
(b)	(c))	y)
(≡	 (	 cons
x	y)	r)))

8 The	same	value:	(	grape	a).

Why	can	we	use	cons	 in
the	previous	frame?

9 Because	 variables	 introduced	 by	 fresh	 are	 values,
and	each	argument	to	cons	can	be	any	value.



What	is	the	value	of

(	cdr	'(grape	raisin	pear))

10Another	familiar	one:	(	raisin	pear).



What	is	the	value	of

(	 car	 (cdr	 (cdr
'(a	c	o	r	n))))

11 o.

What	 value	 is
associated	with	r	in

(run*	r
(fresh	(v)

(cdro
'(a	c	o
r	n)	v)
(fresh
(w)
(cdro
v	w)
(	 caro
w
r))))

12 o.
The	process	of	transforming	(car	(cdr	(cdr	l)))	into
(cdro	 l	 v),	 (cdro	 v	 w),	 and	 (caro	 w	 r)	 is	 called
unnesting.	 We	 introduce	 fresh	 expressions	 as
necessary	as	we	unnest.

Define	cdro. 13 It	is	almost	the	same	as	caro.

(defrel	(cdro	p	d)
(fresh	(a)

(≡	(cons	a	d)	p)))

	



What	is	the	value	of

(cons
(cdr	 '(grape
raisin
pear))
(	 car	 '((a)
(b)	(c))))

14Also	familiar:	((	raisin	pear)	a).

What	 value	 is
associated	with	r	in

(run*	r
(fresh	(x	y)

(cdro
'(grape
raisin
pear)
x)
(caro
'((a)
(b)
(c))	y)
(≡	 (
cons	 x
y)	r)))

15 That’s	the	same:	((	raisin	pear)	a).

What	 value	 is
associated	with	q	in

(run*	q
(	 cdro	 '(a	 c
o	r	n)	'(c	o	r
n)))

16
−0,

because	(c	o	r	n)	is	the	cdr	of	(a	c	o	r	n).

What	 value	 is
associated	with	x	in

(run*	x
(	 cdro	 '(c	 o
r	 n)	 ‘(,x	 r
n)))

17 o,
because	 (o	 r	 n)	 is	 the	 cdr	 of	 (c	 o	 r	 n),	 so	 o	 is
associated	with	x.



What	 value	 is
associated	with	l	in

(run*	l
(fresh	(x)

(cdro	 l
'(c	 o	 r
n))
(caro	 l
x)
(≡	 'a
x)))

18 (a	c	o	r	n),
because	if	the	cdr	of	l	is	(c	o	r	n),	then	the	list	‘(,a
c	o	r	n)	is	associated	with	l,	where	a	is	the	variable
introduced	in	the	definition	of	cdro.	The	caro	of	l,
a,	 fuses	with	x.	When	we	 associate	 a	with	 x,	we
also	 associate	 a	with	 a,	 so	 the	 list	 (a	 c	 o	 r	 n)	 is
associated	with	l.

What	 value	 is
associated	with	l	in

(run*	l
(	conso	'(a	b
c)	'(d	e)	l))

19 ((a	b	c)	d	e),
since	conso	 associates	 the	 value	 of	 (cons	 '(a	 b	 c)
'(d	e))	with	l.

	

What	 value	 is
associated	with	x	in

(run*	x
(	conso	x	'(a
b	 c)	 '(d	 a	 b
c)))

20 d.
Since	 (cons	 'd	 '(a	 b	 c))	 is	 (d	 a	 b	 c),	 conso
associates	d	with	x.

What	 value	 is
associated	with	r	in

(run*	r
(fresh	 (x	 y
z)

(≡	 ‘(e
a	 d	 ,x)
r)
(
conso
y	 ‘(a
,z	 c)
r)))

21 (e	a	d	c).
We	 first	 associate	 ‘(e	 a	 d	 ,x)	 with	 r.	 We	 then
perform	the	conso,	associating	c	with	x,	d	with	z,
and	e	with	y.



What	 value	 is
associated	with	x	in

(run*	x
(	 conso	 x
‘(a	 ,x	 c)
‘(d	a	,x	c)))

22 d,
the	value	we	can	associate	with	x	 so	 that	 (cons	x
‘(a	,x	c))	is	‘(d	a	,x	c).

What	 value	 is
associated	with	l	in

(run*	l
(fresh	(x)

(≡	 ‘(d
a	 ,x	 c)
l)
(
conso
x	 ‘(a
,x	 c)
l)))

23 (d	a	d	c).
First	we	associate	‘(d	a	,x	c)	with	l.	Then	when	we
conso	x	to	‘(a	,x	c),	we	associate	d	with	x.

What	 value	 is
associated	with	l	in

(run*	l
(fresh	(x)

(conso
x	 ‘(a
,x	c)	l)
(≡	 ‘(d
a	 ,x	 c)
l)))

24 (d	a	d	c),	as	in	the	previous	frame.
We	conso	x	to	‘(a	,x	c),	associating	the	list	‘(,x	a	,x
c)	with	l.	Then	when	we	associate	‘(d	a	,x	c)	with
l,	we	associate	d	with	x.

Define	 conso	 using
caro	and	cdro.

25Here	is	a	definition.

(defrel	(conso	a	d	p)
(caro	p	a)
(cdro	p	d))

	
Now,	 define	 the 26Here	is	the	new	conso.



conso	relation	using	≡
instead	 of	 caro	 and
cdro.

(defrel	(conso	a	d	p)
(≡	‘(,a	

▪
	,d)	p))

Here’s	 a	 bonus
question.

What	 value	 is
associated	with	l	in

(run*	l
(fresh	 (d	 t
x	y	w)

(conso
w	'(n	u
s)	t)
(cdro	 l
t)
(caro	 l
x)
(≡	 'b
x)
(cdro	 l
d)
(caro
d	y)
(≡	 'o
y)))

27 It’s	a	five-element	list.†

_______________
†	t	is	(cdr	l)	and	since	l	is	fresh,	(cdro	l	t)	places	a	fresh	variable	in	the	(car
l),	while	 associating	 (car	 t)	with	w;	 (car	 l)	 is	 the	 fresh	 variable	 x;	 b	 is
associated	with	x;	t	is	associated	with	d	and	the	car	of	d	is	associated	with
y,	which	fuses	w	with	y;	and	the	last	step	associates	o	with	y.



What	is	the	value	of

(	null?	'(grape	raisin	pear))

28 #f.



What	is	the	value	of

(	null?	'())

29 #t.



What	is	the	value	of

(run*	q
(	nullo	'(grape	raisin	pear)))

30 ().



What	is	the	value	of

(run*	q
(	nullo	'()))

31 (−0).
	



What	 is	 the
value	of

(run*	x
(
nullo
x))

32 (()),
since	the	only	way	(nullo	x)	succeeds	is	if	the	empty	list,
(),	is	associated	with	x.

Define	 nullo
using	≡.

33Here	is	nullo.

(defrel	(nullo	x)
(≡	'()	x))

Is	 (	 split	
▪
	pea)

a	pair?
34Yes.

Is	‘(split	
▪
	 ,x)	a

pair?
35Yes.



What	is	the	value	of

(	pair?	'((split)	
▪
	pea))

36 #t.



What	is	the	value	of

(	pair?	'())

37 #f.

Is	pair	a	pair? 38No.
Is	pear	a	pair? 39No.
Is	(	pear)	a	pair? 40Yes,

it	is	the	pair	(pear	
▪
	()).

	



What	is	the	value	of

(	car	'(pear))

41 pear.



What	is	the	value	of

(	cdr	'(pear))

42 ().

How	can	we	build	these	pairs? 43Use	Cons	the	Magnificent.



What	is	the	value	of

(	cons	'(split)	'pea)

44 ((	split)	
▪
	pea).

What	value	is	associated	with	r	in

(run*	r
(fresh	(x	y)

(≡	(	cons	x	(cons	y	'salad))	r)))

45 (	−0	−1	▪	salad).

Here	is	pairo.

(defrel	(pairo	p)
(fresh	(a	d)

(conso	a	d	p)))

Is	pairo	recursive?

46No,	it	is	not.



What	 is	 the
value	of

(run*	q
(	 pairo
(cons	q
q)))

47 (−0).
(cons	q	q)	creates	a	pair	of	the	same	fresh	variable.	But
we	are	not	interested	in	the	pair,	only	q.

	



What	is	the	value	of

(run*	q
(	pairo	'()))

48 ().



What	is	the	value	of

(run*	q
(	pairo	'pair))

49 ().

What	value	is	associated	with	x
in

(run*	x
(	pairo	x))

50 (	−0	▪	−1).

What	value	 is	associated	with	r
in

(run*	r
(	pairo	(cons	r	'())))

51
−0.

Is	(	tofu)	a	singleton? 52Yes,
because	 it	 is	 a	 list	 of	 a	 single	 value,
tofu.

Is	((	tofu))	a	singleton? 53Yes,
because	 it	 is	 a	 list	 of	 a	 single	 value,
(tofu).

Is	tofu	a	singleton? 54No,
because	it	is	not	a	list	of	a	single	value.

Is	(	e	tofu)	a	singleton? 55No,
because	it	is	not	a	list	of	a	single	value.

	
Is	()	a	singleton? 56No,

because	it	is	not	a	list	of	a	single	value.
Is	(	e	

▪
	tofu)	a	singleton? 57No,

because	 (e	
▪
	 tofu)	 is	 not	 a	 list	 of	 a

single	value.
Consider	 the	 definition	 of
singleton?.

(define	(singleton?	l)
(cond

((pair?	 l)	 (null?	 (cdr
l)))
(else	#f)))



What	is	the	value	of

(	singleton?	'((a)	(a	b)	c))

58 #f.

singleton?	 determines	 if	 its	 argument	 is	 a	 proper	 list	 of
length	one.

59What	 is	 a	proper
list?

A	list	is	proper	if	it	is	the	empty	list	or	if	it	is	a	pair	whose
cdr	is	proper.



What	is	the	value	of

(	singleton?	'())

60 #f.



What	is	the	value	of

(	 singleton?	 (cons	 'pea
'()))

61 #t,
because	 (pea)	 is	 a	 proper	 list	 of	 length
one.



What	is	the	value	of

(	singleton?	'(sauerkraut))

62 #t.
	

To	 translate	 singleton?	 into	 singletono,	we	must
replace	else	with	#t	in	the	last	cond	line.

63 Like	this.

(define	(singleton?	l)
(cond

((pair?	 l)	 (null?
(cdr	l)))
(#t	#f)))

Here	is	the	translation	of	singleton?.

(defrel	(singletono	l)
(conde

((pairo	l)
(fresh	(d)

(cdro	l	d)
(nullo	d)))

(#s	#u)))

Is	singletono	a	correct	definition?

64 It	looks	correct.
How	do	we	translate	a
function	 into	 a
relation?

The	Translation	(Initial)

To	 translate	 a	 function	 into	 a	 relation,	 first	 replace
define	 with	 defrel.	 Then	 unnest	 each	 expression	 in
each	cond	line,	and	replace	each	cond	with	conde.	To
unnest	a	#t,	replace	it	with	#s.	To	unnest	a	#f,	replace
it	with	#u.



Where	does

(fresh	(d)
(cdro	l	d)
(nullo	d))

come	from?

65 It	 is	 an	unnesting	of	 (null?	 (cdr	 l)).	 First	we
determine	the	cdr	of	l	and	associate	it	with	the
fresh	variable	d,	and	then	we	translate	null?	to
nullo.
	

Any	conde	 line	that	has	a	 top-
level	 #u	 as	 a	 goal	 cannot
contribute	 values.	 Simplify
singleton	o.

66Here	it	is.

(defrel	(singletono	l)
(conde

((pairo	l)
(fresh	(d)

(cdro	l	d)
(nullo	d)))))

The	Law	of	#u

Any	conde	 line	 that	has	#u	as	a	 top-level	goal	cannot
contribute	values.

Do	we	need	(pairo	l)	in	the	definition
of	singleton	o

67No.
This	conde	line	also	uses	(cdro	l	d).
If	d	is	fresh,	then	(pairo	l)	succeeds
exactly	 when	 (cdro	 l	 d)	 succeeds.
So	here	(pairo	l)	is	unnecessary.

After	we	remove	(pairo	l),	the	conde
has	only	one	goal	in	its	only	line.	We
can	 also	 replace	 the	 whole	 conde
with	just	this	goal.

What	 is	 our	 newly	 simplified
definition	of	singletono

68 It’s	even	shorter!

(defrel	(singletono	l)
(fresh	(d)

(cdro	l	d)
(nullo	d)))



⇒	Define	both	caro	and	cdro	using	conso.	⇐



	



	

Consider	the	definition	of	list?,	where	we	have	replaced	else	with	#t.

(define	(list?	l)
(cond

((null?	l)	#t)
((pair?	l)	(list?	(cdr	l)))
(#t	#f)))

From	now	on	we	assume	that	each	else	has	been	replaced	by	#t.



What	is	the	value	of

(	list?	'((a)	(a	b)	c))

1 #t.



What	is	the	value	of

(	list?	'())

2 #t.



What	is	the	value	of

(	list?	's)

3 #f.



What	is	the	value	of

(	list?	'(d	a	t	e	
▪
	s))

4 #f,
because	(d	a	t	e	

▪
	s)	is	not	a	proper	list.

Translate	list?. 5 This	is	almost	the	same	as	singletono.

(defrel	(listo	l)
(conde

((nullo	l)	#s)
((pairo	l)
(fresh	(d)

(cdro	l	d)
(listo	d)))

(#s	#u)))

	



Where	does

(fresh	(d)
(cdro	l	d)
(listo	d))

come	from?

6 It	is	an	unnesting	of	(	 list?	(cdr	 l)).	First	we	determine
the	cdr	 of	 l	 and	 associate	 it	 with	 the	 fresh	 variable	 d,
and	then	we	use	d	as	the	argument	in	the	recursion.

Here	 is	 a	 simplified
version	of	 listo.	What
simplifications	 have
we	made?

(defrel	(listo	l)
(conde

((nullo	 l)
#s)
((fresh	(d)
(cdro	l	d)
(listo	d)))))

7We	 have	 removed	 the	 final	 conde	 line,	 because	 The
Law	of	#u	says	conde	 lines	that	have	#u	as	a	top-level
goal	 cannot	 contribute	 values.	We	 also	 have	 removed
(pairo	l),	as	in	frame	2:68.

Can	we	simplify	listo	further?

Yes,
since	 any	 top-
level	 #s	 can	 be
removed	 from	 a
conde	line.

8 Here	is	our	simplified	version.

(defrel	(listo	l)
(conde

((nullo	l))
((fresh	(d)
(cdro	l	d)
(listo	d)))))

The	Law	of	#s

Any	top-level	#s	can	be	removed	from	a	conde	line.

	



What	 is	 the
value	of

(run*	x
(listo
‘(a	 b
,x	d)))

where	a,	b,	and	d
are	symbols,	and
x	is	a	variable?

9 (−0),
since	x	remains	fresh.

Why	 is	 (−0)	 the
value	of

(run*	x
(	 listo
‘(a	 b
,x	d)))

10 For	 this	 use	 of	 listo	 to	 succeed,	 it	 is	 not	 necessary	 to
determine	the	value	of	x.	Therefore	x	 remains	fresh,	which
shows	that	this	use	of	listo	succeeds	for	any	value	associated
with	x.

How	 is	 (−0)	 the
value	of

(run*	x
(	 listo
‘(a	 b
,x	d)))

11 listo	 gets	 the	 cdr	 of	 each	 pair,	 and	 then	 uses	 recursion	 on
that	 cdr.	 When	 listo	 reaches	 the	 end	 of	 ‘(a	 b	 ,x	 d),	 it
succeeds	because	(nullo	'())	succeeds,	thus	leaving	x	fresh.



What	is	the	value	of

(run*	x
(	listo	‘(a	b	c	

▪
	,x)))

12 This	expression	has	no	value.
Aren’t	 there	 an	 unbounded	 number	 of
possible	 values	 that	 could	 be
associated	with	x?

Yes,	 that’s	why	 it	 has	 no	 value.
We	can	use	run	1	to	get	a	list	of
only	 the	 first	 value.	 Describe
run’s	behavior.

13Along	 with	 the	 arguments	 run*	 expects,
run	also	expects	a	positive	number	n.	If	the
run	expression	has	a	value,	its	value	is	a	list
of	at	most	n	elements.



What	is	the	value	of

(run	1	x
(	 listo	 ‘(a	 b
c	
▪
	,x)))

14 (()).
	

What	 value	 is
associated	with	x	in

(run	1	x
(	 listo	 ‘(a	 b
c	
▪
	,x)))

15 ().

Why	 is	 ()	 the	 value
associated	with	x	in

(run	1	x
(	 listo	 ‘(a	 b
c	
▪
	,x)))

16Because	 ‘(a	 b	 c	
▪
	 ,x)	 is	 a	 proper	 list	 when	 x	 is	 the

empty	list.

How	 is	 ()	 the	 value
associated	with	x	in

(run	1	x
(	 listo	 ‘(a	 b
c	
▪
	,x)))

17When	 listo	 reaches	 the	 end	 of	‘(a	 b	 c	
▪
	 ,x),	 (nullo	 x)

succeeds	and	associates	x	with	the	empty	list.



What	is	the	value	of

(run	5	x
(listo	‘(a	b	c	

▪
	,x)))†

_______________
†	As	we	state	in	frame	1:61,	the	order	of	values	is	unimportant.	This
run	gives	 the	 first	 five	values	under	an	ordering	determined	by	 the
listo	 relation.	We	see	how	the	 implementation	produces	 these	values
in	 particular	 when	 we	 discover	 how	 the	 implementation	 works	 in
chapter	10.

18 (()
(−0)
(−0	−1)
(−0	−1	−2)
(−0	−1	−2	−3)).

Why	are	the	nonempty	values	lists	of	(	−n) 19 Each	−n	corresponds	to	a
fresh	 variable	 that	 has
been	 introduced	 in	 the
goal	of	the	second	conde
line	of	listo.

We	need	one	more	 example	 to	 understand	run.	 In
frame	1:91	we	use	run*	to	produce	all	three	values.
How	many	 values	would	 be	 produced	with	 run	 7
instead	of	run*

20 The	same	three	values,

((split	 pea)	 (red
bean)	 (green
lentil)).

Does	 that	 mean	 if	 run*
produces	a	list,	then	run
n	 either	 produces	 the
same	 list,	 or	 a	 prefix	 of
that	list?
	

Yes.	Here	is	lol?,	where	lol?	stands	for	list-of-lists?.

(define	(lol?	l)
(cond

((null?	l)	#t)
((list?	(car	l))	(lol?	(cdr	l)))
(#t	#f)))

Describe	what	lol?	does.

21As	 long	 as	 each	 top-
level	value	in	the	list	l	is
a	 proper	 list,	 lol?
produces	 #t.	 Otherwise,
lol?	produces	#f.

Here	is	the	translation	of	lol?.

(defrel	(lolo	l)

22Here	it	is.

(defrel	(lolo	l)



(conde
((nullo	l)	#s)
((fresh	(a)

(caro	l	a)
(listo	a))

(fresh	(d)
(cdro	l	d)
(lolo	d)))

(#s	#u)))

Simplify	lolo	using	The	Law	of	#u	and	The	Law	of
#s.

(conde
((nullo	l))
((fresh	(a)

(caro	l	a)
(listo	a))

(fresh	(d)
(cdro	l	d)
(lolo
d)))))

What	value	is	associated	with	q	in

(run*	q
(fresh	(x	y)

(	lolo	‘((a	b)	(,x	c)	(d	,y)))))

23
−0,

since	 ‘((a	 b)	 (,x	 c)
(d	 ,y))	 is	 a	 list	 of
lists.



What	is	the	value	of

(run	1	l
(	lolo	l))

24 (()).
Since	l	is	fresh,	(nullo	l)	succeeds	and	associates	()
with	l.

	
What	 value	 is
associated	with	q	in

(run	1	q
(fresh	(x)

(	 lolo
‘((a
b)	

▪

,x))))

25
−0,

because	nullo	 of	 a	 fresh	 variable	 always	 succeeds
and	associates	()	with	the	fresh	variable	x.



What	 is	 the
value	of

(run	1	x
(	 lolo
‘((a
b)	 (c
d)	

▪

,x)))

26 (()),
since	replacing	x	with	the	empty	list	in	‘((a	b)	(c	d)	

▪
	,x)

transforms	it	 to	((a	b)	(c	d)	
▪
	 ()),	which	 is	 the	same	as

((a	b)	(c	d)).



What	is	the	value	of

(run	5	x
(	lolo	‘((a	b)	(c	d)	

▪
	,x)))

27 (()
(())
((−0))
(()	())
((−0	−1))).

What	do	we	get	when	we	replace	x	in

‘((a	b)	(c	d)	
▪
	,x)

by	the	fourth	list	in	the	previous	frame?

28 ((a	b)	(c	d)	
▪
	(()	())),

which	is	the	same	as

((	a	b)	(c	d)	()	()).



What	 is	 the
value	of

(run	5	x
(	 lolo
x))

29 (()
(())
((−0))
(()	())
((0	−1))).

Is	((	g)	(tofu))	a
list	 of
singletons?

30Yes,
since	both	(g)	and	(tofu)	are	singletons.

	
Is	((	g)	(e	tofu))
a	 list	 of
singletons?

31No,
since	(e	tofu)	is	not	a	singleton.

Recall	 our
definition	 of
singletono	 from
frame	2:68.

(defrel
(singletono
l)
(fresh	(d)

(cdro
l	d)
(nullo
d)))

Redefine
singletono
without	 using
cdro	or	nullo.

32Here	it	is.

(defrel	(singletono	l)
(fresh	(a)

(≡	‘(,a)	l)))

Define	 loso,
where	 loso
stands	 for	 list
of	singletons.

33 Is	this	correct?

(defrel	(loso	l)
(conde

((nullo	l))
((fresh	(a)

(caro	l	a)
(singletono	a))

(fresh	(d)



(cdro	l	d)
(loso	d)))))

Let’s	 try	 it	 out.
What	 value	 is
associated	 with
z	in

(run	1	z
(	 loso
‘((g)
▪
	,z)))

34 ().

Why	 is	 ()	 the
value
associated	 with
z	in

(run	1	z
(	 loso
‘((g)
▪
	,z)))

35Because	‘((g)	
▪
	,z)	is	a	list	of	singletons	when	z	is	the	empty

list.
	

What	do	we	get
when	 we
replace	z	in

‘((g)	
▪
	,z)

by	()

36 ((g)	
▪
	()),
which	is	the	same	as	((g)).

How	 is	 ()	 the
value
associated	 with
z	in

(run	1	z
(	 loso
‘((g)
▪
	,z)))

37 The	variable	l	from	the	definition	of	loso	starts	out	as	the	list
‘((g)	

▪
	 ,z).	 Since	 this	 list	 is	 not	 null,	 (nullo	 l)	 fails	 and	 we

determine	the	values	contributed	from	the	second	conde	line.
In	the	second	conde	line,	d	is	fused	with	z,	the	cdr	of	‘((g)	

▪

,z).	The	variable	d	 is	then	passed	in	the	recursion.	Since	the
variables	d	and	z	are	fresh,	(nullo	 l)	succeeds	and	associates
()	with	d	and	z.



What	 is	 the	 value
of

(run	5	z
(	 loso
‘((g)	

▪

,z)))

38 (()
((−0))
((−0)	(−1))
((−0)	(−1)	(−2))
((−0)	(−1)	(−2)	(−3))).

Why	 are	 the
nonempty	 values	 (
−n)

39 Each	 −n	 corresponds	 to	 a	 fresh	 variable	 a	 that	 has	 been
introduced	 in	 the	 first	 goal	 of	 the	 second	 conde	 line	 of
loso.

What	 do	 we	 get
when	we	replace	z
in

‘((g)	
▪
	,z)

by	the	fourth	list	in
frame	38?

40 ((g)	
▪
	((−0)	(−1)	(−2))),
which	is	the	same	as

((	g)	(−0)	(−1)	(−2)).



What	is	the	value	of

(run	4	r
(fresh	(w	x	y	z)

(loso	‘((g)	(e	
▪
	,w)	(,x	

▪
	,y)	

▪
	,z))

(≡	‘(,w	(,x	
▪
	,y)	,z)	r)))

41 ((()	(−0)	())
(()	(−0)	((−1)))
(()	(−0)	((−1)	(−2)))
(()	(−0)	((−1)	(−2)	(−3)))).

	

What	do	we	get	when	we	replace	w,	x,	y,	and	z	in

‘((g)	(e	
▪
	,w)	(,x	

▪
	,y)	

▪
	,z)

using	the	third	list	in	the	previous	frame?

42 ((g)	(e)	(−0)	▪	((−1)	(−2))),
which	is	the	same	as

((	g)	(e)	(−0)	(−1)	(−2)).



What	is	the	value	of

(run	3	out
(fresh	(w	x	y	z)

(≡	‘((g)	(e	
▪
	,w)	(,x	

▪
	,y)	

▪
	,z)	out)

(	loso	out)))

43 (((g)	(e)	(−0))
((g)	(e)	(−0)	(−1))
((g)	(e)	(−0)	(−1)	(−2))).

Remember	member?.

(define	(member?	x	l)
(cond

((null?	l)	#f)
((equal?	(car	l)	x)	#t)
(#t	(member?	x	(cdr	l)))))



What	is	the	value	of

(	 member?	 'olive
'(virgin	olive	oil))

44 #t.

Try	 to	 translate
member?.

45 Is	this	membero	correct?

(defrel	(membero	x	l)
(conde

((nullo	l)	#u)
((fresh	(a)

(caro	l	a)
(≡	a	x))

#s)
(#s
(fresh	(d)

(cdro	l	d)
(membero	x	d)))))

	
Yes,	 because	 equal?
unnests	to	≡.

Simplify	membero	using
The	Law	of	#u	and	The
Law	of	#s.

46 This	is	a	simpler	definition.

(defrel	(membero	x	l)
(conde

((fresh	(a)
(caro	l	a)
(≡	a	x)))

((fresh	(d)
(cdro	l	d)
(membero	x	d)))))

Is	 this	 a	 simplification
of	membero

(defrel	 (membero	 x
l)
(conde

((caro	l	x))
((fresh	(d)

(cdro	l	d)

47Yes,
since	in	the	previous	frame	(≡	a	x)	fuses	a	with
x.	Therefore	(caro	l	a)	is	the	same	as	(caro	l	x).



(membero
x	d)))))

What	value	is	associated
with	q	in

(run*	q
(	 membero
'olive	 '(virgin
olive	oil)))

48
−0,

because	the	use	of	membero	 succeeds,	but	 this
is	still	uninteresting;	 the	only	variable	q	 is	not
used	in	the	body	of	the	run*	expression.

What	value	is	associated
with	y	in

(run	1	y
(	 membero	 y
'(hummus
with	pita)))

49 hummus,
because	 the	 first	 conde	 line	 in	 membero
associates	 the	 value	 of	 (car	 l),	 which	 is
hummus,	with	the	fresh	variable	y.

What	value	is	associated
with	y	in

(run	1	y
(	 membero	 y
'(with	pita)))

50with,
because	the	first	conde	line	associates	the	value
of	(car	l),	which	is	with,	with	the	fresh	variable
y.

	

What	value	is	associated
with	y	in

(run	1	y
(	 membero	 y
'(pita)))

51 pita,
because	the	first	conde	line	associates	the	value
of	(car	l),	which	is	pita,	with	the	fresh	variable
y.



What	is	the	value	of

(run*	y
(	membero	y	'()))

52 (),
because	neither	conde	line	succeeds.



What	is	the	value	of

(run*	y
(	 membero	 y
'(hummus	 with
pita)))

53 (hummus	with	pita).
We	already	know	the	value	of	each	recursion
of	membero,	provided	y	is	fresh.



So	is	the	value	of

(run*	y
(membero	y	l))

always	the	value	of	l

54Yes,	when	l	is	a	proper	list.



What	is	the	value	of

(run*	y
(membero	 y
l))

where	l	is	(pear	grape
▪
	peaches)

55 (pear	grape).
y	is	not	the	same	as	l	in	this	case,	since	l	 is	not	a
proper	list.

What	 value	 is
associated	with	x	in

(run*	x
(	 membero
'e	 ‘(pasta	 ,x
fagioli)))

56 e.
The	 list	 contains	 three	 values	 with	 a	 variable	 in
the	 middle.	 membero	 determines	 that	 e	 is
associated	with	x.

Why	 is	 e	 the	 value
associated	with	x	in

(run*	x
(	 membero
'e	 ‘(pasta	 ,x
fagioli)))

57Because	e	is	the	only	value	that	can	be	associated	with
x	so	that

(membero	'e	‘(pasta	,x	fagioli))
succeeds.
	

What	 have	 we	 just
done?

58We	 filled	 in	 a	 blank	 in	 the	 list	 so	 that	 membero
succeeds.

What	 value	 is
associated	with	x	in

(run	1	x
(	 membero
'e	 ‘(pasta	 e
,x	fagioli)))

59
−0,

because	 the	 recursion	 reaches	 e,	 and	 succeeds,
before	it	gets	to	x.

What	 value	 is
associated	with	x	in

(run	1	x
(	 membero
'e	 ‘(pasta	 ,x
e	fagioli)))

60 e,
because	 the	 recursion	 reaches	 the	variable	x,	and
succeeds,	before	it	gets	to	e.



What	 is	 the	 value
of

(run*	(x	y)
(
membero
'e	‘(pasta
,x	fagioli
,y)))

61 ((	e	−0)	(−0	e)).

What	 does	 each
value	 in	 the	 list
mean?

62 There	are	two	values	in	the	list.	We	know	from	frame	60
that	 for	 the	 first	 value	 when	 e	 is	 associated	 with	 x,
(membero	 'e	 ‘(pasta	 ,x	 fagioli	 ,y))	 succeeds,	 leaving	 y
fresh.	 Then	 we	 determine	 the	 second	 value.	 Here,	 e	 is
associated	with	y,	while	leaving	x	fresh.



What	is	the	value	of

(run*	q
(fresh	(x	y)

(≡	 ‘(pasta	 ,x	 fagioli	 ,y)
q)
(	membero	'e	q)))

63 ((	 pasta	 e	 fagioli	 −0)	 (pasta	 −0	 fagioli
e)).



What	is	the	value	of

(run	1	l
(	membero	'tofu	l))

64 ((tofu	
▪
	−0)).

	

Which	lists	are	represented	by	(	tofu	
▪
	−0) 65 Every	list	whose	car	is	tofu.



What	is	the	value	of

(run*	l
(	 membero	 'tofu
l))

66 It	has	no	value,
because	 run*	 never	 finishes	 building	 the
list.



What	is	the	value	of

(run	5	l
(	membero	'tofu	l))

67 ((tofu	
▪
	−0)

(−0	tofu	▪	−1)
(−0	−1	tofu	▪	−2)
(−0	−1	−2	tofu	▪	−3)
(−0	−1	−2	−3	tofu	▪	−4)).

tofu	is	in	every	list.

But	 can	 we	 require	 each	 list
containing	tofu	to	be	a	proper	list,
instead	 of	 having	 a	 dot	 before
each	list’s	final	reified	variable?

Perhaps.	 This	 final	 reified	 variable
appears	 in	 each	 value	 just	 after	 we	 find
tofu.	 In	 membero,	 which	 conde	 line
associates	tofu	with	the	car	of	a	pair?

68 The	first	line,	((	caro	l	x)).

What	does	membero’s	 first	conde	 line	say
about	the	cdr	of	l

69Nothing.	 This	 is	 why	 the	 final
cdrs	remain	fresh	in	frame	67.

If	the	cdr	of	l	is	(),	is	l	a	proper	list? 70Yes.
If	the	cdr	of	l	is	(beet),	is	l	a	proper	list? 71Yes.
Suppose	 l	 is	 a	 proper	 list.	 What	 values
could	be	l’s	cdr

72Any	proper	list.
	

Here	is	proper-membero.

(defrel	(proper-membero	x	l)
(conde

((caro	l	x)
(fresh	(d)

(cdro	l	d)
(listo	d)))

((fresh	(d)
(cdro	l	d)
(proper-membero	x	d)))))

Do	proper-membero	and	membero	differ?

73Yes.	The	cdr	of	l	in	the	first	conde
line	of	proper-membero	must	be	a
proper	list.

Now	what	is	the	value	of

(run	12	l

74 Every	list	is	proper.

((tofu)



(	proper-membero	'tofu	l)) (tofu	−0)
(tofu	−0	−1)
(−0	tofu)
(tofu	−0	−1	−2)
(tofu	−0	−1	−2	−3)
(−0	tofu	−1)
(tofu	−0	−1	−2	−3	−4)
(tofu	−0	−1	−2	−3	−4	−5)
(−0	tofu	−1	−2)
(tofu	−0	−1	−2	−3	−4	−5	−6)
(−0	−1	tofu)).

Is	 there	 a	 function	 proper-member?	 we
can	 transform	 and	 simplify	 into	 proper-
member	o

75Yes.	And	here	it	is.

(define	(proper-member?	x	l)
(cond

((null?	l)	#f)
((equal?	 (car	 l)	x)	 (list?
(cdr	l)))
(#t	 (proper-member?	 x
(cdr	l)))))

	

⇒	Now	go	make	a	cashew	butter	and	marmalade	sandwich	and	eat	it!
⇐

This	space	reserved	for

MARMALADE	STAINS!



	



	

Here	is	append.†

(define	(append	l	t)
(cond

((null?	l)	t)
(#t	(cons	(car	l)

(append	(cdr	l)	t)))))



What	is	the	value	of

(append	'(a	b	c)	'(d	e))

_______________
†	For	a	different	approach	to	append,	see	William	F.	Clocksin.	Clause	and	Effect.	Springer,
1997,	page	59.

1 (	 a	 b	 c	 d
e).



What	is	the	value	of

(	append	'(a	b	c)	'())

2 (	a	b	c).



What	is	the	value	of

(	append	'()	'(d	e))

3 (	d	e).



What	is	the	value	of

(	append	'a	'(d	e))

4 It	has	no	meaning,
because	a	is	not	a	proper	list.



What	is	the	value	of

(	append	'(d	e)	'a)

5 It	has	no	meaning,	again?

No.	The	value	is	(	d	e	
▪
	a). 6 How	is	that	possible?

Look	 closely	 at	 the	 definition	 of
append.

7 There	 are	 no	 cond-line	 questions	 asked
about	t.	Ouch.
	

Here	 is	 the	 translation	 from	append
and	its	simplification	to	appendo.

(defrel	(appendo	l	t	out)
(conde

((nullo	l)	(≡	t	out))
((fresh	(res)

(fresh	(d)
(cdro	l	d)
(appendo	 d	 t
res))

(fresh	(a)
(caro	l	a)
(conso	 a	 res
out))))))

How	does	appendo	differ	from	 listo,
lolo,	and	membero

8 The	 list?,	 lol?,	 and	member?	 definitions
from	 the	 previous	 chapter	 have	 only
Booleans	as	their	values.	append,	on	the
other	hand,	has	more	interesting	values.

Are	 there	 consequences	 of	 this
difference?

Yes,	 we	 introduce	 an	 additional
argument,	 which	 here	 we	 call	 out,
that	holds	the	value	that	would	have
been	produced	by	append’s	value.

9 That’s	 like	caro,	 cdro,	 and	 conso,	 which
also	take	an	additional	argument.

The	Translation	(Final)

To	 translate	 a	 function	 into	 a	 relation,	 first	 replace
define	 with	 defrel.	 Then	 unnest	 each	 expression	 in
each	cond	line,	and	replace	each	cond	with	conde.	To
unnest	a	#t,	replace	it	with	#s.	To	unnest	a	#f,	replace
it	with	#u.



If	the	value	of	at	least	one	cond	line	can	be	a	non-
Boolean,	add	an	argument,	 say	out,	 to	defrel	 to	hold
what	 would	 have	 been	 the	 function’s	 value.	 When
unnesting	a	line	whose	value	is	not	a	Boolean,	ensure
that	 either	 some	value	 is	 associated	with	out,	 or	 that
out	is	the	last	argument	to	a	recursion.

	
Why	 are	 there	 three
freshes	in

(fresh	(res)
(fresh	(d)

(cdro	l	d)
(appendo
d	t	res))

(fresh	(a)
(caro	l	a)
(	conso	a
res
out)))

10Because	 d	 is	 only	 mentioned	 in	 (cdro	 l	 d)	 and
(appendo	 d	 t	 res);	a	 is	only	mentioned	 in	 (caro	 l	 a)
and	(conso	 a	 res	out).	But	 res	 is	mentioned	 in	 both
inner	freshes.



Rewrite

(fresh	(res)
(fresh	(d)

(cdro	l	d)
(appendo	d	t	res))

(fresh	(a)
(caro	l	a)
(conso	a	res	out)))

using	only	one	fresh.

11 (fresh	(a	d	res)
(cdro	l	d)
(appendo	d	t	res)
(caro	l	a)
(conso	a	res	out)).

How	might	we	use	conso	 in	place	of	the
cdro	and	the	car	o

12 (fresh	(a	d	res)
(conso	a	d	l)
(appendo	d	t	res)
(conso	a	res	out)).

Redefine	 appendo	 using	 these
simplifications.

13Here	it	is.

(defrel	(appendo	l	t	out)
(conde

((nullo	l)	(≡	t	out))
((fresh	(a	d	res)

(conso	a	d	l)
(appendo	d	t	res)
(conso	a	res	out)))))

	
Can	we	similarly	simplify	our	definitions
of	loso	as	in	frame	3:33,	lolo	as	in	frame
3:22,	 and	 proper-membero	 as	 in	 frame
3:73?

14Yes.

In	 our	 simplified	 definition	 of	 appendo,
how	does	 the	 first	conso	 differ	 from	 the
second	one?

15 The	first	conso,

(conso	a	d	l),

appears	to	associate	values	with	the
variables	a	and	d.	In	other	words,	it
appears	 to	 take	 apart	 a	 cons	 pair,
whereas



(conso	a	res	out)

appears	to	build	a	cons	pair.
But,	can	appearances	be	deceiving? 16 Indeed	they	can.



What	is	the	value	of

(run	6	x
(fresh	(y	z)

(	appendo	x	y	z)))

17 (()
(−0)
(−0	−1)
(−0	−1	−2)
(−0	−1	−2	−3)
(−0	−1	−2	−3	−4)).



What	is	the	value	of

(run	6	y
(fresh	(x	z)

(	appendo	x	y	z)))

18 (−0
−0
−0
−0
−0

−0).
	

Since	x	is	fresh,	we	know	the	first	value
comes	 from	 (nullo	 l),	 which	 succeeds,
associating	()	with	l,	and	then	t,	which	is
also	 fresh,	 is	 fused	with	 out.	 But,	 how
do	 we	 get	 the	 second	 through	 sixth
values?

19A	 new	 fresh	 variable	 res	 is	 passed
into	 each	 recursion	 to	 appendo.
After	 (nullo	 l)	 succeeds,	 t	 is	 fused
with	res,	which	is	fresh,	since	res	is
passed	as	an	argument	(binding	out)
in	the	recursion.



What	is	the	value	of

(run	6	z
(fresh	(x	y)

(	appendo	x	y	z)))

20 (−0
(−0	▪	−1)
(−0	−1	▪	−2)
(−0	−1	−2	▪	−3)
(−0	−1	−2	−3	▪	−4)
(−0	 −1	 −2	 −3	 −4	 ▪
−5)).

Now	let’s	look	at	the	first	six	values	of	x,	y,	and	z	at	the	same
time.



What	is	the	value	of

(run	6	(x	y	z)
(	 appendo	 x	 y
z))

21 ((()	−0	−0)
((−0)	−1	(−0	▪	−1))
((−0	−1)	−2	(−0	−1	▪	−2))
((−0	−1	−2)	−3	(−0	−1	−2	▪	−3))
((−0	−1	−2	−3)	−4	(−0	−1	−2	−3	▪	−4))
((−0	−1	−2	−3	−4)	−5	(−0	−1	−2	−3	−4	▪	−5))).

What	 value	 is	 associated
with	x	in

(run*	x
(appendo

'(cake)
'(tastes
yummy)
x))

22 (	cake	tastes	yummy).

What	 value	 is	 associated
with	x	in

(run*	x
(fresh	(y)

(appendo
‘(cake	 &
ice	,y)
'(tastes
yummy)
x)))

23 (cake	&	ice	−0	tastes	yummy).
	

What	 value	 is	 associated
with	x	in

(run*	x
(fresh	(y)

(appendo
'(cake	 &
ice	cream)
y
x)))

24 (	cake	&	ice	cream	
▪
	−0).

What	 value	 is	 associated
with	x	in

25 (cake	&	ice	d	t),
because	the	successful	(nullo	y)	associates	the



(run	1	x
(fresh	(y)

(appendo
‘(cake	 &
ice	

▪
	,y)

'(d	t)
x)))

empty	list	with	y.



What	is	the	value	of

(run	5	x
(fresh	(y)

(appendo
‘(cake	&	ice	

▪
	,y)

'(d	t)
x)))

26 ((cake	&	ice	d	t)
(cake	&	ice	−0	d	t)
(cake	&	ice	−0	−1	d	t)
(cake	&	ice	−0	−1	−2	d	t)
(cake	&	ice	−0	−1	−2	−3	d	t)).



What	is	the	value	of

(run	5	y
(fresh	(x)

(appendo
‘(cake	&	ice	

▪
	,y)

'(d	t)
x)))

27 (()
(−0)
(−0	−1)
(−0	−1	−2)
(−0	−1	−2	−3)).

	

Let’s	plug	in	(−0	−1	−2)	for	y	in

‘(cake	&	ice	
▪
	,y).



Then	we	get

(cake	&	ice	
▪
	(−0	−1	−2)).

What	list	is	this	the	same	as?

28 (	cake	&	ice	−0	−1	−2).

Right.	 Where	 have	 we	 seen	 the
value	of

(	append	 '(cake	&	 ice	 −0	 −1	 −2)
'(d	t))

29 This	expression’s	value	is	 the	fourth	 list	 in
frame	26.



What	is	the	value	of

(run	5	x
(fresh	(y)

(appendo
‘(cake	&	ice	

▪
	,y)

‘(d	t	
▪
,y)

x)))

30 ((cake	&	ice	d	t)
(cake	&	ice	−0	d	t	−0)
(cake	&	ice	−0	−1	d	t	−0	−1)
(cake	&	ice	−0	−1	−2	d	t	−0	−1	−2)
(cake	&	ice	−0	−1	−2	−3	d	t	−0	−1	−2	−3)).



What	is	the	value	of

(run*	x
(fresh	(z)

(appendo
'(cake	 &
ice
cream)
‘(d	t	

▪
	,z)

x)))

31 ((	cake	&	ice	cream	d	t	
▪
	−0)).

Why	 does	 the	 list
contain	only	one	value?

32Because	 t	 does	 not	 change	 in	 the	 recursion.
Therefore	z	 stays	 fresh.	The	reason	 the	 list	contains
only	 one	 value	 is	 that	 (cake	&	 ice	 cream)	 does	 not
contain	a	variable,	and	 is	 the	only	value	considered
in	every	conde	line	of	appendo.
	

Let’s	 try	an	example	 in
which	 the	 first	 two
arguments	 are
variables.



What	is	the	value	of

(run	6	x
(fresh	(y)

(	 appendo	 x	 y
'(cake	 &	 ice	 d
t))))

33 (()
(cake)
(cake	&)
(cake	&	ice)
(cake	&	ice	d)
(cake	&	ice	d	t)).

How	 might	 we	 describe	 these
values?

34 The	values	include	all	of	the	prefixes	of	the
list	(	cake	&	ice	d	t).

Now	let’s	try	this	variation.

(run	6	y
(fresh	(x)

(appendo	 x	 y
'(cake	 &	 ice	 d
t))))

What	is	its	value?

35 ((cake	&	ice	d	t)
(&	ice	d	t)
(ice	d	t)
(d	t)
(t)
()).

How	 might	 we	 describe	 these
values?

36 The	values	include	all	of	the	suffixes	of	the
list	(	cake	&	ice	d	t).

Let’s	 combine	 the	 previous	 two
results.



What	is	the	value	of

(run	6	(x	y)
(	 appendo	 x	 y
'(cake	&	ice	d	t)))

37 ((()	(cake	&	ice	d	t))
((cake)	(&	ice	d	t))
((cake	&)	(ice	d	t))
((cake	&	ice)	(d	t))
((cake	&	ice	d)	(t))
((cake	&	ice	d	t)	())).

How	 might	 we	 describe
these	values?

38 Each	 value	 includes	 two	 lists	 that,	 when
appended	together,	form	the	list

(cake	&	ice	d	t).
	



What	is	the	value	of

(run	7	(x	y)
(	appendo	x	y	'(cake	&
ice	d	t)))

39 This	expression	has	no	value,
since	 appendo	 is	 still	 looking	 for	 the
seventh	value.

Would	 we	 prefer	 that	 this
expression’s	 value	 be	 that	 of
frame	37?

40Yes,	that	would	make	sense.

How	 can	 we	 change	 the	 definition	 of
appendo	 so	 that	 these	 expressions	 have	 the
same	value?

_______________
†	 Thank	 you,	Alain	Colmerauer	 (1941–2017),	 and	 thanks,
Carl	Hewitt	(1945–)	and	Philippe	Roussel	(1945–).

Swap	 the	 last	 two	 goals	 of
appendo.

41
(defrel	(appendo	l	t	out)
(conde

((nullo	l)	(≡	t	out))
((fresh	(a	d	res)

(conso	a	d	l)
(conso	a	res	out)
(appendo	d	t	res)))))

Now,	 using	 this	 revised
definition	 of	 appendo,	 what	 is
the	value	of

(run*	(x	y)
(	appendo	x	y	'(cake	&
ice	d	t)))

42 The	 same	 six	 values	 are	 in	 frame	 37.	 This
shows	there	are	only	six	values.

The	First	Commandment

Within	 each	 sequence	 of	 goals,	 move	 non-recursive
goals	before	recursive	goals.

	
Define	swappendo,	which	is	 just	appendo	with	 its 43Here	it	is.



two	conde	lines	swapped. (defrel	 (swappendo	 l
t	out)
(conde

((fresh	(a	d	res)
(conso	 a	 d
l)
(conso	a	res
out)
(swappendo
d	t	res)))

((nullo	 l)	 (≡	 t
out))))



What	is	the	value	of

(run*	(x	y)
(	swappendo	 x	 y	 '(cake	&	 ice	 d
t)))

44 The	 same	 six	 values	 as	 in	 frame
37.

The	Law	of	Swapping	conde	Lines

Swapping	 two	 conde	 lines	 does	 not	 affect	 the	 values
contributed	by	conde.

Consider	this	definition.

(define	(unwrap	x)
(cond

((pair?	x)	(unwrap	(car	x)))
(#t	x)))



What	is	the	value	of

(	unwrap	'((((pizza)))))

45 pizza.



What	is	the	value	of

(	unwrap	'((((pizza	pie)	with))	garlic))

46 pizza.
	

Translate	and	simplify	unwrap. 47 That’s	a	slice	of	pizza!

(defrel	(unwrapo	x	out)
(conde

((fresh	(a)
(caro	x	a)
(unwrapo	a	out)))

((≡	x	out))))



What	is	the	value	of

(run*	x
(	 unwrapo
'(((pizza)))	x))

48 ((((pizza)))
((pizza))
(pizza)
pizza).

The	 last	 value	 of	 the	 list
seems	 right.	 In	 what	 way
are	 the	 other	 values
correct?

49 They	represent	partially	wrapped	versions	of	the
list	 (((pizza))).	 And	 the	 first	 value	 is	 the	 fully-
wrapped	original	list	(((pizza))).†

_______________
†	 unwrapo	 is	 a	 tricky	 relation	 whose	 behavior	 does	 not	 fully
comply	with	 the	behavior	of	 the	 function	unwrap.	Nevertheless,
by	keeping	track	of	the	fusing,	you	can	follow	this	pizza	example.

DON’T	PANIC
Thank	you,	Douglas	Adams	(1952–2001).

What	value	is	associated	with	x	in

(run	1	x
(	unwrapo	x	'pizza))

50 pizza.
	

What	value	is	associated	with	x	in

(run	1	x
(	unwrapo	‘((,x))	'pizza))

51 pizza.



What	is	the	value	of

(run	5	x
(	unwrapo	x	'pizza))

52 (pizza
(pizza	

▪
	−0)

((pizza	
▪
	−0)	▪	−1)

(((pizza	
▪
	−0)	▪	−1)	▪	−2)

((((pizza	
▪
	−0)	▪	−1)	▪	−2)	▪	−3)).



What	is	the	value	of

(run	5	x
(	unwrapo	x	'((pizza))))

53 (((pizza))
(((pizza))	

▪
	−0)

((((pizza))	
▪
	−0)	▪	−1)

(((((pizza))	
▪
	−0)	▪	−1)	▪	−2)

((((((pizza))	
▪
	−0)	▪	−1)	▪	−2)	▪	−3)).



What	is	the	value	of

(run	5	x
(	unwrapo	‘((,x))	'pizza))

54 (pizza
(pizza	

▪
	−0)

((pizza	
▪
	−0)	▪	1)

(((pizza	
▪
	−0)	▪	−1)	▪	−2)

((((pizza	
▪
	−0)	▪	−1)	▪	−2)	▪	−3)).

This	might	be	a	good	time	for	a	pizza	break. 55Good	idea.

⇒	Now	go	get	a	pizza	and	put	it	in	your	mouth!	⇐
	

This	space	reserved	for

PIZZA	STAINS!



	



	

Consider	this	function.

(define	(mem	x	l)
(cond

((null?	l)	#f)
((equal?	(car	l)	x)	l)
(#t	(mem	x	(cdr	l)))))



What	is	the	value	of

(mem	'fig
'(	roll	okra	fig	beet	roll	pea))

1 (	fig	beet	roll	pea).



What	is	the	value	of

(mem	'fig
'(	roll	okra	beet	beet	roll	pea))

2 #f.



What	is	the	value	of

(mem	'roll
(mem	'fig

'(	 roll
okra
fig
beet
roll
pea)))

3 So	familiar,

(	roll	pea).

Here	is	the	translation
of	mem.

(defrel	(memo	x	l
out)
(conde

((nullo	 l)
#u)
((fresh	(a)

(caro	 l
a)
(≡	 a
x))

(≡	l	out))
(#s
(fresh	(d)

(cdro	 l
d)
(memo
x	 d
out)))))

Do	 we	 know	 how	 to
simplify	memo

4 Of	 course,	 we	 can	 simplify	 it	 as	 in	 frame	 3:47,	 by
following	The	Law	of	#u,	and	by	following	The	Law
of	#s.

(defrel	(memo	x	l	out)
(conde

((caro	l	x)	(≡	l	out))
((fresh	(d)

(cdro	l	d)
(memo	x	d	out)))))

	



What	is	the	value	of

(run*	q
(	 memo	 'fig
'(pea)	'(pea)))

5 ().
Since	 the	car	of	 (pea)	 is	not	 fig,	 fig,	 (pea),	and
(pea)	do	not	have	the	memo	relationship.

What	 value	 is
associated	with	out	in

(run*	out
(	 memo	 'fig
'(fig)	out))

6 (fig).
Since	 the	car	of	 (fig)	 is	 fig,	 fig,	 (fig),	 and	 (fig)
have	the	memo	relationship.

What	 value	 is
associated	with	out	in

(run*	out
(	 memo	 'fig
'(fig	 pea)
out))

7 (	fig	pea).

What	 value	 is
associated	with	r	in

(run*	r
(memo	r

'(roll
okra	 fig
beet	 fig
pea)
'(	 fig
beet	 fig
pea)))

8 fig.



What	is	the	value	of

(run*	x
(	 memo	 'fig
'(fig	 pea)
‘(pea	,x)))

9 (),
because	there	is	no	value	that,	when	associated
with	x,	makes	‘(pea	,x)	be	(fig	pea).

What	value	is	associated
with	x	in

(run*	x
(	 memo	 'fig
'(fig	 pea)	 ‘(,x
pea)))

10 fig,
when	 the	 value	 associated	 with	 x	 is	 fig,	 then
‘(,x	pea)	is	(fig	pea).



What	is	the	value	of

(run*	out
(	memo	'fig	'(beet	fig	pea)	out))

11 ((fig	pea)).
	

In	this	run	1	expression,	for	any	goal	g	how	many
times	does	out	get	an	association?

(	run	1	out	g)

12At	most	once,	as	we	have
seen	in	frame	3:13.



What	is	the	value	of

(run	1	out
(	memo	'fig	'(fig	fig	pea)	out))

13 ((	fig	fig	pea)).



What	 is	 the
value	of

(run*	out
(
memo
'fig
'(fig
fig
pea)
out))

14 The	same	value,	we	expect.

No.	 The	 value
is	((	fig	fig	pea)
(fig	pea)).

15 This	is	quite	a	surprise.

Why	 is	 ((	 fig
fig	 pea)	 (fig
pea))	 the
value?

16We	 know	 from	 The	 Law	 of	 conde	 that	 every	 successful
conde	 line	 contributes	 one	 or	more	 values.	 The	 first	 conde
line	 succeeds	 and	 contributes	 the	 value	 (fig	 fig	 pea).	 The
second	 conde	 line	 contains	 a	 recursion.	 This	 recursion
succeeds,	 therefore	 the	 second	 conde	 line	 succeeds,
contributing	the	value	(fig	pea).

In	 this	 respect
the	 cond	 in
mem?	 differs
from	the	conde
in	memo.

17We	shall	bear	this	difference	in	mind.



What	is	the	value	of

(run*	out
(fresh	(x)

(	memo	'fig	‘(a	,x	c	fig	e)	out)))

18 ((fig	c	fig	e)	(fig	e)).
	



What	 is	 the	 value
of

(run	5	(x	y)
(	 memo
'fig	 ‘(fig
d	 fig	 e	

▪

,y)	x))

19 (((fig	d	fig	e	
▪
	−0)	−0)

((fig	e	
▪
	−0)	−0)

((fig	
▪
	−0)	(fig	▪	−0))

((fig	
▪
	−0)	(−1	fig	▪	−0))

((fig	
▪
	−0)	(−1	−2	fig	▪	−0))).

Explain	 how	 y,
reified	 as	 −0	 ,
remains	 fresh	 in
the	first	two	values.

20 The	first	value	corresponds	to	finding	the	first	fig	in	that
list,	 and	 the	 second	 value	 corresponds	 to	 finding	 the
second	 fig	 in	 that	 list.	 In	 both	 cases,	 memo	 succeeds
without	associating	a	value	to	y.

Where	do	the	other
three	 values
associated	 with	 y
come	from?

21



In	order	for

(memo	'fig	‘(fig	d	fig	e	
▪
	,y)	x)

to	contribute	values	beyond	those	first	two,	there	must	be	a
fig	in	‘(e	

▪
	,y),	and	therefore	in	y.

So	memo	is	creating	all	the	possible	suffixes	with	fig	as	an
element.

22 That’s	 very
interesting!

Remember	rember.

(define	(rember	x	l)
(cond

((null?	l)	'())
((equal?	(car	l)	x)	(cdr	l))
(#t	(cons	(car	l)

(rember	x	(cdr	l))))))

23Of	course,	it’s	an
old	friend.



What	is	the	value	of

(	rember	'pea	'(a	b	pea	d
pea	e))

24 (a	b	d	pea	e).
	

Here	 is	 the	 translation	 of
rember.

(defrel	 (rembero	 x	 l
out)
(conde

((nullo	 l)	 (≡	 '()
out))
((fresh	(a)

(caro	l	a)
(≡	a	x))

(cdro	l	out))
(#s
(fresh	(res)

(fresh	(d)
(cdro	 l
d)
(rembero
x	d	res))

(fresh	(a)
(caro	 l
a)
(conso	 a
res
out))))))

Do	 we	 know	 how	 to
simplify	rembero

25Yes,	we	can	simplify	rembero	as	in	frames	4:10
to	 4:12,	 and	 by	 following	The	Law	 of	 #s	 and
The	First	Commandment.

(defrel	(rembero	x	l	out)
(conde

((nullo	l)	(≡	'()	out))
((conso	x	out	l))
((fresh	(a	d	res)

(conso	a	d	l)
(conso	a	res	out)
(rembero	x	d	res)))))



What	is	the	value	of

(run*	out
(	 rembero
'pea	 '(pea)
out))

26 (()	(pea)).
When	l	is	(pea),	both	the	second	and	third	conde
lines	in	rembero	contribute	values.



What	is	the	value
of

(run*	out
(
rembero
'pea
'(pea
pea)
out))

27 ((pea)	(pea)	(pea	pea)).
When	l	is	(pea	pea),	both	the	second	and	third	conde
lines	in	rembero	contribute	values.	The	second	conde
line	 contributes	 the	 first	 value.	 The	 recursion	 in	 the
third	 conde	 line	 contributes	 the	 two	 values	 in	 the
frame	 above,	 ()	 and	 (pea).	 The	 second	 conso	 relates
the	 two	 contributed	 values	 in	 the	 recursion	with	 the
last	two	values	of	this	expression,	(pea)	and	(pea	pea).

	



What	is	the	value	of

(run*	out
(fresh	(y	z)

(	rembero	y	‘(a	b	,y	d	,z	e)	out)))

28 ((b	a	d	−0	e)
(a	b	d	−0	e)
(a	b	d	−0	e)
(a	b	d	−0	e)
(a	b	−0	d	e)
(a	b	e	d	−0)
(a	b	−0	d	−1	e)).



Why	is

(b	a	d	−0	e)

a	value?

29 It	 looks	 like	b	 and	 a	 have	 been	 swapped,	 and	 y	has
disappeared.

No.	Why	does	 b	come
first?

30 The	b	 is	 first	 because	 the	 a	 has	 been	 removed	 from
the	car.

Why	 does	 the	 list
contain	a	now?

31 In	order	to	remove	a,	a	is	associated	with	y.	The	value
of	the	y	in	the	list	is	a.

What	is	−0	in	this	list? 32 The	reified	variable	z.	In	this	value	z	remains	fresh.



Why	is

(a	b	d	−0	e)

the	second	value?

33 It	looks	like	y	has	disappeared.

No.	 Has	 the	 b	 in	 the
original	 list	 been
removed?

34Yes.

Why	 does	 the	 list	 still
contain	a	b

35 In	order	to	remove	b	from	the	list,	b	is	associated
with	y.	The	value	of	the	y	in	the	list	is	b.
	



Why	is

(a	b	d	−0	e)

the	third	value?

36 Is	it	for	the	same	reason	that	(	a	b	d	−0	e)
is	the	second	value?

Not	 quite.	Has	 the	b	 in	 the	 original
list	been	removed?

37No,
but	the	y	has	been	removed.



Why	is

(a	b	d	−0	e)

the	fourth	value?

38Because	the	d	has	been	removed	from	the	list.

Why	 does	 this	 list	 still
contain	a	d

39 In	 order	 to	 remove	 d	 from	 the	 list,	 d	 is
associated	with	y.



Why	is

(a	b	−0	d	e)

the	fifth	value?

40Because	the	z	has	been	removed	from	the	list.

Why	 does	 this
list	contain	−0

41 In	 order	 to	 remove	 z	 from	 the	 list,	 z	 is	 fused	with	 y.	 These
variables	remain	fresh,	and	the	y	in	the	list	is	reified	as	−0.



Why	is

(a	b	e	d	−0)

the	sixth	value?

42Because	the	e	has	been	removed	from	the	list.

Why	 does	 this
list	 still	 contain
an	e

43 In	order	to	remove	e	from	the	list,	e	is	associated	with	y.
	

What	 variable
does	 the	 −0

contained	 in	 this
list	represent?

44 The	reified	variable	z.	In	this	value	z	remains	fresh.

z	and	y	are	fused
in	the	fifth	value,
but	 not	 in	 sixth
value.

45Correct.
conde	 lines	 contribute	 values	 independently	 of	 one
another.	 The	 case	 that	 removes	 z	 from	 the	 list	 (and
fuses	it	with	y)	is	independent	of	the	case	that	removes
e	from	the	list	(and	associates	e	with	y).

Very	well	stated.
Why	is

(a	b	−0	d	−1	e)

the	 seventh
value?

46Because	we	have	not	removed	anything	from	the	list.

Why	 does	 this
list	contain	−0	and
−1

47 These	 are	 the	 reified	 variables	 y	 and	 z.	 This	 case	 is
independent	 of	 the	 previous	 cases.	 Here,	 y	 and	 z	 remain
different	fresh	variables.



What	is	the	value	of

(run*	(y	z)
(	rembero	y	‘(,y	d	,z	e)	‘(,y	d	e)))

48 ((d	d)
(d	d)
(−0	−0)
(e	e)).



Why	is

(d	d)

the	first	value?

49When	y	is	d	and	z	is	d,	then

(rembero	'd	'(d	d	d	e)	'(d	d	e))

succeeds.



Why	is

(d	d)

the	second	value?

50When	y	is	d	and	z	is	d,	then

(rembero	'd	'(d	d	d	e)	'(d	d	e))

succeeds.



Why	is

(−0	−0)

the	third	value?

51 y	and	z	are	fused,	but	they	remain	fresh.



How
is

(d
d)

the
first
value?

52 rembero	removes	y	from	the	list	‘(,y	d	,z	e),	yielding	the	list	‘(d	,z	e);
‘(d	,z	e)	is	the	same	as	the	third	argument	to	rembero,	‘(,y	d	e),	only
when	d	is	associated	with	both	y	and	z.



How
is

(d
d)

the
second
value?

53Next,	rembero	removes	d	from	the	list	‘(,y	d	,z	e),	yielding	the	list	‘(,y
,z	e);	‘(,y	,z	e)	is	the	same	as	the	third	argument	to	rembero,	‘(,y	d	e),
only	 when	 d	 is	 associated	 with	 z.	 Also,	 in	 order	 to	 remove	 d,	 d	 is
associated	with	y.



How	is

(−0
−0)

the
third
value?

54Next,	rembero	removes	z	from	the	list	‘(,y	d	,z	e),	yielding	the	list	‘(,y
d	e);	‘(,y	d	e)	 is	always	 the	same	as	 the	 third	argument	 to	rembero,
‘(,y	d	e).	Also,	in	order	to	remove	z,	y	is	fused	with	z.

Finally,
how	is

(e
e)

the
fourth
value?

55 rembero	removes	e	from	the	list	‘(,y	d	,z	e),	yielding	the	list	‘(,y	d	,z);
‘(,y	d	,z)	is	the	same	as	the	third	argument	to	rembero,	‘(,y	d	e),	only
when	 e	 is	 associated	 with	 z.	 Also,	 in	 order	 to	 remove	 e,	 e	 is
associated	with	y.



What	is	the	value	of

(run	4	(y	z	w	out)
(	rembero	y	‘(,z	

▪
	,w)	out))

56 ((−0	−0	−1	−1)
(−0	−1	()	(−1))
(−0	−1	(−0	▪	−2)	(−1	▪	−2))
(−0	−1	(−2)	(−1	−2))).

	



How	is

(−0	 −0

−1	−1)

the	 first
value?

57 For	 the	 first	 value,	 rembero	 removes	 z	 from	 the	 list	 ‘(,z	
▪
	 ,w).

rembero	fuses	y	with	z	and	fuses	w	with	out.



How	is

(−0	 −1

()
(−1))

the
second
value?

58 rembero	 removes	no	value	 from	 the	 list	‘(,z	
▪
	 ,w).	 (nullo	 l)	 in	 the

first	conde	line	then	succeeds,	associating	w	with	the	empty	list.



How	is

(−0
−1

(−0
▪

−2)
(−1
▪

−2))

the
third
value?

59 rembero	removes	no	value	from	the	list	‘(,z	
▪
	,w).	The	second	conde

line	also	succeeds,	and	associates	the	pair	‘(,y	
▪
	,out)	with	w.	The	out

of	 the	recursion,	however,	 is	 just	 the	fresh	variable	res,	and	 the	 last
conso	in	rembero	associates	the	pair	‘(,z	

▪
	,res)	with	out.



How	is

(−0	 −1	 (−2)
(−1	−2))

the	 fourth
value?

60 This	is	the	same	as	the	second	value,	(	−0	−1	()	(−1)),	except	with	an
additional	recursion.



If	 we	 had	 instead
written

(run	 5	 (y	 z	 w
out)

(rembero
y	 ‘(,z	

▪

,w)	out))

what	 would	 be	 the
fifth	value?

61 (−0	−1	(−2	−0	▪	−3)	(−1	−2	▪	−3)),
because	this	is	the	same	as	the	third	value,	(−0	−1	(−0	▪
−2)	(−1	▪	−2)),	except	with	an	additional	recursion.

	

⇒	Now	go	munch	on	some	carrots.	⇐

This	space	reserved	for

CARROT	STAINS!



	



	

Here	is	a	useful	definition.

(defrel	(alwayso)
(conde

(#s)
((alwayso))))

What	value	is	associated	with	q	in

(run	1	q
(	alwayso))

1
−0.



What	is	the	value	of

(run	1	q
(conde

(#s)
((
alwayso))))

2 (−0),
because	the	first	conde	line	succeeds.

Compare	(	alwayso)	to	#s. 3 (	alwayso)	 succeeds	any	number	of	 times,	whereas
#s	succeeds	only	once.



What	is	the	value	of

(run*	q
(	alwayso))

4 It	has	no	value,
since	run*	never	finishes	building	the	list	(−0	0	−0	…



What	is	the	value	of

(run*	q
(conde

(#s)
((
alwayso))))

5 It	has	no	value,
since	run*	never	finishes	building	the	list	(−0	 −0
−0	…



What	is	the	value	of

(run	5	q
(	alwayso))

6 (−0	−0−0−0−0).
	

And	what	is	the	value	of

(run	5	q
(≡	'onion	q)
(	alwayso))

7 (	onion	onion	onion	onion	onion).



What	 is	 the	 value
of

(run	1	q
(alwayso)
#u)

8 It	has	no	value,
because	 (alwayso)	 succeeds,	 followed	 by	 #u,	 which
causes	(alwayso)	to	be	retried,	which	succeeds	again,
which	leads	to	#u	again,	etc.



What	is	the	value	of

(run	1	q
(≡	'garlic	q)
#s
(≡	'onion	q))

9 ().



What	 is	 the	 value
of

(run	1	q
(≡	 'garlic
q)
(alwayso)
(≡	 'onion
q))

10 It	has	no	value.
First	 garlic	 is	 associated	 with	 q,	 then	 alwayso
succeeds,	 then	 (≡	 'onion	q)	 fails,	 since	q	 is	 already
garlic.	 This	 causes	 (alwayso)	 to	 be	 retried,	 which
succeeds	 again,	which	 leads	 to	 (≡	 'onion	q)	 failing
again,	etc.



What	is	the	value	of

(run	1	q
(conde

((≡	 'garlic
q)
(alwayso))
((≡	 'onion
q)))

(≡	'onion	q))

11 (onion).
	

What	 happens	 if	 we	 try
for	more	values?

(run	2	q
(conde

((≡	 'garlic
q)
(alwayso))
((≡	 'onion
q)))

(≡	'onion	q))

12 It	has	no	value,
since	 only	 the	 second	 conde	 line	 associates
onion	with	q.

So	 does	 this	 give	 more
values?

(run	5	q
(conde

((≡	 'garlic
q)
(alwayso))
((≡	 'onion
q)
(alwayso)))

(≡	'onion	q))

13Yes,	it	yields	as	many	as	are	requested,

(onion	onion	onion	onion	onion).

The	(	alwayso)	in	the	first	conde	line	succeeds	five
times,	but	contributes	none	of	the	five	values,	since
then	garlic	would	be	in	the	list.

Here	 is	 an	 unusual
definition.

(defrel	(nevero)
(nevero))

14Yes	it	is!



Is	(	nevero)	a	goal?
Compare	#u	to	(nevero). 15 #u	 is	 a	 goal	 that	 fails,	whereas	 (nevero)	 is	 a	 goal

that	neither	succeeds	nor	fails.



What	is	the	value	of

(run	1	q
(	nevero))

16 This	run	1	expression	has	no	value.



What	is	the	value	of

(run	1	q
#u
(	nevero))

17 (),
because	#u	fails	before	(nevero)	is	attempted.

	



What	is	the	value	of

(run	1	q
(conde

(#s)
((	nevero))))

18 (−0),
because	the	first	conde	line	succeeds.



What	is	the	value	of

(run	1	q
(conde

((nevero))
(	#s)))

19 (−0),
because	The	 Law	 of	 Swapping	 conde	Lines
says	 the	 expressions	 in	 this	 and	 the	 previous
frame	have	the	same	values.



What	is	the	value	of

(run	2	q
(conde

(#s)
((
nevero))))

20 It	has	no	value,
because	 run*	 never	 finishes	 determining	 the
second	value;	the	goal	(nevero)	never	succeeds
and	never	fails.



What	is	the	value	of

(run	1	q
(conde

(#s)
((nevero)))

#u)

21 It	has	no	value.
After	 the	 first	 conde	 line	 succeeds,	 #u	 fails.
This	causes	(nevero)	 in	 the	second	conde	 line
to	be	 tried;	 as	we	have	 seen,	 (nevero)	neither
succeeds	nor	fails.



What	is	the	value	of

(run	5	q
(conde

((nevero))
((alwayso))
((	nevero))))

22 It	is	(−0	−0	−0	−0	−0).
	



What	is	the	value	of

(run	6	q
(conde

((≡	 'spicy	 q)
(nevero))
((≡	'hot	q)	(nevero))
((≡	 'apple	 q)
(alwayso))
((≡	 'cider	 q)
(alwayso))))

23 It	is	(apple	cider	apple	cider	apple	cider).
As	 we	 know	 from	 frame	 1:61,	 the
order	of	the	values	does	not	matter.

Can	we	use	nevero	and	alwayso	 in
other	recursive	definitions?

24Yes.

Here	is	the	definition	of	very-recursiveo.

(defrel	(very-recursiveo)
(conde

((nevero))
((very-recursiveo))
((alwayso))
((very-recursiveo))
((nevero))))

Does	 (	 run	 1000000	 q	 (very-
recursiveo))	have	a	value?

25Yes,	indeed!
A	list	of	one	million	−0	values.

⇒	Take	a	peek	“Under	the	Hood”	at	chapter	10.	⇐



	

	



Is	0	a	bit? 1 Yes.
Is	1	a	bit? 2 Yes.
Is	2	a	bit? 3 No.

A	bit	is	either	a	0	or	a	1.
Which	 bits	 are
represented	 by	 a	 fresh
variable	x

4 0	and	1.

Here	is	bit-xoro.

(defrel	(bit-xoro	x	y
r)
(conde

((≡	0	x)	(≡	0	y)
(≡	0	r))
((≡	0	x)	(≡	1	y)
(≡	1	r))
((≡	1	x)	(≡	0	y)
(≡	1	r))
((≡	1	x)	(≡	1	y)
(≡	0	r))))

When	is	0	the	value	of	r

5When	x	and	y	have	the	same	value.†

_______________
†	Another	way	to	define	bit-xoro	is	to	use	bit-nando

	
(defrel	(bit-xoro	x	y	r)

(fresh	(s	t	u)
(bit-nando	x	y	s)
(bit-nando	s	y	u)
(bit-nando	x	s	t)
(bit-nando	t	u	r))),

where	bit-nando	is

(defrel	(bit-nando	x	y	r)
(conde

((≡	0	x)	(≡	0	y)	(≡	1	r))
((≡	0	x)	(≡	1	y)	(≡	1	r))
((≡	1	x)	(≡	0	y)	(≡	1	r))
((≡	1	x)	(≡	1	y)	(≡	0	r)))).

Both	 bit-xoro	 and	 bit-nando	 are	 universal	 binary	 Boolean	 relations,
since	either	can	be	used	to	define	all	other	binary	Boolean	relations.

Demonstrate	 this	 using
run*.

6 (run*	(x	y)
(bit-xoro	x	y	0))
which	has	the	value

((0	0)
(1	1)).

	
When	is	1	the	value	of	r 7When	x	and	y	have	different	values.
Demonstrate	 this	 using
run*.

8 (run*	(x	y)
(bit-xoro	x	y	1))
which	has	the	value



((0	1)
(1	0)).



What	is	the	value	of

(run*	(x	y	r)
(	bit-xoro	x	y	r))

9 ((0	0	0)
(0	1	1)
(1	0	1)
(1	1	0)).

Here	is	bit-ando.

(defrel	(bit-ando	x	y	r)
(conde

((≡	 0	 x)	 (≡	 0	 y)	 (≡	 0
r))
((≡	 1	 x)	 (≡	 0	 y)	 (≡	 0
r))
((≡	 0	 x)	 (≡	 1	 y)	 (≡	 0
r))
((≡	 1	 x)	 (≡	 1	 y)	 (≡	 1
r))))

When	is	1	the	value	of	r

10When	x	and	y	are	both	1.†

_______________
†	Another	way	to	define	bit-ando	is	to	use	bit-nando	and	bit-
noto

	
(defrel	(bit-ando	x	y	r)

(fresh	(s)
(bit-nando	x	y	s)
(bit-noto	s	r)))

where	bit-noto	itself	is	defined	in	terms	of	bit-nando

(defrel	(bit-noto	x	r)
(bit-nando	x	x	r)).

Demonstrate	this	using	run*. 11 (run*	(x	y)
(bit-ando	x	y	1))
which	has	the	value

((1	1)).
	

Here	is	half-addero.

(defrel	(half-addero	x	y	r	c)
(bit-xoro	x	y	r)
(bit-ando	x	y	c))

What	value	 is	associated	with	r
in

(run*r
(	half-addero	1	1	r	1))

12 0.†

_______________
†	half-addero	can	be	redefined,

	
(defrel	(half-addero	x	y	r	c)

(conde

((≡	0	x)	(≡	0	y)	(≡	0	r)	(≡	0	c))
((≡	1	x)	(≡	0	y)	(≡	1	r)	(≡	0	c))
((≡	0	x)	(≡	1	y)	(≡	1	r)	(≡	0	c))
((≡	1	x)	(≡	1	y)	(≡	0	r)	(≡	1	c)))).



What	is	the	value	of

(run*	(x	y	r	c)
(	half-addero	x	y	r	c))

13 ((0	0	0	0)
(0	1	1	0)
(1	0	1	0)
(1	1	0	1)).

Describe	half-addero. 14Given	the	bits	x,	y,	r,	and	c,	half-
addero	satisfies	x	+	y	=	r	+	2	·	c.

Here	is	full-addero.

(defrel	(full-addero	b	x	y	r	c)
(fresh	(w	xy	wz)

(half-addero	x	y	w	xy)
(half-addero	w	b	r	wz)
(bit-xoro	xy	wz	c)))

The	x,	y,	r,	and	c	variables	serve	 the	same
purpose	as	in	half-addero.
full-addero	 also	 expects	 a	 carry-in	 bit,	 b.
What	values	are	associated	with	r	and	c	in

(run*	(r	c)
(	full-addero	0	1	1	r	c))

15 (0	1).†

_______________
†	full-addero	can	be	redefined,

	
(defrel	(full-addero	b	x	y	r	c)

(conde

((≡	0	b)	(≡	0	x)	(≡	0	y)	(≡	0	r)
(≡	0	c))
((≡	1	b)	(≡	0	x)	(≡	0	y)	(≡	1	r)
(≡	0	c))
((≡	0	b)	(≡	1	x)	(≡	0	y)	(≡	1	r)
(≡	0	c))
((≡	1	b)	(≡	1	x)	(≡	0	y)	(≡	0	r)
(≡	1	c))
((≡	0	b)	(≡	0	x)	(≡	1	y)	(≡	1	r)
(≡	0	c))
((≡	1	b)	(≡	0	x)	(≡	1	y)	(≡	0	r)
(≡	1	c))
((≡	0	b)	(≡	1	x)	(≡	1	y)	(≡	0	r)
(≡	1	c))
((≡	1	b)	(≡	1	x)	(≡	1	y)	(≡	1	r)
(≡	1	c)))).

	
What	value	is	associated	with	(r	c)	in

(run*	(r	c)
(	full-addero	1	1	1	r	c))

16 (	1	1).



What	is	the	value	of

(run*	(b	x	y	r	c)
(	full-addero	b	x	y	r	c))

17 ((0	0	0	0	0)
(1	0	0	1	0)
(0	1	0	1	0)
(1	1	0	0	1)
(0	0	1	1	0)
(1	0	1	0	1)
(0	1	1	0	1)
(1	1	1	1	1)).

Describe	full-addero. 18Given	 the	 bits	b,	 x,	 y,	 r,	 and	 c,
full-addero	satisfies	b	+	x	+	y	=	r
+	2	·	c.

What	is	a	natural	number? 19A	 natural	 number	 is	 an	 integer
greater	than	or	equal	to	zero.	Are
there	 any	 other	 kinds	 of
numbers?

Is	each	number	represented	by	a	bit? 20No.
Each	number	is	represented
as	a	list	of	bits.

Which	list	represents	the	number	zero? 21 The	empty	list	()?
Correct.	Good	guess. 22Does	 (0)	 also	 represent	 the

number	zero?
	

No.
Each	 number	 has	 a	 unique
representation,	 therefore	 (0)	 cannot
also	be	zero.	Furthermore,	(0)	does	not
represent	a	number.

Which	list	represents	1	·	20?	That	is	to
say,	 which	 list	 represents	 the	 number
one?

23 (	1).



Which	number	is	represented	by

(	1	0	1)

24 5,
because	the	value	of	(1	0	1)	is	1	·	20	+
0	·	21	+	1	·	22,	which	is	the	same	as	1
+	0	+	4,	which	is	five.

Correct.	 Which	 number	 is
represented	by

(	1	1	1)

25 7,
because	the	value	of	(1	1	1)	is	1	·	20	+
1	·	21	+	1	·	22,	which	is	the	same	as	1
+	2	+	4,	which	is	seven.

Also	 correct.	 Which	 list
represents	9?

26 (1	0	0	1),
because	the	value	of	(1	0	0	1)	is	1	·	20
+	0	·	21	+	0	·	22	+	1	·	23,	which	is	the
same	as	1	+	0	+	0	+	8,	which	is	nine.

Yes.	How	do	we	represent	6? 27As	the	list	(	1	1	0)?
No.	Try	again. 28 Then	it	must	be	(0	1	1),

because	the	value	of	(0	1	1)	is	0	·	20	+
1	·	21	+	1	·	22,	which	is	the	same	as	0
+	2	+	4,	which	is	six.

Correct.	Does	this	seem	unusual? 29Yes,	it	seems	very	unusual.
	

How	do	we	represent	19? 30As	the	list	(	1	1	0	0	1)?
Yes.	How	do	we	represent	1729? 31As	the	list	(	1	0	0	0	0	0	1	1	0	1	1)?
Correct	again.	What	is	interesting
about	 the	 lists	 that	 represent	 the
numbers	we	have	seen?

32 They	contain	only	0’s	and	1’s.

Yes.	What	else	is	interesting? 33 Every	non-empty	list	ends	with	a	1.
Does	 every	 list	 representation	 of
a	number	end	with	a	1?

34Almost	 always,	 except	 for	 the	 empty	 list,
(),	which	represents	zero.

Compare	 the	 numbers
represented	by	n	and	‘(0	

▪
	,n).

35 ‘(0	
▪
	,n)	is	twice	n.
But	n	 cannot	 be	 (),	 since	‘(0	

▪
	 ,n)	 is

(0),	 which	 does	 not	 represent	 a
number.

If	n	is	(1	0	1),	what	is	‘(0	
▪
	,n) 36 (0	1	0	1),

since	twice	five	is	ten.
Compare	 the	 numbers
represented	by	n	and	‘(1	

▪
	,n)

37 ‘(1	
▪
	,n)	is	one	more	than	twice	n,
even	when	n	is	().



If	n	is	(1	0	1),	what	is	‘(1	
▪
	,n) 38 (1	1	0	1),

since	 one	 more	 than	 twice	 five	 is
eleven.

	



What	is	the	value	of

(	build-num	0)

39 ().



What	is	the	value	of

(	build-num	36)

40 (	0	0	1	0	0	1).



What	is	the	value	of

(	build-num	19)

41 (	1	1	0	0	1).

Define	build-num. 42Here	is	one	way	to	define	it.

(define	(build-num	n)
(cond

((zero?	n)	'())
((even?	n)
(cons	0

(build-num	(÷	n	2))))
((odd?	n)
(cons	1

(build-num	(÷	(−	n	1)	2))))))
Redefine	 build-num,	 where
(zero?	n)	is	the	question	of	the
last	cond	line.

43Here	it	is.

(define	(build-num	n)
(cond

((odd?	n)
(cons	1

(build-num	(÷	(−	n	1)	2))))
((and	(not	(zero?	n))	(even?	n))
(cons	0

(build-num	(÷	n	2))))
((zero?	n)	'())))

	
Is	 there	 anything	 interesting
about	 the	 previous	 definition
of	build-num

44 For	 any	 number	 n,	 one	 and	 only	 one	 cond
question	is	true.

Can	we	 rearrange	 these	 cond
lines	in	any	order?

45Yes.
This	 is	 called	 the	 non-overlapping
property.†	 It	 appears	 rather	 frequently
throughout	this	and	the	next	chapter.

_______________
†	Thank	you	Edsger	W.	Dijkstra	(1930–2002).

What	 is	 the	 sum	 of	 (	 1)	 and
(1)

46 (	0	1),	which	is	two.



What	is	the	sum	of	(	0	0	0	1)
and	(1	1	1)

47 (	1	1	1	1),	which	is	fifteen.

What	 is	 the	 sum	 of	 (	 1	 1	 1)
and	(0	0	0	1)

48 This	is	also	(	1	1	1	1),	which	is	fifteen.

What	is	the	sum	of	(	1	1	0	0	1)
and	()

49 (	1	1	0	0	1),	which	is	nineteen.

What	is	the	sum	of	()	and	(	1	1
0	0	1)

50 This	is	also	(	1	1	0	0	1),	which	is	nineteen.

What	is	the	sum	of	(	1	1	1	0	1)
and	(1)

51 (	0	0	0	1	1),	which	is	twenty-four.



Which	number	is	represented	by

‘(,x	1)

52 It	depends	on	what	x	is.
	

Which	number	would	be	represented	by

‘(,x	1)

if	x	were	0?

53 Two,
which	is	represented	by	(0	1).

Which	number	would	be	represented	by

‘(,x	1)

if	x	were	1?

54 Three,
which	is	represented	by	(1	1).

So	which	numbers	are	represented	by

‘(,x	1)

55 Two	and	three.



Which	 numbers	 are
represented	by

‘(,x	,x	1)

56 Four	and	seven,
which	are	represented	by	(0	0	1)	and	(1	1	1),
respectively.



Which	 numbers	 are
represented	by

‘(,x	0	,y	1)

57 Eight,	nine,	twelve,	and	thirteen,
which	are	represented	by	(0	0	0	1),	(1	0	0	1),	(0	0
1	1),	and	(1	0	1	1),	respectively.



Which	 numbers	 are
represented	by

‘(,x	0	,y	,z)

58Once	again,	eight,	nine,	twelve,	and	thirteen,
which	are	represented	by	(0	0	0	1),	(1	0	0	1),	(0	0
1	1),	and	(1	0	1	1),	respectively.



Which	 number	 is
represented	by

‘(,x)

59One,
which	 is	 represented	 by	 (1).	 Since	 (0)	 does	 not
represent	a	number,	x	must	be	1.

	



Which	 number	 is
represented	by

‘(0	,x)

60 Two,
which	is	represented	by	(0	1).	Since	(0	0)	does	not
represent	a	number,	x	must	be	1.



Which	 numbers	 are	 represented
by

‘(1	
▪
	,z)

61 It	 depends	 on	 what	 z	 is.	 What	 does	 z
represent?



Which	number	is	represented	by

‘(1	
▪
	,z)

where	z	is	()

62One,
since	(1	

▪
	())	is	(1).



Which	number	is	represented	by

‘(1	
▪
	,z)

where	z	is	(1)

63 Three,
since	(1	

▪
	(1))	is	(1	1).



Which	number	is	represented	by

‘(1	
▪
	,z)

where	z	is	(0	1)

64 Five,
since	(1	

▪
	(0	1))	is	(1	0	1).

So	which	numbers	are	represented	by

‘(1	
▪
	,z)

65All	the	odd	numbers?

Right.	 Then,	 which	 numbers	 are
represented	by

‘(0	
▪
	,z)

66All	the	even	numbers?
	

Not	 quite.	Which	 even	 number	 is	 not	 of
the	form	‘(0	

▪
	,z)

67 Zero,	which	is	represented	by	().

For	which	values	of	z	does

‘(0	
▪
	,z)

represent	a	number?

68 It	 represents	 a	 number	 for	 all	 z
greater	than	zero.



Which	 numbers	 are	 represented
by

‘(0	0	
▪
	,z)

69 Every	 other	 even	 number,	 starting	 with
four.



Which	 numbers	 are	 represented
by

‘(0	1	
▪
	,z)

70 Every	 other	 even	 number,	 starting	 with
two.



Which	 numbers	 are	 represented
by

‘(1	0	
▪
	,z)

71 Every	 other	 odd	 number,	 starting	 with
five.



Which	 numbers	 are
represented	by

‘(1	0	,y	
▪
	,z)

72Once	 again,	 every	 other	 odd	 number,	 starting
with	five.

Why	do	‘(1	0	
▪
	,z)	and	‘(1	0

,y	
▪
	 ,z)	 represent	 the	 same

numbers?

73Because	z	cannot	be	the	empty	list	in	‘(1	0	
▪
	,z)

and	y	 cannot	 be	 0	when	 z	 is	 the	 empty	 list	 in
‘(1	0	,y	

▪
	,z).



Which	numbers	are	represented	by

‘(0	,y	
▪
	,z)

74 Every	even	number,	starting	with	two.



Which	numbers	are	represented	by

‘(1	,y	
▪
	,z)

75 Every	odd	number,	starting	with	three.
	



Which	 numbers	 are
represented	by

‘(,y	
▪
	,z)

76 Every	 number,	 starting	with	 one—in	 other	 words,
the	positive	numbers.

Here	is	poso.

(defrel	(poso	n)
(fresh	(a	d)

(≡	 ‘(,a	
▪
	 ,d)

n)))

What	value	 is	associated
with	q	in

(run*	q
(	poso	'(0	1	1)))

77
−0.

What	value	 is	associated
with	q	in

(run*	q
(	poso	'(1)))

78
−0.



What	is	the	value	of

(run*	q
(	poso	'()))

79 ().

What	value	is	associated	with	r	in

(run*	r
(	poso	r))

80 (	−0	▪	−1).

Does	this	mean	that	(	poso	r)	always	succeeds	when	r	is	fresh? 81Yes.



Which	numbers	are	represented	by

‘(,x	,y	
▪
	,z)

82 Every	 number,	 starting	 with
two—in	 other	 words,	 every
number	greater	than	one.
	

Here	is	>1o.

(defrel	(>1o	n)
(fresh	(a	ad	dd)†

(≡	‘(,a	,ad	
▪
	,dd)	n)))

What	value	is	associated	with	q	in

(run*	q
(>1o	'(0	1	1)))

_______________
†	The	names	a,	ad,	and	dd	correspond	to	car,	cadr,	and	cddr.
cadr	 is	a	Scheme	function	that	stands	for	the	car	of	 the	cdr,
and	cddr	stands	for	the	cdr	of	the	cdr.

83
−0.



What	is	the	value	of

(run*	q
(>	1o	'(0	1)))

84 (	−0).



What	is	the	value	of

(run*	q
(>	1o	'(1)))

85 ().



What	is	the	value	of

(run*	q
(>	1o	'()))

86 ().

What	value	is	associated	with	r	in

(run*	r
(>	1o	r))

87 (	−0	−1	▪	−2).

Does	this	mean	that	(>	1o	r)	always	succeeds	when	r	is	fresh? 88Yes.
	



What	 is	 the
value	of

(run	 3	 (x	y
r)

(
addero
0	 x	 y
r))

89We	 have	 not	 seen	 addero.	 We	 understand,	 however,	 that
(addero	b	n	m	r)	satisfies	the	equation	b	+	n	+	m	=	r,	where
b	is	a	bit,	and	n,	m,	and	r	are	numbers.

We	 find
addero’s
definition	 in
frame	104.	What
is	the	value	of

(run	 3	 (x	y
r)

(
addero
0	 x	 y
r))

90 ((−0	()	−0)
(()	(−0	▪	−1)	(−0	▪	−1))
((1)	(1)	(0	1))).

(addero	 0	x	 y	 r)	 sums	 x	 and	 y	 to	 produce	 r.	 For
example,	in	the	first	value,	a	number	added	to	zero
is	that	number.	In	the	second	value,	the	sum	of	()
and	(−0	▪	 −1)	 is	 (−0	▪	 −1).	 In	 other	words,	 the	 sum	 of
zero	and	a	positive	number	is	the	positive	number.

Does	((	1)	(1)	(0
1))	 represent	 a
ground	value?

91Yes.

Does	 (	 −0	 ()	 −0)
represent	 a
ground	value?

92No,
because	it	contains	reified	variables.

What	 can	 we
say	 about	 the
three	 values	 in
frame	90?

93 The	third	value	is	ground,	and	the	first	two	values	are	not.

Before	reading	the	next	frame,

Treat	Yourself	to	a	Hot	Fudge	Sundae!



	



What	is	the	value	of

(run	19	(x	y	r)
(	 addero	 0	 x	 y
r))

94 ((−0	()	−0)
(()	(−0	▪	−1)	(−0	▪	−1))
((1)	(1)	(0	1))
((1)	(0	−0	▪	−1)	(1	−0	▪	−1))
((1)	(1	1)	(0	0	1))
((0	1)	(0	1)	(0	0	1))
((1)	(1	0	−0	▪	−1)	(0	1	−0	▪	−1))
((0	−0	▪	−1)	(1)	(1	−0	▪	−1))
((1)	(1	1	1)	(0	0	0	1))
((1	1)	(0	1)	(1	0	1))
((1	1)	(1)	(0	0	1))
((1)	(1	1	0	−0	▪	−1)	(0	0	1	−0	▪	−1))
((1)	(1	1	1	1)	(0	0	0	0	1))
((1)	(1	1	1	0	−0	▪	−1)	(0	0	0	1	−0	▪	−1))
((1	0	−0	▪	−1)	(1)	(0	1	−0	▪	−1))
((1)	(1	1	1	1	1)	(0	0	0	0	0	1))
((0	1)	(1	1)	(1	0	1))
((1	1	1)	(1)	(0	0	0	1))
((1	1)	(1	1)	(0	1	1))).

How	 many	 of	 its	 values
are	ground	and	how	many
are	not?

95 Eleven	are	ground	and	eight	are	not.

What	 are	 the	 nonground
values?

96 ((−0	()	−0)
(()	(−0	▪	−1)	(−0	▪	−1))
((1)	(0	−0	▪	−1)	(1	−0	▪	−1))
((1)	(1	0	−0	▪	−1)	(0	1	−0	▪	−1))
((0	−0	▪	−1)	(1)	(1	−0	▪	−1))
((1)	(1	1	0	−0	▪	−1)	(0	0	1	−0	▪	−1))
((1)	(1	1	1	0	−0	▪	−1)	(0	0	0	1	−0	▪	−1))
((1	0	−0	▪	−1)	(1)	(0	1	−0	▪	−1))).

What	 is	 an	 interesting
property	 that	 these
nonground	 values
possess?

97 Variables	appear	in	r,	and	in	either	x	or	y,	but	not
in	both.
	

Describe	 the	 third 98 Here	 x	 is	 (1)	 and	 y	 is	 (0	 −0	 ▪	 −1),	 a	 positive	 even



nonground	value. number.	Adding	x	to	y	yields	all	but	the	first	odd
number.

Is	the	third	nonground	value	the	same	as	the	fifth
nonground	value?

Almost,
since	x	+	y	=	y	+	x.

99 Oh.

Does	 each	 nonground
value	 have	 a
corresponding	nonground
value	in	which	x	and	y	are
swapped?

100 No.
For	example,	the	first	two	nonground	values
do	not	correspond	to	any	other	values.

Describe	 the	 fourth
nonground	value.

101 Frame	72	shows	that
(1	 0	 −0	 ▪

	 −1)	 represents	 every	 other	 odd
number,	 starting	 at	 five.	 Adding	 one	 to	 the
fourth	 nonground	 number	 produces	 every
other	 even	 number,	 starting	 at	 six,	which	 is
represented	by	(0	1	−0	▪	−1).

What	 are	 the	 ground
values	of	frame	94?

102 (((1)	(1)	(0	1))
((1)	(1	1)	(0	0	1))
((0	1)	(0	1)	(0	0	1))
((1)	(1	1	1)	(0	0	0	1))
((1	1)	(0	1)	(1	0	1))
((1	1)	(1)	(0	0	1))
((1)	(1	1	1	1)	(0	0	0	0	1))
((1)	(1	1	1	1	1)	(0	0	0	0	0	1))
((0	1)	(1	1)	(1	0	1))
((1	1	1)	(1)	(0	0	0	1))
((1	1)	(1	1)	(0	1	1))).

	
What	 is	 another
interesting	 property	 of
these	ground	values?

103 Each	list	cannot	be	created	from	any	list	in	frame
96,	regardless	of	which	values	are	chosen	for	the
variables	 there.	 This	 is	 an	 example	 of	 the	 non-
overlapping	property	described	in	frame	45.

⇒	First-time	readers	may	skip	to	frame	114.	⇐
Here	 are	 addero	 and	 gen-
addero.

104 A	carry	bit.
	



(defrel	(addero	b	n	m	r)
(conde

((≡	0	b)	(≡	'()	m)	(≡	n
r))
((≡	0	b)	(≡	'()	n)	(≡	m
r)
(poso	m))
((≡	1	b)	(≡	'()	m)
(addero	0	n	'(1)	r))
((≡	 1	 b)	 (≡	 '()	 n)
(poso	m)
(addero	0	'(1)	m	r))
((≡	'(1)	n)	(≡	'(1)	m)
(fresh	(a	c)

(≡	‘(,a	,c)	r)
(full-addero	 b	 1
1	a	c)))

((≡	 '(1)	 n)	 (gen-
addero	b	n	m	r))
((≡	 '(1)	 m)	 (>1o	 n)
(>1o	r)
(addero	b	'(1)	n	r))
((>1o	 n)	 (gen-addero
b	n	m	r))))

(defrel	(gen-addero	b	n	m
r)
(fresh	(a	c	d	e	x	y	z)

(≡	‘(,a	
▪
	,x)	n)

(≡	‘(,d	
▪
	 ,y)	m)	 (poso

y)
(≡	 ‘(,c	

▪
	 ,z)	 r)	 (poso

z)
(full-addero	b	a	d	c	e)
(addero	e	x	y	z)))



What	is	b
What	are	n,	m,	and	r 105 They	are	numbers.
What	value	is	associated	with	s
in

(run*	s
(	 gen-addero	 1	 '(0	 1
1)	'(1	1)	s))

106 (	0	1	0	1).

What	are	a,	c,	d,	and	e 107 They	are	bits.
What	are	x,	y,	and	z 108 They	are	numbers.
In	the	definition	of	gen-addero,
(poso	y)	and	(poso	 z)	 follow	(≡
‘(,d	

▪
	,y)	m)	and	(≡	‘(,c	

▪
	,z)	r),

respectively.	Why	 isn’t	 there	 a
(poso	x)

109 Because	in	 the	first	use	of	gen-addero	 from
addero,	n	can	be	(1).

What	 about	 the	 other	 use	 of
gen-addero	from	addero

110 (>	1o	n)	that	precedes	the	use	of	gen-addero
would	 be	 the	 same	 as	 if	 we	 had	 placed	 a
(poso	x)	following	(≡	‘(,a	

▪
	,x)	n).	But	if	we

were	 to	 use	 (poso	 x)	 in	 gen-addero,	 then	 it
would	fail	for	n	being	(1).

Describe	gen-addero. 111 Given	the	carry	bit	b,	and	the	numbers	n,	m,
and	 r,	 gen-addero	 satisfies	b	 +	 n	 +	m	 =	 r,
provided	 that	n	 is	 positive	 and	m	 and	 r	are
greater	than	one.



What	is	the	value	of

(run*	(x	y)
(	addero	0	x	y	'(1	0	1)))

112 (((1	0	1)	())
(()	(1	0	1))
((1)	(0	0	1))
((0	0	1)	(1))
((1	1)	(0	1))
((0	1)	(1	1))).

	



Describe	the	values	produced	by

(run*	(x	y)
(	addero	0	x	y	'(1	0	1)))

113 The	 values	 are	 the	 pairs	 of	 numbers	 that
sum	to	five.

We	can	define	+o	using	addero.

(defrel	(+o	n	m	k)
(addero	0	n	m	k))

Use	 +	 o	 to	 generate	 the	 pairs	 of
numbers	that	sum	to	five.

114Here	 is	 an	 expression	 that	 generates	 the
pairs	of	numbers	that	sum	to	five,

(run*	(x	y)
(+	o	x	y	'(1	0	1))).



What	is	the	value	of

(run*	(x	y)
(+	o	x	y	'(1	0	1)))

115 (((1	0	1)	())
(()	(1	0	1))
((1)	(0	0	1))
((0	0	1)	(1))
((1	1)	(0	1))
((0	1)	(1	1))).

Now	define	−	o	using	+o. 116Wow.

(defrel	(−o	n	m	k)
(+o	m	k	n))



What	is	the	value	of

(run*	q
(−	o	'(0	0	0	1)	'(1	0	1)	q))

117 ((	1	1)).



What	is	the	value	of

(run*	q
(−	o	'(0	1	1)	'(0	1	1)	q))

118 (()).
	



What	is	the	value	of

(run*	q
(−	o	'(0	1	1)	'(0	0
0	1)	q))

119 ().
Eight	 cannot	 be	 subtracted	 from	 six,	 since
we	do	not	represent	negative	numbers.

Here	is	length.

(define	(length	l)
(cond

((null?	l)	0)
(#t	 (+	 1	 (length
(cdr	l))))))

Define	lengtho.

120 That’s	familiar	enough.

(defrel	(lengtho	l	n)
(conde

((nullo	l)	(≡	'()	n))
((fresh	(d	res)

(cdro	l	d)
(+o	'(1)	res	n)
(lengtho	d	res)))))

What	 value	 is	 associated
with	n	in

(run	1	n
(	lengtho	'(jicama
rhubarb	 guava)
n))

121 (	1	1).

And	 what	 value	 is
associated	with	ls	in

(run*	ls
(	 lengtho	 ls	 '(1	 0
1)))

122 (−0	−1	−2	−3	−4),
since	this	represents	a	five-element	list.



What	is	the	value	of

(run*	q
(	lengtho	'(1	0	1)	3))

123 (),
since	(1	1)	is	not	3.



What	is	the	value	of

(run	3	q
(	 lengtho	 q
q))

124 (()	(1)	(0	1)),
since	 these	 numbers	 are	 the	 same	 as	 their
lengths.

	



What	is	the	value	of

(run	4	q
(	lengtho	q	q))

125 This
expression
has	 no
value,

since	 it
is	 still
looking
for	 the
fourth
value.

We	 could	 represent	 both	 negative	 and	 positive	 integers	 as
‘(,sign-bit	

▪
	 ,n),	 where	 n	 is	 our	 representation	 of	 natural

numbers.	 If	 sign-bit	 is	 1,	 then	 we	 have	 the	 negative	 integers
and	 if	 sign-bit	 is	 0,	 then	 we	 have	 the	 positive	 integers.	 We
would	 still	 use	 ()	 to	 represent	 zero.	 And,	 of	 course,	 sign-bit
could	be	fresh.

Define	 sumo,	 which	 expects	 three	 integers	 instead	 of	 three
natural	numbers	like	+o.

126 That	 does
sound
challenging!
Perhaps
over	lunch.

⇒	Now	go	make	yourself	a	baba	ghanoush	pita	wrap.	⇐

This	space	reserved	for

BABA	GHANOUSH	STAINS!



	

	



What	is	the	value	of

(run	10	(x	y	r)
(∗	o	x	y	r))

1 ((()	−0	())
((−0	▪	−1)	()	())
((1)	(−0	▪	−1)	(−0	▪	−1))
((−0	−1	▪	−2)	(1)	(−0	−1	▪	−2))
((0	1)	(−0	−1	▪	−2)	(0	−0	−1	▪	−2))
((0	0	1)	 (−0	 −1	▪	 −2)	 (0	0	 −0	 −1	 ▪
−2))
((1	−0	▪	−1)	(0	1)	((0	1	−0	▪	−1))
((0	0	0	1)	(−0	−1	▪	−2)	(0	0	0	−0	−1
▪
	−2))
((1	−0	▪	−1)	(0	0	1)	(0	0	1	−0	▪
−1))
((0	1	−0	▪	−1)	(0	1)	(0	0	1	−0	▪
−1))).

It	 is	difficult	 to	see	patterns	when	 looking	at
ten	values.	Would	it	be	easier	to	examine	only
its	nonground	values?

2 Not	at	all,
since	 the	 first	 ten	 values
are	nonground.

The	value	associated	with	p	in

(run*	p
(∗o	'(0	1)	'(0	0	1)	p))

is	(	0	0	0	1).	To	which	nonground	value	does
this	correspond?

3 The	fifth	nonground	value,
((0	1)	(−0	−1	▪	−2)	(0	−0	−1	▪	−2)).

Describe	the	fifth	nonground	value. 4 The	 product	 of	 two	 and	 a
number	 greater	 than	 one	 is
twice	the	number.

Describe	the	seventh	nonground	value. 5 The	product	of	 two	and	an	odd
number	 greater	 than	 one	 is
twice	the	odd	number.

Is	 the	product	of	 (	1	 −0	▪	 −1)	 and	 (0	 1)	 odd	 or
even?

6 It	is	even,
since	the	first	bit	of	(0	1	−0	▪
−1)	is	0.

Is	there	a	nonground	value	that	shows	that	the
product	of	three	and	three	is	nine?

7 No.
	



What	is	the	value	of

(run	1	(x	y	r)
(≡	 ‘(,x	 ,y	 ,r)	 '((1
1)	 (1	 1)	 (1	 0	 0
1)))
(∗	o	x	y	r))

8 (((1	1)	(1	1)	(1	0	0	1))),
which	 shows	 that	 the	 product	 of	 three	 and
three	is	nine.

Here	is	∗o.

(defrel	(∗o	n	m	p)
(conde

((≡	'()	n)	(≡	'()	p))
((poso	n)	(≡	'()	m)
(≡	'()	p))
((≡	 '(1)	 n)	 (poso
m)	(≡	m	p))
((>1o	 n)	 (≡	 '(1)
m)	(≡	n	p))
((fresh	(x	z)
(≡	 ‘(0	

▪
	 ,x)	 n)

(poso	x)
(≡	 ‘(0	

▪
	 ,z)	 p)

(poso	z)
(>1o	m)
(∗o	x	m	z)))
((fresh	(x	y)
(≡	 ‘(1	

▪
	 ,x)	 n)

(poso	x)
(≡	 ‘(0	

▪
	 ,y)	 m)

(poso	y)
(∗o	m	n	p)))
((fresh	(x	y)
(≡	 ‘(1	

▪
	 ,x)	 n)

(poso	x)
(≡	 ‘(1	

▪
	 ,y)	 m)

(poso	y)
(odd-∗o	 x	 n	 m

9 The	first	conde	line	says	that	the	product	of	zero
and	 anything	 is	 zero.	 The	 second	 line	 says	 that
the	product	of	a	positive	number	and	zero	is	also
equal	to	zero.



p)))))

Describe	 the	 first	 and
second	conde	lines.
Why	 isn’t	 ((≡	 '()	m)	 (≡	 '()
p))	the	second	conde	line?

10 If	so,	the	second	conde	line	would	also	contribute
(n	=	0,	m	=	0,	p	=	0),	already	contributed	by	the
first	line.	We	would	like	to	avoid	duplications.	In
other	 words,	 we	 enforce	 the	 non-overlapping
property.
	

Describe	 the	 third	 and
fourth	conde	lines.

11 The	third	conde	line	says	that	the	product	of	one
and	a	positive	number	is	that	number.	The	fourth
conde	 line	 says	 that	 the	 product	 of	 a	 number
greater	than	one	and	one	is	the	number.

Describe	 the	 fifth	 conde
line.

12 The	 fifth	conde	 line	 says	 that	 the	 product	 of	 an
even	positive	number	and	a	number	greater	than
one	 is	 an	 even	 positive	 number,	 using	 the
equation	
.

Why	 do	 we	 use	 this
equation?

13 For	 the	 recursion	 to	 have	 a	 value,	 one	 of	 the
arguments	to	∗	o	must	shrink.	Dividing	n	by	two
shrinks	n.

How	 do	 we	 divide	 n	 by
two?

14With	(≡	‘(0	
▪
	,x)	n),	where	x	is	not	().

Describe	 the	 sixth	 conde
line.

15 The	sixth	conde	 line	says	 that	 the	product	of	an
odd	 positive	 number	 and	 an	 even	 positive
number	 is	 the	 same	 as	 the	 product	 of	 the	 even
positive	number	and	the	odd	positive	number.

Describe	the	seventh	conde
line.

16 The	 seventh	conde	 line	 says	 that	 the	product	 of
an	odd	number	greater	than	one	and	another	odd
number	greater	than	one	is	the	result	of	(odd-∗o	x
n	m	p),	where	x	is	 .
	

Here	is	odd-∗o.

(defrel	 (odd-∗o	 x	 n	m
p)

17We	 know	 that	 x	 is	 .	 Therefore,	
.



(fresh	(q)
(bound-∗o	 q	 p	 n
m)
(∗o	x	m	q)
(+o	 ‘(0	

▪
	 ,q)	 m

p)))

If	 we	 ignore	 bound-∗o,
what	 equation	 describes
odd-∗o

Here	 is	 a	 hypothetical
definition	of	bound-∗o.

(defrel	 (bound-∗o	 q	 p
n	m)
#s)

18Okay,	so	this	is	not	the	final	definition	of	bound-
∗o.

Using	 the	 hypothetical
definition	 of	 bound-∗o,
what	 values	 would	 be
associated	with	n	and	m	in

(run	1	(n	m)
(∗	o	n	m	'(1)))

19 ((1)	(1)).
This	value	is	contributed	by	the	third	conde
line	of	∗o.

Now	what	is	the	value	of

(run	1	(n	m)
(>1o	n)
(>1o	m)
(∗	o	n	m	'(1	1)))

20 It	has	no	value,
since	 (∗o	 n	m	 '(1	 1))	 neither	 succeeds	 nor
fails.

	

Why	does	 (∗	 o	 n	m	 '(1	 1))
neither	 succeed	 nor	 fail	 in
the	previous	frame?

21Because	∗o	tries
n	=	2,	3,	4,	…

and	 similarly	 for	 m,	 trying	 bigger	 and	 bigger
numbers	 to	 see	 if	 their	 product	 is	 three.	 Since
there	 is	 no	 bound	 on	 how	 big	 the	 numbers	 can
be,	∗o	tries	bigger	and	bigger	numbers	forever.

How	can	we	make	(∗	o	n	m
'(1	1))	fail	in	this	case?

22By	redefining	bound-∗o.



How	 should	 bound-∗o
work?

23 If	we	are	trying	to	see	if	n	∗	m	=	r,	then	any	n	>	r
will	not	work.	So,	we	can	stop	searching	when	n
is	equal	to	r.	Or,	to	make	it	easier	to	test:	(∗o	n	m
r)	 can	 only	 succeed	 if	 the	 lengths	 (in	 bits)	 of	n
and	m	do	not	exceed	the	length	(in	bits)	of	r.

Here	is	bound-∗o.

(defrel	 (bound-∗o	 q	 p
n	m)
(conde

((≡	'()	q)	(poso	p))
((fresh	 (a0	 a1	 a2
a3	x	y	z)
(≡	‘(,a0	▪	,x)	q)
(≡	‘(,a1	▪	,y)	p)
(conde

((≡	'()	n)
(≡	‘(,a2
▪
	,z)	m)
(bound-
∗o	x	y	z
'()))

((≡	 ‘(,a3	 ▪

,z)	n)
(bound-
∗o	x	y	z
m)))))))

Is	this	definition	recursive?

24Yes,	indeed.



What	 is	 the
value	of

(run	 2	 (n
m)

(∗	 o	 n
m
'(1)))

25 (((1)	(1))),
because	bound-∗o	fails	when	the	product	of	n	and	m	is
larger	than	p,	and	since	the	length	of	n	plus	the	length
of	m	is	an	upper	bound	on	the	length	of	p.

What	 value	 is
associated	 with
p	in

(run*	p
(∗	 o

'(1	1	1)
'(1	 1	 1
1	 1	 1)
p))

26 (1	0	0	1	1	1	0	1	1),
which	contains	nine	bits.

If	we	replace	a	1
by	a	0	in

(∗o	 '(1	1	1)
'(1	 1	 1	 1	 1
1)	p),

is	 nine	 still	 the
maximum	length
of	p

27Yes,
because	'(1	1	1)	and	'(1	1	1	1	1	1)	represent	the	largest
numbers	 of	 lengths	 three	 and	 six,	 respectively.	 Of
course	 the	 rightmost	 1	 in	 each	 number	 cannot	 be
replaced	by	a	0.

Here	is	=lo.

(defrel	 (=lo
n	m)
(conde

((≡	 '()
n)	 (≡
'()	m))
((≡	'(1)
n)	 (≡
'(1)
m))

28Yes,	it	is.



((fresh
(a	 x	 b
y)
(≡	‘(,a
▪
	,x)	n)
(poso
x)
(≡	‘(,b
▪
	 ,y)
m)
(poso
y)
(=lo	 x
y)))))

Is	 this	 definition
recursive?



What	is	the	value	of

(run*	(w	x	y)
(=	 lo	 ‘(1
,w	 ,x	

▪
	 ,y)

'(0	 1	 1	 0
1)))

29 ((−0	−1	(−2	1))).
y	is	(−2	1),	so	the	length	of	‘(1	,w	,x	▪	,y)	is	the	same
as	the	length	of	(0	1	1	0	1).

	

What	 value	 is
associated	with	b	in

(run*	b
(=	 lo	 '(1)
‘(,b)))

30 1,
because	 if	 0	 were	 associated	 with	 b,	 then	 ‘(,b)
would	have	become	(0),	which	does	not	represent
a	number.

What	 value	 is
associated	with	n	in

(run*	n
(=	 lo	‘(1	 0
1	

▪
	,n)	'(0	1

1	0	1)))

31 (−0	1),
because	if	n	were	(−0	1),	then	the	length	of	‘(1	0	1	▪
,n)	would	be	the	same	as	the	length	of	(0	1	1	0	1).



What	 is	 the	 value
of

(run	5	(y	z)
(=	lo	‘(1
▪
	 ,y)	 ‘(1
▪
	,z)))

32 ((()	())
((1)	(1))
((−0	1)	(−1	1))
((−0	−1	1)	(−2	−3	1))
((−0	−1	−2	1)	(−3	−4	−5	1))),
because	each	y	and	z	must	be	the	same	length	in	order
for	‘(1	

▪
	,y)	and	‘(1	

▪
	,z)	to	be	the	same	length.



What	is	the	value	of

(run	5	(y	z)
(=	 lo	 ‘(1	

▪
	 ,y)

‘(0	
▪
	,z)))

33 (((1)	(1))
((−0	1)	(−1	1))
((−0	−1	1)	(−2	−3	1))
((−0	−1	−2	1)	(−3	−4	−5	1))
((−0	−1	−2	−3	1)	(−4	−5	−6	−7	1))).

Why	 isn’t	 (()	 ())	 the	 first
value?

34Because	 if	 z	 were	 (),	 then	 ‘(0	
▪
	 ,z)	 would	 not

represent	a	number.
	



What	 is	 the	 value
of

(run	5	(y	z)
(=	lo	‘(1	

▪

,y)	 ‘(0	 1
1	 0	 1	

▪

,z)))

35 (((−0	−1	−2	1)	())
((−0	−1	−2	−3	1)	(1))
((−0	−1	−2	−3	−4	1)	(−5	1))
((−0	−1	−2	−3	−4	−5	1)	(−6	−7	1))
((−0	−1	−2	−3	−4	−5	−6	1)	(−7	−8	−9	1))).
The	 shortest	 z	 is	 (),	 which	 forces	 y	 to	 be	 a	 list	 of
length	four.	Thereafter,	as	y	grows	in	length,	so	does
z.

Here	is	<lo.

(defrel	 (<lo	 n
m)
(conde

((≡	 '()	 n)
(poso	m))
((≡	'(1)	n)
(>1o	m))
((fresh	 (a
x	b	y)
(≡	 ‘(,a	

▪

,x)	 n)
(poso	x)
(≡	 ‘(,b	

▪

,y)	 m)
(poso	y)
(<lo	 x
y)))))

How	 does	 this
definition	 differ
from	 the	 definition
of	=	lo

36 In	the	first	conde	line,	(≡	'()	m)	 is	replaced	by	(poso	m).
In	 the	second	conde	 line,	 (≡	 '(1)	m)	 is	 replaced	by	 (>1o
m).	This	<lo	relation	guarantees	that	n	is	shorter	than	m.



What	 is	 the
value	of

(run	 8
(y	z)

(<
lo
‘(1
▪
	,y)
‘(0
1	 1
0	 1
▪

,z)))

37 ((()	−0)
((1)	−0)
((−0	1)	−1)
((−0	−1	1)	−2)
((−0	−1	−2	1)	(−3	▪	−4))
((−0	−1	−2	−3	1)	(−4	−5	▪	−6))
((−0	−1	−2	−3	−4	1)	(−5	−6	−7	▪	−8))
((−0	−1	−2	−3	−4	−5	1)	(−6	−7	−8	−9	▪	−10))).

Why	 is	 z
fresh	 in	 the
first	 four
values?

38A	list	that	represents	a	number	is	associated	with	the	variable	y.
If	the	length	of	this	list	is	at	most	three,	then	‘(1	

▪
	,y)	is	shorter

than	‘(0	1	1	0	1	
▪
	,z),	regardless	of	the	value	associated	with	z.

	



What	is	the	value	of

(run	1	n
(<	lo	n	n))

39 It	has	no	value.
The	first	two	conde	lines	fail.	In	the	recursion,	x
and	 y	 are	 fused	 with	 the	 same	 fresh	 variable,
which	is	where	we	started.

Define	 ⩽lo	 using	 =lo
and	<lo.

40 Is	this	correct?

(defrel	(⩽lo	n	m)
(conde

((=lo	n	m))
((<lo	n	m))))

It	 looks	 like	 it	 might
be	correct.	What	is	the
value	of

(run	8	(n	m)
(	⩽lo	n	m))

41 ((()	())
((1)	(1))
(()	(−0	▪	−1))
((−0	1)	(−1	1))
((1)	(−0	−1	▪	−2))
((−0	−1	1)	(−2	−3	1))
((−0	1)	(−1	−2	−3	▪	−4))
((−0	−1	−2	1)	(−3	−4	−5	1))).

What	 values	 are
associated	 with	 n	 and
m	in

(run	1	(n	m)
(⩽lo	n	m)
(∗	o	n	 '(0	 1)
m))

42 (()	()).
	



What	is	the	value	of

(run	10	(n	m)
(⩽lo	n	m)
(∗	o	n	'(0	1)	m))

43 ((()	())
((1)	(0	1))
((0	1)	(0	0	1))
((1	1)	(0	1	1))
((1	−0	1)	(0	1	−0	1))
((0	0	1)	(0	0	0	1))
((0	1	1)	(0	0	1	1))
((1	−0	−1	1)	(0	1	−0	−1	1))
((0	1	−0	1)	(0	0	1	−0	1))
((0	 0	 0	 1)	 (0	 0	 0	 0
1))).

Now	what	is	the	value	of

(run	9	(n	m)
(	⩽lo	n	m))

44 ((()	())
((1)	(1))
(()	(−0	▪	−1))
((−0	1)	(−1	1))
((1)	(−0	−1	▪	−2))
((−0	−1	1)	(−2	−3	1))
((−0	1)	(−1	−2	−3	▪	−4))
((−0	−1	−2	1)	(−3	−4	−5	1))
((−0	−1	1)	(−2	−3	−4	−5	▪	−6))).

Do	these	values	include	all	of	the	values	produced
in	frame	41?

45Yes.

Here	is	<o.

(defrel	(<o	n	m)
(conde

((<lo	n	m))
((=lo	n	m)
(fresh	(x)
(poso	x)
(+o	n	x	m)))))

Define	⩽o	using	<o.

46Here	is	⩽o.
(defrel	(⩽o	n	m)
(conde

((≡	n	m))
((<o	n	m))))

	

What	value	is	associated	with	q	in

(run*	q
(<	o	'(1	0	1)	'(1	1	1)))

47
−0,

since	five	is	less	than
seven.



What	is	the	value	of

(run*	q
(<	o	'(1	1	1)	'(1	0	1)))

48 (),
since	seven	is	not	less	than	five.



What	 is	 the	 value
of

(run*	q
(<	o	'(1	0
1)	 '(1	 0
1)))

49 (),
since	 five	 is	 not	 less	 than	 five.	 But	 if	 we	 were	 to
replace	<o	with	⩽o,	the	value	would	be	(−0).



What	is	the	value	of

(run	6	n
(<	 o	 n	 '(1	 0
1)))

50 (()	(1)	(−0	1)	(0	0	1)),
since	 (−0	 1)	 represents	 the	 numbers	 two	 and
three.



What	is	the	value	of

(run	6	m
(<	o	'(1	0	1)
m))

51 ((−0	−1	−2	−3	▪	−4)	(0	1	1)	(1	1	1)),
since	(−0	−1	−2	−3	▪	−4)	represents	all	the	numbers	greater
than	seven.



What	 is	 the
value	of

(run*	n
(<	o	n
n))

52 It	has	no	value,
since	<o	uses	<lo	and	we	know	from	frame	39	that	(<lo	n
n)	has	no	value.



What	is	the	value	of

(run	4	(n	m	q	r)
(÷	o	n	m	q	r))

53 ((()	(−0	▪	−1)	()	())
((1)	(−0	−1	▪	−2)	()	(1))
((−0	1)	(−1	−2	−3	▪	−4)	()	(−0	1))
((−0	−1	1)	(−2	−3	−4	−5	▪	−6)	()	(−0	−1	1))).
÷o	 divides	 n	 by	 m,	 producing	 a
quotient	q	and	a	remainder	r.

	
Define	÷	o. 54

(defrel	(÷o	n	m	q	r)
(conde

((≡	'()	q)	(≡	n	r)	(<o	n	m))
((≡	'(1)	q)	(≡	'()	r)	(≡	n	m)
(<o	r	m))
((<o	m	n)	(<o	r	m)
(fresh	(mq)
(⩽lo	mq	n)
(∗o	m	q	mq)
(+o	mq	r	n))))).

With	 which	 three	 cases	 do	 the
three	conde	lines	correspond?

55 The	cases	 in	which	 the	dividend	n	 is	 less
than,	 equal	 to,	 or	 greater	 than	 the	 divisor
m,	respectively.

Describe	the	first	conde	line. 56 The	first	conde	line	divides	a	number	n	by
a	number	m	greater	than	n.
Therefore	 the	 quotient	 is	 zero,	 and	 the
remainder	is	equal	to	n.

According	 to	 the	 standard
definition	of	division,	division	by
zero	 is	 undefined	 and	 the
remainder	 r	 must	 always	 be	 less
than	 the	divisor	m.	Does	 the	 first
conde	 line	 enforce	 both	 of	 these
restrictions?

57Yes.
The	 divisor	 m	 is	 greater	 than	 the
dividend	 n,	 which	 means	 that	 m
cannot	 be	 zero.	 Also,	 since	 m	 is
greater	than	n	and	n	is	equal	to	r,	we
know	 that	 m	 is	 greater	 than	 the
remainder	r.	By	enforcing	the	second
restriction,	 we	 automatically	 enforce
the	first.

In	 the	 second	 conde	 line	 the
dividend	and	divisor	are	equal,	so

58Because	 this	 goal	 enforces	 both	 of	 the
restrictions	given	in	the	previous	frame.
	



the	 quotient	 must	 be	 one.	 Why,
then,	 is	 the	 (<o	 r	 m)	 goal
necessary?
Describe	the	first	two	goals	in	the
third	conde	line.

59 The	goal	(<	o	m	n)	ensures	that	the	divisor
is	 less	 than	 the	 dividend,	 while	 the	 goal
(<o	r	m)	enforces	the	restrictions	in	frame
57.

Describe	the	last	three	goals	in	the
third	conde	line.

60 The	 last	 three	 goals	 perform	 division	 in
terms	 of	multiplication	 and	 addition.	 The
equation



can	be	rewritten	as

n	=	m	·	q	+	r.

That	is,	 if	mq	 is	the	product	of	m
and	q,	then	n	is	the	sum	of	mq	and
r.	 Also,	 since	 r	 cannot	 be	 less
than	 zero,	 mq	 cannot	 be	 greater
than	n.
Why	does	the	third	goal	in	the	last
conde	line	use	⩽lo	instead	of	<o

61Because	⩽lo	 is	 a	 closer	 approximation	 of
<o.	 If	mq	 is	 less	 than	 or	 equal	 to	 n,	 then
certainly	the	length	of	the	list	representing
mq	 cannot	 exceed	 the	 length	 of	 the	 list
representing	n.



What	is	the	value	of

(run*	m
(fresh	(r)

(÷	o	'(1	0	1)	m	'(1	1	1)	r)))

62 ().
We	 are	 trying	 to	 find	 a
number	 m	 such	 that
dividing	 five	 by	 m
produces	seven.	Of	course,
we	will	not	be	able	 to	find
that	number.

How	is	()	the	value	of

(run*	m
(fresh	(r)

(÷	o	'(1	0	1)	m'(1	1	1)	r)))

63 The	 third	 conde	 line	 of	 ÷o
ensures	 that	 m	 is	 less	 than	 n
when	 q	 is	 greater	 than	 one.
Thus,	 ÷o	 can	 stop	 looking	 for
possible	 values	 of	 m	 when	 m
reaches	four.

Why	 do	we	 need	 the	 first	 two	 conde	 lines,
given	 that	 the	 third	 conde	 line	 seems	 so
general?	Why	don’t	we	just	remove	the	first
two	 conde	 lines	 and	 remove	 the	 (<o	 m	 n)
goal	 from	 the	 third	 conde	 line,	 giving	 us	 a
simpler	definition	of	÷o

(defrel	(÷o	n	m	q	r)
(fresh	(mq)

(<o	r	m)
(⩽lo	mq	n)
(∗o	m	q	mq)
(+o	mq	r	n)))

64Unfortunately,	 our	 “improved”
definition	of	÷o	has	a	problem—
the	expression

(run*	m
(fresh	(r)

(÷o	 '(1	0	1)	m	 '(1
1	1)	r)))

no	longer	has	a	value.

Why	doesn’t	the	expression

(run*	m
(fresh	(r)

(÷o	'(1	0	1)	m	'(1	1	1)	r)))

have	 a	 value	 when	 we	 use	 this	 new
definition	of	÷	o

65Because	 the	 new	 ÷	 o	 does	 not
ensure	 that	 m	 is	 less	 than	 n
when	 q	 is	 greater	 than	 one.
Thus,	 this	 new	 ÷o	 never	 stops
trying	 to	 find	 an	 m	 such	 that
dividing	 five	 by	 m	 produces
seven.

⇒	Hold	on!	It’s	going	to	get	subtle!	⇐



What	 is	 the	 value	 of
this	 expression	 when
using	 the	 original
definition	 of	 ÷o,	 as
defined	in	frame	54?

(run	3	(y	z)
(÷	 o	 ‘(1	 0	

▪

,y)	 '(0	 1)
z'()))

66 It	has	no	value.
We	cannot	divide	an	odd	number	by	two	and	get
a	remainder	of	zero.	The	original	definition	of	÷o
never	 stops	 looking	 for	 values	 of	 y	 and	 z	 that
satisfy	 the	 division	 relation,	 although	 there	 are
no	such	values.	 Instead,	we	would	 like	 it	 to	 fail
immediately.

	

How	 can	 we	 define	 a
better	 version	 of	 ÷	 o,
one	 that	 allows	 the
run*	 expression	 in
frame	 66	 to	 have	 a
value?

67 Since	 a	 number	 is	 represented	 as	 a	 list	 of	 bits,	 let’s
break	 up	 the	 problem	 by	 splitting	 the	 list	 into	 two
parts—the	“head”	and	the	“rest.”

Good	 idea!	 How
exactly	can	we	split	up
a	number?

68 If	n	is	a	positive	number,	we	split	it	into	parts	nhigh,
which	might	 be	 0	 and	nlow.	n	 =	nhigh	 ·	 2p	 +	nlow,
where	nlow	has	at	most	p	bits.

That’s	 right!	 We	 can
perform	this	task	using
splito.

(defrel	 (splito	 n	 r
l	h)
(conde

((≡	 '()	 n)	 (≡
'()	 h)	 (≡	 '()
l))
((fresh	(b	 )

(≡	 ‘(0
,b	

▪
	 , )

n)	 (≡	 '()
r)
(≡	 ‘(,b
▪
	 , )	 h)
(≡	 '()

69 (splito	n	'()	l	h)	moves	the	lowest	bit†	of	n,	if	any,	into
l,	and	moves	 the	remaining	bits	of	n	 into	h;	 (splito	n
'(1)	 l	 h)	 moves	 the	 two	 lowest	 bits	 of	 n	 into	 l	 and
moves	the	remaining	bits	of	n	into	h;	and
(splito	n	'(1	1	1	1)	l	h),
(splito	n	'(0	1	1	1)	l	h),	or
(splito	n	 '(0	0	0	1)	l	h)	move	the	five	lowest	bits	of	n
into	l	and	move	the	remaining	bits	into	h;	and	so	on.

_______________
†	The	lowest	bit	of	a	positive	number	n	is	the	car	of	n.
	



l)))
((fresh	( )

(≡	‘(1	
▪

, )	 n)
(≡	'()	r)
(≡	 	 h)
(≡	 '(1)
l)))

((fresh	 (b	
a	 )

(≡	‘(0	
▪

,b	
▪
	 , )

n)
(≡	 ‘(,a
▪
	 , )	 r)
(≡	'()	l)
(splito
‘(,b	

▪
	,

)	 	 '()
h)))

((fresh	( 	a	
)

(≡	‘(1	
▪

, )	n)
(≡	 ‘(,a
▪
	 , )	 r)
(≡	 '(1)
l)
(splito	

	 '()
h)))

((fresh	 (b	
a	 	l)

(≡	 ‘(,b
▪
	, )	n)
(≡	 ‘(,a
▪
	, )	r)



(≡	 ‘(,b
▪
	, )	l)
(poso	 )
(splito	

h)))))

What	does	splito	do?
What	 else	 does	 splito
do?

70 Since	 splito	 is	 a	 relation,	 it	 can	 construct	 n	 by
combining	 the	 lower-order	 bits	 of	 l	with	 the	 higher-
order	bits	of	h,	inserting	padding	(using	the	length	of
r)	bits.

Why	 is	 splito’s
definition	 so
complicated?

71Because	splito	must	not	allow	the	list	(0)	to	represent
a	number.	For	example,
(splito	'(0	0	1)	'()	'()	'(0	1))	should	succeed,	but
(	splito	'(0	0	1)	'()	'(0)	'(0	1))	should	not.

How	does	splito	ensure
that	 (0)	 is	 not
constructed?

72By	 removing	 the	 rightmost	 zeros	 after	 splitting	 the
number	n	into	its	lower-order	bits	and	its	higher-order
bits.



What	is	the	value	of

(run*	(l	h)
(	splito	'(0	0	1	0	1)	'()	l	h))

73 ((()	(	0	1	0	1))).



What	is	the	value	of

(run*	(l	h)
(	splito	'(0	0	1	0	1)	'(1)	l	h))

74 ((()	(	1	0	1))).



What	is	the	value	of

(run*	(l	h)
(	splito	'(0	0	1	0	1)	'(0	1)	l	h))

75 (((	0	0	1)	(0	1))).



What	is	the	value	of

(run*	(l	h)
(	splito	'(0	0	1	0	1)	'(1	1)	l	h))

76 (((0	0	1)	(0	1))).
	



What	is	the	value	of

(run*	(r	l	h)
(	splito	'(0	0	1	0	1)	r	l	h))

77 ((()	()	(0	1	0	1))
((−0)	()	(1	0	1))
((−0	−1)	(0	0	1)	(0	1))
((−0	−1	−2)	(0	0	1)	(1))
((−0	−1	−2	−3)	(0	0	1	0	1)	())
((−0	 −1	 −2	 −3	 −4	▪	−5)	 (0	0	1	0	1)
())).

Now	we	 are	 ready	 for	 division!	 If	we	 split	n
(the	 divisor)	 in	 two	 parts,	 nhigh	 and	nlow,	 it
stands	 to	 reason	 that	q	 is	also	split	 into	qhigh
and	qlow.

78 Then	what?

Remember,	 n	 =	m	 ·	 q	 +	 r.	 Substituting	 n	 =
nhigh	 ·	2p	+	nlow	 and	q	 =	qhigh	 ·	 2p	 +	qlow
yields	nhigh	·	2p	+	nlow	=	m	·	qhigh	·	2p	+	m	·
qlow	+	r.

79Okay.

Then	 what	 should
happen?

We	 try	 to	 divide	nhigh	 by	m	 obtaining	qhigh
and	 rhigh:	 nhigh	 =	m	 ·	 qhigh	 +	 rhigh	 from
which	we	 get	 nhigh	 ·	 2p	 =	m	 ·	qhigh	 ·	 2p	 +
rhigh	 ·	 2p.	 Subtracting	 from	 the	 original,	 we
obtain	the	relation	nlow	=	m	·	qlow	+	r	−	rhigh
·	 2p,	 which	means	 that	m	 ·	qlow	 +	 r	 −	 nlow
must	be	divisible	by	2p	and	the	result	is	rhigh.
The	advantage	is	that	when	checking	the	latter
two	equations,	the	numbers	nlow,	qlow,	and	so
on,	are	all	range-limited,	and	must	fit	within	p
bits.	 We	 can	 therefore	 check	 the	 equations
without	 danger	 of	 trying	 higher	 and	 higher
numbers	 forever.	Now	we	can	 just	 define	our
arithmetic	 relations	 by	 directly	 using	 these
equations.

80Okay.

Here	is	an	improved	definition	of	÷o	which	 is
more	 sophisticated	 than	 the	 ones	 given	 in
frames	 54	 and	 64.	 All	 three	 definitions
implement	 division	 with	 remainder,	 which
means	that	(÷o	n	m	q	r)	satisfies	n	=	m	·	q	+	r
with	0	⩽	r	<	m.

81Yes,
the	 new	 ÷o	 relies	 on	 n-
wider-than-mo,	 which
itself	relies	on	splito.

(defrel	 (n-wider-than-mo
n	m	q	r)



(defrel	(÷o	n	m	q	r)
(conde

((≡	'()	q)	(≡	r	n)	(<o	n	m))
((≡	'(1)	q)	(=lo	m	n)	(+o	r	m	n)
(<o	r	m))
((poso	q)	(<lo	m	n)	(<o	r	m)
(n-wider-than-mo	n	m	q	r))))

Does	 the	 redefined	 ÷	 o	 use	 any	 new	 helper
relations?

(fresh	 (nhigh	 nlow	 qhigh
qlow)

(fresh	 (mqlow
mrqlow	rr	rhigh)
(splito	n	r	nlow	nhigh)
(splito	q	r	qlow	qhigh)
(conde

((≡	'()	nhigh)
(≡	 '()
qhigh)
(−o	 nlow	 r
mqlow)
(∗o	 m
qlow
mqlow))
((poso
nhigh)
(∗o	 m
qlow
mqlow)
(+o	 r
mqlow
mrqlow)
(−o
mrqlow
nlow	rr)
(splito	rr	r
'()	rhigh)
(÷o	 nhigh
m	 qhigh
rhigh))))))

What	 is	 the	 value	 of	 this	 expression	 when
using	 the	 original	 definition	 of	 ÷o,	 as	 defined

82 It	has	no	value.
We	cannot	divide	an	odd
number	by	two	and	get	a



in	frame	54?

(run	3	(y	z)
(÷	o	‘(1	0	

▪
	,y)	'(0	1)	z	'()))

remainder	 of	 zero.	 The
original	 definition	 of	 ÷o
never	 stops	 looking	 for
values	 of	 y	 and	 z	 that
satisfy	 the	 division
relation,	 even	 though
there	are	no	such	values.
Instead,	we	would	like	it
to	fail	immediately.

Describe	the	latest	version	of	÷	o. 83 This	version	of	÷	o	fails	when
it	determines	 that	 the	relation
cannot	 hold.	 For	 example,
dividing	the	number	6	+	8	·	k
by	 4	 does	 not	 have	 a
remainder	 of	 0	 or	 1,	 for	 all
possible	values	of	k.

Here	is	logo	with	its	three	helper	relations.

(defrel	(logo	n	b	q	r)
(conde

((≡	'()	q)	(⩽o	n	b)
(+o	r	'(1)	n))
((≡	'(1)	q)	(>1o	b)	(=lo	n	b)
(+o	r	b	n))
((≡	'(1)	b)	(poso	q)
(+o	r	'(1)	n))
((≡	'()	b)	(poso	q)	(≡	r	n))
((≡	'(0	1)	b)
(fresh	(a	ad	dd)

(poso	dd)
(≡	‘(,a	,ad	

▪
	,dd)	n)

(exp2o	n	'()	q)
(fresh	(s)

(splito	n	dd	r	s))))
((⩽o	'(1	1)	b)	(<lo	b	n)
(base-three-or-moreo	n	b	q	r))))

84 The	 relations	 base-three-or-
moreo	 and	 repeated-mulo
require	some	thinking.

(defrel	 (base-three-or-
moreo	n	b	q	r)
(fresh	 (bw1	 bw	 nw	 nw1
qlow1	qlow	s)

(exp2o	b	'()	bw1)
(+o	bw1	'(1)	bw)
(<lo	q	n)
(fresh	(q1	bwq1)

(+o	q	'(1)	q1)
(∗o	 bw	 q1
bwq1)
(<o	nw1	bwq1))

(exp2o	n	'()	nw1)
(+o	nw1	'(1)	nw)



(defrel	(exp2o	n	b	q)
(conde

((≡	'(1)	n)	(≡	'()	q))
((>1o	n)	(≡	'(1)	q)
(fresh	(s)

(splito	n	b	s	'(1))))
((fresh	(q1	b2)

(≡	‘(0	
▪
	,q1)	q)	(poso	q1)

(<lo	b	n)
(appendo	b	‘(1	

▪
	,b)	b2)

(exp2o	n	b2	q1)))
((fresh	(q1	nhigh	b2	s)

(≡	‘(1	
▪
	,q1)	q)	(poso	q1)

(poso	nhigh)
(splito	n	b	s	nhigh)
(appendo	b	‘(1	

▪
	,b)	b2)

(exp2o	nhigh	b2	q1)))))

(÷o	nw	bw	qlow1	s)
(+o	qlow	'(1)	qlow1)
(⩽lo	qlow	q)
(fresh	(bqlow	qhigh	 s
qdhigh	qd)

(repeated-mulo
b	qlow	bqlow)
(÷o	 nw	 bw1
qhigh	s)
(+o	 qlow	 qdhigh
qhigh)
(+o	qlow	qd	q)
(⩽o	qd	qdhigh)
(fresh	 (bqd
bq1	bq)

(repeated-
mulo	 b	 qd
bqd)
(∗o	 bqlow
bqd	bq)
(∗o	 b	 bq
bq1)
(+o	 bq	 r
n)
(<o	 n
bq1)))))

(defrel	 (repeated-mulo	 n
q	nq)
(conde

((poso	n)	(≡	'()	q)	(≡
'(1)	nq))
((≡	'(1)	q)	(≡	n	nq))
((>1o	q)
(fresh	(q1	nq1)



(+o	q1	'(1)	q)
(repeated-mulo
n	q1	nq1)
(∗o	 nq1	 n
nq)))))

	
Guess	what	logo	does? 85 It	builds	a	split-rail	fence.
Not	quite.	Try	again. 86 It	 implements	 the	 logarithm

relation:	(	logo	n	b	q	r)	holds
if	n	=	bq	+	r.

Are	 there	 any	 other	 conditions	 that	 the
logarithm	relation	must	satisfy?

87 There	had	better	be!
Otherwise,	 the	 relation
would	always	hold	if	q	=
0	 and	 r	 =	 n	 −	 1,
regardless	of	the	value	of
b.

Give	the	complete	logarithm	relation. 88 (	logo	n	b	q	r)	holds	if	n	=	bq
+	r,	where	0	⩽	r	and	q	is	the
largest	 number	 that	 satisfies
the	relation.

Does	the	logarithm	relation	look	familiar? 89Yes.
The	logarithm	relation	is
similar	 to	 the	 division
relation,	 but	 with
exponentiation	 in	 place
of	multiplication.

In	which	ways	are	logo	and	÷o	similar? 90Both	logo	and	÷o	are	relations
that	take	four	arguments,	each
of	which	 could	 be	 fresh.	The
÷o	 relation	 can	 be	 used	 to
define	 the	 ∗o	 relation—the
remainder	 must	 be	 zero,	 and
the	zero	divisor	case	must	be
accounted	for.	Also,	÷o	can	be
used	to	define	the	+o	relation.



The	 logo	 relation	 is	 equally
flexible,	 and	 can	 be	 used	 to
define	 exponentiation,	 to
determine	 exact	 discrete
logarithms,	 and	 even	 to
determine	discrete	 logarithms
with	 a	 remainder.	 The	 logo
relation	can	also	find	the	base
b	 that	 corresponds	 to	 a	given
n	and	q.

What	value	is	associated	with	r	in

(run*	r
(	logo	'(0	1	1	1)	'(0	1)	'(1	1)	r))

91 (0	1	1),
since	14	=	23	+	6.



What	is	the	value	of

(run	9	(b	q	r)
(logo	'(0	0	1	0	0	0	1)	b	q	r)
(>	1o	q))

92 ((()	(−0	−1	▪	−2)	(0	0	1	0	0	0	1))
((1)	(−0	−1	▪	−2)	(1	1	0	0	0	0	1))
((0	1)	(0	1	1)	(0	0	1))
((1	1)	(1	1)	(1	0	0	1	0	1))
((0	0	1)	(1	1)	(0	0	1))
((0	0	0	1)	(0	1)	(0	0	1))
((1	0	1)	(0	1)	(1	1	0	1	0	1))
((0	1	1)	(0	1)	(0	0	0	0	0	1))
((1	1	1)	(0	1)	(1	1	0	0	1))),



since
68	=	0n	+	68	where	n	>	1,
68	=	1n	+	67	where	n	>	1,
68	=	26	+	4,
68	=	33	+	41,
68	=	43	+	4,
68	=	82	+	4,
68	=	52	+	43,
68	=	62	+	32,	and
68	=	7	2	+	19.
Define	expo	using	logo. 93

(defrel	(expo	b	q	n)
(logo	n	b	q	'()))

What	value	is	associated	with	t	in

(run*	t
(	expo	'(1	1)	'(1	0	1)	t))

94 (1	1	0	0	1	1	1	1),
which	is	the	same	as	(build-num	243).

⇒	Addition	can	be	defined	using	÷o	(frame	90).	⇐
⇒	Define	addition	using	only	conde,	≡,	<o,	and	÷o.	⇐



	

	



Does

(conda
(#u	#s)
(#s	#u))

succeed?†

_______________
†	conda	 is	written	conda	 and	 is	 pronounced
“con-day.”	 conda	 is	 like	 the	 so-called	 soft-
cut	 (also	 known	 as	 if-then-else)	 and	 is
described	 on	 page	 45	 of	 William	 F.
Clocksin.	Clause	and	Effect.	Springer,	1997.

1 No,
because	the	first	goal	of	the	first	conda
line	 is	 the	 goal	 #u,	 so	 conda	 tries	 the
second	 line.	 In	 the	 spirit	 of	 cond,	 we
refer	to	the	first	goal	of	a	conda	line	as
its	question,	and	the	rest	of	the	goals	as
its	answer.



Does

(conda
(#u
#s)
(#s
#s))

succeed?

2 Yes,
because	the	question	of	the	first	conda	line	is	the	goal	#u,
so	conda	tries	the	second	line.



Does

(conda
(#s
#u)
(#s
#s))

succeed?

3 No,
because	the	question	of	the	first	conda	 line	is	the	goal	#s,
so	conda	tries	the	answer	of	the	first	line.



Does

(conda
(#s
#s)
(#s
#u))

succeed?

4 Yes,
because	the	question	of	the	first	conda	line	is	the	goal	#s,
so	conda	tries	the	answer	of	the	first	line.



What	is	the	value	of

(run*	x
(conda

((≡
'olive
x)
#s)
(	 #s
(≡
'oil
x))))

5 (olive),
because	(≡	 'olive	x)	succeeds;	therefore,	conda	tries
the	answer	of	 the	first	conda	 line,	which	 is	#s.	The
#s	preserves	the	association	of	olive	to	x.

What	does	the	“	a”	in	conda	stand	for?

The	Law	of	conda

The	 first	 conda	 line	 whose	 question	 succeeds	 is	 the
only	line	that	can	contribute	values.

It	 stands	 for	 a	 single	 line,	 since	 at	 most	 a	 single	 line	 can
succeed.

6 Hmm,
interesting.



What	is	the	value	of

(run*	x
(conda

((≡
'virgin
x)	#u)
((≡
'olive
x)	#s)
(	 #s
(≡	 'oil
x))))

7 (),
because	 (≡	 'virgin	 x)	 succeeds,	 we	 get	 to	 assume
that	 the	 remaining	 two	 conda	 lines	 no	 longer	 can
contribute	values.	So,	when	the	conda	line	fails,	the
entire	conda	expression	fails.

This	 is	 a	 big	 difference	 from	 every	 conde	 line
contributing	 values	 to	 exactly	 one	 conda	 line
possibly	 contributing	 values	 when	 the	 first
successful	question	is	discovered.



What	is	the	value	of

(run*	q
(fresh	(x	y)

(≡
'split
x)
(≡	'pea
y)
(conda
((≡
'split
x)	(≡	x
y))
(	 #s
#s))))

8 ().
The	 (≡	 'split	 x)	 question	 in	 the	 conda	 expression
succeeds,	 since	 split	 is	 already	 associated	with	 x.
The	answer,	(≡	x	y),	fails,	however,	because	x	and	y
are	associated	with	different	values.



What	is	the	value	of

(run*	q
(fresh	(x	y)

(≡	'split	x)
(≡	'pea	y)
(conda
((≡	 x	 y)	 (≡
'split	x))
(	#s	#s))))

9 (−0).
(≡	 x	 y)	 fails,	 since	 x	 and	 y	 are	 associated
with	 different	 values.	 The	 question	 of	 the
first	 conda	 line	 fails,	 therefore	 we	 try	 the
second	conda	line,	which	succeeds.

Why	does	the	value	change
when	 we	 switch	 the	 order
of	 (≡	 'split	 x)	 and	 (≡	 x	 y)
within	the	first	conda	line?

10Because	only	if	the	question	of	a	conda	line	fails
do	we	consider	the	remaining	conda	lines.	If	the
question	succeeds,	it	is	as	if	the	remaining	conda
lines	have	been	replaced	by	a	single	(#s	#u).

Consider	 the	 definition	 of
not-pastao.

(defrel	(not-pastao	x)
(conda

((≡	'pasta	x)	#u)
(#s	#s)))



What	is	the	value	of

(run*	x
(conda

((not-
pastao	 x)
#u)
((≡
'spaghetti
x)	#s)))

11 (spaghetti),
because	x	starts	out	fresh,	but	the	question	(not-
pastao	x)	associates	x	with	'pasta,	but	then	fails.
Since	 (not-pastao	 x)	 fails,	 we	 try	 (≡	 'spaghetti
x).

Then,	what	 is	 the	value
of

(run*	x
(≡	 'spaghetti
x)
(conda

((not-
pastao	 x)
#u)
((≡
'spaghetti
x)	#s)))

12 (),
because	 (not-pastao	 x)	 succeeds,	 which	 shows
the	risks	involved	when	using	conda.	We	can’t
allow	a	 fresh	variable	 to	become	associated	as
part	of	a	conda	question.

The	Second	Commandment	(Initial)

If	prior	to	determining	the	question	of	a	conda	 line	 a
variable	 is	 fresh,	 it	 must	 remain	 fresh	 in	 that	 line’s
question.



What	is	the	value	of

(run*	q
(conda

((alwayso)	#s)
(	#s	#u)))

13 It	has	no	value,
since
run*
never
finishes
building
the	 list	 of
−0	s.

What	is	the	value	of†

(run*	q
(condu

((alwayso)	#s)
(#s	#u)))

_______________
†	 condu	 is	 written	 condu	 and	 is	 pronounced	 “cond-you.”	 condu	 corresponds	 to
Mercury’s	 committed	 choice	 (so-called	 once),	 which	 is	 described	 in	 Fergus
Henderson,	Thomas	Conway,	Zoltan	Somogyi,	and	David	Jeffery.	“The	Mercury
language	 reference	 manual.”	 University	 of	 Melbourne	 Technical	 Report	 96/10,
1996.	Mercury	was	the	first	 language	to	effectively	combine	and	extensively	use
soft-cuts	as	in	frame	1	and	committed	choice,	avoiding	the	cut	of	Prolog.	See	Lee
Naish.	 “Pruning	 in	 logic	 programming.”	 University	 of	 Melbourne	 Technical
Report	95/16,	1995.

14 (−0),
because
condu	 is
like
conda,
except
that	 the
successful
question,
here
(alwayso),
succeeds
exactly
once.



What	is	the	value	of

(run*	q
(condu

(#s	(alwayso))
(	#s	#u)))

15 It	has	no	value,
since	 run*	 never
finishes	 building	 the
list	of	−0	s.

What	does	the	“	u”	in	condu
stand	for?

It	 stands	 for	 uni-,	 because	 the	 successful
question	of	a	condu	line	succeeds	exactly	once.

16Hmm,	interesting.



What	is	the	value	of

(run	1	q
(conda

((alwayso)
#s)
(#s	#u))

#u)

17 It	 has	 no	 value,	 since	 the	 outer	 #u	 fails	 each	 time
(alwayso)	succeeds.



What	is	the	value	of

(run	1	q
(condu

((alwayso)
#s)
(#s	#u))

#u)

18 (),
because	 condu’s	 successful	 question,
(alwayso),	succeeds	only	once.

The	Law	of	condu

condu	 behaves	 like	 conda,	 except	 that	 a	 successful
question	succeeds	only	once.

	
Does	condu	need	a	commandment,	too? 19Yes	it	does.

The	Second	Commandment	(Final)

If	 prior	 to	 determining	 the	 question	 of	 a	 conda	 or
condu	 line	a	variable	is	fresh,	it	must	remain	fresh	in
that	line’s	question.

Here	 is	 teacupo	 once	 again,	 using	 conde	 rather	 than	disj2	 as	 in	 frame
1:82.

(defrel	(teacupo	t)
(conde

((≡	'tea	t))
((≡	'cup	t))))

20 Sure.

Here	is	onceo.

(defrel	(onceo	g)
(condu



(g	#s)
(#s	#u)))



What	 is	 the	 value
of

(run*	x
(	 onceo
(teacupo
x)))

21 (tea).
The	 first	 conde	 line	 of	 teacupo	 succeeds.	 Since
onceo’s	goal	can	succeed	only	once,	there	are	no	more
values.	But,	The	Second	Commandment	 is	 broken
by	this	use	of	onceo.



What	is	the	value	of

(run*	r
(conde

((teacupo	r)	#s)
((≡	#f	r)	#s)))

22 (	#f	tea	cup).



What	is	the	value	of

(run*	r
(conda

((teacupo
r)	#s)
(	#s	(≡	#f
r))))

23 (tea	cup).
But	 the	 question	 in	 the	 first	 conda	 line	 breaks
The	Second	Commandment.

And,	 what	 is	 the	 value
of

(run*	r
(≡	#f	r)
(conda

((teacupo
r)	#s)
((≡	 #f	 r)
#s)
(	#s	#u)))

24 (#f),
since	this	value	is	included	in	frame	22.



What	is	the	value	of

(run*	r
(≡	#f	r)
(condu

((teacupo	r)	#s)
((≡	#f	r)	#s)
(	#s	#u)))

25 (#f).
More	arithmetic?

Sure.	Here	is	bumpo.

(defrel	(bumpo	n	x)
(conde

((≡	n	x))
((fresh	(m)

(−o	n	'(1)	m)
(bumpo	m	x)))))



What	is	the	value	of

(run*	x
(	bumpo	'(1	1	1)	x))

26 ((1	1	1)
(0	1	1)
(1	0	1)
(0	0	1)
(1	1)
(0	1)
(1)
()).

Here	is	gen&test+o.

(defrel	(gen&test+o	i	j	k)
(onceo

(fresh	(x	y	z)
(+o	x	y	z)
(≡	i	x)
(≡	j	y)
(≡	k	z))))



What	is	the	value	of

(run*	q
(	 gen&test+o	 '(0	 0	 1)	 '(1
1)	'(1	1	1)))

27 (−0)
because	four	plus	three	is	seven,	but
there	is	more.

What	 values	 are	 associated	with	 x,
y,	and	z	after	(+o	x	y	z)

28
−0,	 (),	 and	 −0,	 since	 x	 and	 z	 have	 been
fused.

What	happens	next? 29 (≡	i	x)	succeeds.
(0	 0	 1)	 is	 associated	 with	 i	 and	 is
fused	with	 the	 fresh	x.	As	 a	 result,
(0	0	1)	is	associated	with	x.

What	 happens	 after	 (≡	 i	 x)
succeeds?

30 (≡	j	y)	fails,
since	 (1	1)	 is	associated	with	 j	and
()	is	associated	with	y.

What	happens	after	(≡	j	y)	fails? 31 (+	 o	 x	 y	 z)	 is	 tried	 again,	 and	 this	 time
associates	()	with	x,	and	this	pair	(−0	▪	 −1)
with	both	y	and	z.

What	happens	next? 32 (≡	i	x)	fails,
since	(0	0	1)	is	still	associated	with
i	and	()	is	associated	with	x.

What	happens	after	(≡	i	x)	fails? 33 (+	 o	 x	 y	 z)	 is	 tried	 again	 and	 this	 time
associating	 (1)	 with	 the	 fused	 x	 and	 y.
Finally,	(0	1)	is	associated	with	z.

What	happens	next? 34 (≡	i	x)	fails,
since	(0	0	1)	is	still	associated	with
i	and	(1)	is	associated	with	x.

What	 happens	 the	 230th	 time	 that
(+	o	x	y	z)	is	used?

35 (+	o	x	y	z)	associates	(0	0	 −0	▪	 −1),	with	x,
(1	1)	with	y,	and	(1	1	−0	▪	−1),	with	z.

What	happens	next? 36 (≡	i	x)	succeeds,
associating	 (0	 0	 1)	 with	 x	 and
therefore	(1	1	1)	with	z.

What	 happens	 after	 (≡	 i	 x)
succeeds?

37 (≡	j	y)	succeeds,
since	 (1	 1)	 is	 associated	 with	 the
fused	j	and	y.

What	 happens	 after	 (≡	 j	 y)
succeeds?

38 (≡	k	z)	succeeds,
since	 (1	1	1)	 is	associated	with	 the



fused	k	and	z.
What	 values	 are	 associated	with	 x,
y,	and	z	before	(+o	x	y	z)	is	used	in
the	body	of	gen&test+o

39 There	are	no	values	associated	with	x,	y,
and	z	since	they	are	fresh.



What	is	the	value	of

(run	1	q
(gen&test+o

'(0	0	1)
'(1	 1)
'(0	 1
1)))

40 It	has	no	value.

Can	 (+	 o	 x	 y	 z)	 fail
when	 x,	 y,	 and	 z	 are
fresh?

41Never.

Why	doesn’t

(run	1	q
(gen&test+o

'(0	0	1)
'(1	 1)
'(0	 1
1)))

have	a	value?

42 In	gen&test+o,	(+o	x	y	z)	generates	various	associations
for	x,	y,	and	z.	Next,	(≡	i	x),	(≡	j	y),	and	(≡	k	z)	 test	 if
the	given	triple	of	values	i,	j	 ,	and	k	 is	present	among
the	generated	triple	x,	y,	and	z.	All	the	generated	triples
satisfy,	 by	 definition,	 the	 relation	 +o.	 If	 the	 triple	 of
values	i,	j	,	and	k	is	chosen	so	that	i	+	j	is	not	equal	to
k,	and	our	definition	of	+o	is	correct,	then	that	triple	of
values	cannot	be	found	among	those	generated	by	+o.

(+	o	x	y	z)	continues	 to	generate	associations,	and	 the
tests	(≡	i	x),	(≡	j	y),	and	(≡	k	z)	continue	to	reject	them.
So	this	run	1	expression	has	no	value.

Here	is	enumerate+o.

(defrel
(enumerate+o	 r
n)
(fresh	(i	j	k)

(bumpo	n	i)
(bumpo	n	j	)
(+o	i	j	k)
(gen&test+o
i	j	k)
(≡	‘(,i	 ,j	 ,k)
r)))



What	is	the	value	of

(run*	s
(
enumerate+o
s	'(1	1)))

43 ((()	(1	1)	(1	1))
((1	1)	()	(1	1))
((1	1)	(1	1)	(0	1	1))
(()	(0	1)	(0	1))
((1	1)	(0	1)	(1	0	1))
(()	(1)	(1))
((1	1)	(1)	(0	0	1))
((1)	(1	1)	(0	0	1))
(()	()	())
((1)	(1)	(0	1))
((1)	(0	1)	(1	1))
((0	1)	()	(0	1))
((1)	()	(1))
((0	1)	(0	1)	(0	0	1))
((0	1)	(1	1)	(1	0	1))
((0	1)	(1)	(1	1))).

Describe	 the	 values	 in
the	previous	frame.

44 The	values	can	be	 thought	of	as	 four	groups	of	 four
values.	 Within	 the	 first	 group,	 the	 first	 value	 is
always	();	within	the	second	group,	the	first	value	is
always	(	1);	etc.	Then,	within	each	group,	the	second
value	ranges	from	()	to	(1	1).	And	the	third	value,	of
course,	is	the	sum	of	the	first	two	values.

What	 is	 true	 about	 the
value	in	frame	43?

45 It	appears	to	contain	all	triples	of	values	of	i,	j	,	and	k,
where	i	+	j	=	k	with	i	and	j	ranging	from	()	to	(1	1).

All	such	triples? 46 It	seems	so.
Can	 we	 be	 certain
without	 counting	 and
analyzing	 the	 values?
Can	 we	 be	 sure	 just
knowing	that	there	is	at
least	one	value?

47 That’s	confusing.

Okay,	 suppose	 one	 of
the	triples,	((	0	1)	(1	1)
(1	0	1)),	were	missing.

48But	 how	 could	 that	 be?	 We	 know	 (	 bumpo	 n	 i)
associates	the	numbers	within	the	range	()	through	n
with	i.	So	if	we	try	it	enough	times,	we	eventually	get
all	such	numbers.	The	same	is	 true	for	(bumpo	n	j	 ).
So,	we	definitely	 determine	 (+o	 i	 j	 k)	when	 (0	 1)	 is
associated	with	i	and	(1	1)	is	associated	with	j,	which



then	associates	(1	0	1)	with	k.	We	have	already	seen
that.

Then	what	happens? 49 Then	we	 try	 to	 determine	 if	 (	gen&test+o	 i	 j	 k)	 can
succeed,	 where	 (0	 1)	 is	 associated	 with	 i,	 (1	 1)	 is
associated	with	j,	and	(1	0	1)	is	associated	with	k.

At	least	once? 50Yes,
since	we	are	interested	in	only	one	value.	After
(+o	x	y	z),	we	check	that	(0	1)	is	associated	with
x,	(1	1)	with	y,	and	(1	0	1)	with	z.	If	not,	we	try
(+o	x	y	z)	again,	and	again.

What	 if	 such	 a	 triple
were	found?

51 Then	gen&test+o	would	succeed,	producing	the	triple
as	the	result	of	enumerate+o.	Then,	because	the	fresh
expression	 in	gen&test+o	 is	wrapped	 in	 a	onceo,	we
would	pick	a	new	pair	of	i-j	values,	etc.

What	 if	 we	 were
unable	 to	 find	 such	 a
triple?

52 Then	the	run	expression	would	have	no	value.

Why	would	 it	 have	 no
value?

53 If	no	result	of	 (+	o	x	y	z)	matches	 the	desired	 triple,
then,	as	in	frame	40,	we	would	keep	trying	(+o	x	y	z)
forever.

So	 can	we	 say,	 just	 by
glancing	at	the	value	in
frame	43,	that

(run*	s
(enumerate+o
s	'(1	1)))

produces	all	triples	i,	j	,
and	k	 such	 that	 i	 +	 j	 =
k,	 for	 i	 and	 j	 ranging
from	()	to	(1	1)?

54Yes,	that’s	clear.
If	 one	 triple	 were	 missing,	 we	 would	 have	 no
value	at	all!

So	 what	 does
enumerate+o
determine?

55 It	 determines	 that	 (+	 o	 x	 y	 z)	with	x,	y,	 and	 z	 being
fresh	eventually	generates	all	triples,	where	x	+	y	=	z.
At	 least,	 enumerate+o	 determines	 that	 for	 x	 and	 y
being	()	through	some	n.



What	is	the	value	of

(run	1	s
(	enumerate+o	s	'(1	1	1)))

56 ((()	(	1	1	1)	(1	1	1))).

Do	we	need	gen&test+o 57Not	at	all.
The	same	variables	i,	j	,	and	k
that	 are	 arguments	 to
gen&test+o	 can	 be	 found	 in
the	 fresh	 expression	 in
enumerate+o,	 so	 we	 can
replace	(gen&test+o	i	j	k)	with
the	 onceo	 expression
unchanged	in	enumerate+o.

Here	is	the	new	enumerate+o.

(defrel	(enumerate+o	r	n)
(fresh	(i	j	k)

(bumpo	n	i)
(bumpo	n	j)
(+o	i	j	k)
(onceo
(fresh	(x	y	z)

(+o	x	y	z)
(≡	i	x)
(≡	j	y)
(≡	k	z)))

(≡	‘(,i	,j	,k)	r)))

58Now	 that	 we	 have	 this	 new
enumerate+o,	 can	 we	 also	 use
enumerate+o	with	∗o	and	expo.

Yes,	 if	 we	 rename	 it	 and	 include	 an
operator	argument,	op.

Define	 enumerateo	 so	 that	 op	 is	 an
expected	argument.

59Here	is	enumerateo.

(defrel	(enumerateo	op	r	n)
(fresh	(i	j	k)

(bumpo	n	i)
(bumpo	n	j)
(op	i	j	k)
(onceo
(fresh	(x	y	z)

(op	x	y	z)
(≡	i	x)



(≡	j	y)
(≡	k	z)))

(≡	‘(,i	,j	,k)	r)))

But,	what	about	÷	o	and	logo?
The	op	 argument	 of	 enumerateo	 expects
three	arguments.	But,	÷o	 and	 logo	expect
four	arguments.	This	proposed	variant	of
enumerateo	 would	 need	 two	 additional
fresh	 variables:	 one	 for	 the	 outer	 fresh,
say	h,	and	one	for	the	inner	fresh,	say	w.

60 The	 rest	 should	 follow	 naturally,
right?

	

Ready	to	look	under	the	hood?



	





	



Now	 it	 is	 time	 to	 understand	 the	 core	of	≡,	 fresh,	conde,	 run,
run∗,	and	defrel.

1What	 about
conda	 and
condu?

Of	course,	we	show	the	core	of	conda	and	condu	as	well. 2 Shall	 we
begin	 with
≡?

Sure!	The	definition	of	≡	relies	on	unify,	which	we	shall	discuss
soon.	But	we’ll	need	a	few	new	ideas	first.

3 Okay,	 let’s
begin.

Here	is	how	we	create	a	unique†	variable.

(define	(var	name)	(vector	name))

Define	var?

_______________
†	vector	creates	a	vector,	a	datatype	distinct	 from	pairs,	 strings,	characters,	numbers,
Booleans,	 symbols,	 and	 ().	 Each	 use	 of	 var	 creates	 a	 new	 one-element	 vector
representing	a	unique	variable.	We	ignore	the	vectors’	contents,	instead	distinguishing
vectors	by	their	addresses	in	memory.	We	could	instead	distinguish	variables	by	their
values,	 provided	 we	 ensure	 their	 values	 are	 unique	 (for	 example,	 using	 a	 unique
natural	number	in	each	variable).

4 And	here	is	a
simple
definition	 of
var?.

(define
(var?	 x)
(vector?
x))

We	create	three	variables	u,	v,	and	w.

(define	u	(var	'u))

(define	v	(var	'v))

(define	w	(var	'w))

Define	the	variables	x,	y,	and	z.

5 Okay,	 here
are	 the
variables	 x,
y,	and	z.

(define
x	 (var
'x))

(define
y	 (var
'y))

(define
z	 (var
'z))

The	pair	‘(,z	
▪
	a)	is	an	association	of	a	with	the	variable	z. 6When	 is	 a

pair	 an
association?



When	the	car	of	that	pair	is	a	variable.	The	cdr	of	an	association
may	 be	 itself	 a	 variable	 or	 a	 value	 that	 contains	 zero	 or	more
variables.	What	is	the	value	of

(	cdr	‘(,z	
▪
	b))

7 b.



What	is	the	value	of

(	cdr	‘(,z	
▪
	(,x	e	,y)))

8 The	list	‘(,x	e	,y).



The	list

‘((,z	
▪
	oat)	(,x	

▪
	nut))

is	a	substitution.

9 What	is	a	substitution?

A	 substitution†	 is	 a	 special	 kind	 of	 list	 of
associations.	In	the	substitution

‘((,x	
▪
	,z))

what	does	the	association	‘(,x	
▪
	,z)	represent?

_______________
†	These	substitutions	are	known	as	triangular	substitutions.	For	more
on	 these	 substitutions	 see	 Franz	 Baader	 and	 Wayne	 Snyder.
“Unification	 theory,”	 Chapter	 8	 of	 Handbook	 of	 Automated
Reasoning,	 edited	 by	 John	 Alan	 Robinson	 and	 Andrei	 Voronkov.
Elsevier	Science	and	MIT	Press,	2001.

10 In	 a	 substitution,	 an
association	 whose	 cdr	 is
also	a	variable	represents
the	 fusing	 of	 that
association’s	 two
variables.

Here	is	empty-s.

(define	empty-s	'())

What	is	empty-s

11 The	 substitution	 that
contains	no	associations.



Is

‘((,z	
▪
	 a)	 (,x	

▪

,w)	(,z	
▪
	b))

a	substitution?

12Not	here,
since	our	 substitutions	cannot	 contain	 two	or	more
associations	with	the	same	car.



What	 is	 the
value	of

(walk	z
‘((,z
▪
	 a)
(,x	

▪

,w)
(,y	

▪

,z)))

13 a,
because	we	 look	up	z	 in	 the	 substitution	 (walk’s	 second
argument)	 to	 find	 its	 association,	 ‘(,z	

▪
	 a),	 and	 walk

produces	 this	 association’s	 cdr,	 a,	 since	 a	 is	 not	 a
variable.



What	 is	 the
value	of

(walk	y
‘((,z
▪
	 a)
(,x	

▪

,w)
(,y	

▪

,z)))

14 a,
because	 we	 look	 up	 y	 in	 the	 substitution	 to	 find	 its
association,	 ‘(,y	

▪
	 ,z)	 and	 we	 look	 up	 z	 in	 the	 same

substitution	 to	 find	 its	 association,	 ‘(,z	
▪
	 a),	 and	 walk

produces	 this	 association’s	 cdr,	 a,	 since	 a	 is	 not	 a
variable.



What	 is	 the
value	of

(walk	x
‘((,z
▪
	 a)
(,x	

▪

,w)
(,y	

▪

,z)))

15 The	variable	w,
because	 we	 look	 up	 x	 in	 the	 substitution	 to	 find	 its
association,	‘(,x	

▪
	 ,w),	and	produce	 its	association’s	cdr,

w,	because	the	variable	w	is	not	the	car	of	any	association
in	the	substitution.

The	 value	 of
the	expression
below	is	y.

(walk	x
‘((,x
▪
	 ,y)
(,v	

▪

,x)
(,w
▪

,x)))

What	 are	 the
walks	of	v	and
w

16 Their	values	are	also	y.
When	we	 look	up	 the	variable	v	 (respectively,	w)	 in	 the
substitution,	 we	 find	 the	 association	 ‘(,v	

▪
	 ,x)

(respectively,	 ‘(,w	
▪
	 ,x))	 and	 we	 know	 what	 happens

when	we	walk	x	in	this	substitution.



What	is	the	value	of

(walk	w
‘((,x	

▪
	b)	(,z	

▪
	,y)	(,w	

▪
	(,x	e	,z))))

17 The	list	‘(,x	e	,z).

Here	is	walk,	which	relies	on	assv.	assv	is
a	function	that	expects	a	value	v	and	a	list
of	associations	l.	assv	either	produces	 the
first	 association	 in	 l	 that	 has	 v	 as	 its	 car
using	eqv?,	or	produces	#f	if	l	has	no	such
association.

(define	(walk	v	s)
(let	((a	(and	(var?	v)	(assv	v	s))))

(cond
((pair?	a)	(walk	(cdr	a)	s))
(else	v))))

When	is	walk	recursive?

18When	 a	 is	 an	 association	 rather
than	#f.

What	property	holds	when	a	variable	has
been	walk’d?

19 If	a	variable	has	been	walk’d	 in	 a
substitution	 s,	 and	 walk	 has
produced	 a	 variable	 x,	 then	 we
know	that	x	is	fresh.

Here	are	ext-s	and	occurs?.

(define	(ext-s	x	v	s)
(cond

((occurs?	x	v	s)†	#f)
(else	(cons	‘(,x	

▪
	,v)	s))))

(define	(occurs?	x	v	s)
(let	((v	(walk	v	s)))

(cond
((var?	v)	(eqv?	v	x))
((pair?	v)
(or	(occurs?	x	(car	v)	s)

(occurs?	x	(cdr	v)	s)))
(else	#f))))

Describe	the	behavior	of	ext-s.

20 ext-s	either	extends	a	substitution	s
with	 an	 association	 between	 the
variable	 x	 and	 the	 value	 v,	 or	 it
produces	 #f	 if	 extending	 the
substitution	with	the	pair	‘(,x	

▪
	,v)

would	have	created	a	cycle.



_______________
†	 This	 expression	 tests	 whether	 or	 not	 x	 occurs	 in	 v,
using	 the	 substitution	 s.	 It	 is	 also	 called	 the	 occurs
check.	See	frames	1:47–49.



Is

‘((,z	
▪
	a)	 (,x	

▪
	 ,x)

(,y	
▪
	,z))
a
substitution?

21Not	here,
since	we	 forbid	a	 substitution	 from	containing	a
cycle	like	‘(,x	

▪
	,x)	in	which	its	car	is	the	same	as

its	cdr.



Is

‘((,x	
▪

,y)	(,w	
▪

a)	 (,z	
▪

,x)	 (,y	
▪

,z))

a
substitution?

22Not	here,
since	we	forbid	a	substitution	from	containing	associations
that	create	a	cycle:	if	x,	y,	and	z	are	already	fused,	and	x	is
fresh	 in	 the	 substitution,	 adding	 the	 association	 ‘(,x	

▪
	 ,y)

would	have	created	a	cycle.



Is

‘((,x	
▪

(a	 ,y))
(,z	

▪
	,w)

(,y	
▪

(,x)))

a
substitution?

23Not	here,
since	we	forbid	a	substitution	from	containing	associations
that	 create	 a	 cycle:	 x	 is	 the	 same	 as	 ‘(a	 ,y),	 and	 y	 is	 the
same	 as	 ‘(,x).	 Therefore	 ‘(a	 (,x))	 is	 the	 same	 as	 x,	 a
variable	occurring	in	‘(a	(,x)).



What	 is	 the
value	of

(
occurs?
x	x	'())

24 #t,
To	begin	with,	occurs?’s	second	argument,	 the	variable	x,
is	walk’d.	The	let	is	used	to	hold	the	value	of	that	walk,	and
since	 the	 substitution	 is	 empty,	 we	 know	 that	 every
variable	 must	 be	 fresh.	 So	 in	 the	 definition	 of	 occurs?,
(var?	v),	where	v	is	x	is	#t,	and	thus	the	first	argument,	also
x,	is	the	same	as	v.



What	is	the	value	of

(	 occurs?	 x	 ‘(,y)
‘((,y	

▪
	,x)))

25 #t,
since	occurs?	walks	 recursively	over	 the	cars
and	cdrs	of	‘(,y).



What	 is	 the
value	of

(	 ext-s	 x
‘(,x)
empty-s)

26 #f,
since	we	 do	not	 permit	 associations	 between	 a	 variable
and	a	value	in	which	that	variable	occurs	(see	frame	23).



What	 is	 the
value	of

(	 ext-s	 x
‘(,y)	 ‘((,y
▪
	,x)))

27 #f,
since	we	do	not	permit	associations	between	a	variable
and	a	value	in	which	that	variable	occurs	(see	frame	23).



What	is	the	value	of

(let	 ((s	 ‘((,z	
▪
	 ,x)	 (,y	

▪

,z))))
(let	 ((s	 (ext-s	 x	 'e
s)))

(	and	s	 (walk	y
s))))

28 e,
We	 are	 asking	 what	 is	 the	 value	 of
walking	 y	 after	 consing	 the	 association
‘(,x	

▪
	e)	onto	that	substitution.

walk	 and	 ext-s	 are	 used	 in
unify.†

(define	(unify	u	v	s)
(let	 ((u	 (walk	 u	 s))	 (v
(walk	v	s)))

(cond
((eqv?	u	v)	s)
((var?	u)	 (ext-s
u	v	s))
((var?	 v)	 (ext-s
v	u	s))
((and	 (pair?	u)
(pair?	v))
(let	 ((s	 (unify
(car	 u)	 (car	 v)
s)))

(and	s
(unify
(cdr
u)
(cdr
v)
s))))

(else	#f))))

What	 kinds	 of	 values	 are
produced	by	unify

_______________
†	 Thank	 you	 Jacques	 Herbrand	 (1908–

29 Either	 #f	 or	 the	 substitution	 s	 extended	 with
zero	 or	 more	 associations,	 where	 the	 cycle
conditions	in	frames	22	and	23	can	lead	to	#f.



1931)	 and	 John	 Alan	 Robinson	 (1930–
2016),	and	thanks	Dag	Prawitz	(1936–).

What	 is	 the	 first	 thing	 that
happens	in	unify

30We	 use	 let,	 which	 binds	 u	 and	 v	 to	 their
walk’d	values.	If	u	walks	to	a	variable,	then	u
is	fresh,	and	likewise	if	v	walks	to	a	variable,
then	v	is	fresh.

What	 is	 the	 purpose	 of	 the
eqv?	 test	 in	unify’s	 first	 cond
line?

31 If	u	and	v	are	the	same	according	to	eqv?,	we
do	not	extend	the	substitution.	eqv?	works	for
strings,	 characters,	 numbers,	 Booleans,
symbols,	(),	and	our	variables.

Describe	 unify’s	 second	 cond
line.

32 If	(	var?	u)	is	#t,	then	u	is	fresh,	and	therefore
u	 is	 the	 first	 argument	 when	 attempting	 to
extend	s.

And	 describe	 unify’s	 third
cond	line.

33 If	(	var?	v)	is	#t,	then	v	is	fresh,	and	therefore
v	 is	 the	 first	 argument	 when	 attempting	 to
extend	s.

What	 happens	 on	 unify’s
fourth	cond	 line,	when	both	u
and	v	are	pairs?

34We	attempt	to	unify	the	car	of	u	with	the	car
of	v.	If	they	unify,	we	get	a	substitution,	which
we	 use	 to	 attempt	 to	 unify	 the	 cdr	 of	u	 with
the	cdr	of	v.

This	 completes	 the	 definition
of	unify.

35Okay.

⇒	Take	a	break	after	the	1st	course!	⇐

Pumpkin	soup.

—or—

Tomato	salad	with	fresh	basil	and	avocado	slices.

—or—

A	platter	of	little	lentil	cakes	with	hot	powder	(idli-milagai-podi).

Welcome	back. 36Can	we	now	discuss	≡?



Not	 yet.	We	 need	 one	 more
idea:	streams.

37What	is	a	stream?

A	stream	 is	either	 the	empty
list,	 a	 pair	 whose	 cdr	 is	 a
stream,	or	a	suspension.

38What	is	a	suspension?

A	 suspension	 is	 a	 function
formed	from
(lambda	()	body)	where
((	 lambda	 ()	 body))	 is	 a
stream.

39Okay.

Here’s	a	stream	of	symbols,

(cons	'a
(cons	'b

(cons	'c
(	 cons	 'd
'())))).

40 Isn’t	that	just	a	proper	list?

Yes.	 Here	 is	 another	 stream
of	symbols,

(cons	'a
(cons	'b

(lambda	()
(cons	'c

(cons	 'd
'()))))).

What	 type	 of	 stream	 is	 the
second	 argument	 to	 the
second	cons

41 The	lambda	expression,

(lambda	()
(cons	'c

(cons	'd	'()))),

is	a	suspension.

And	here	is	one	more	stream,

(lambda	()
(cons	'a

(cons	'b
(cons	'c

(cons	 'd
'()))))).

Why	 is	 the	 expression	 a

42 The	 lambda	expression	 is	a	stream,	because	 it
is	a	lambda	expression	of	the	form	(lambda	()
…	 )	 and	 we	 already	 know	 that	 this	 cons
expression	 is	a	 stream,	 since	 it	 is	 the	 list	 from
frame	40.



stream?
Here	is	≡.

(define	(≡	u	v)
(lambda	(s)

(let	 ((s	 (unify	 u	 v
s)))
(if	s	‘(,s)	'()))))

43What	does	≡	produce?

It	 produces	 a	goal.	Here	 are
two	more	goals.

(define	#s
(lambda	(s)

‘(,s)))

(define	#u
(lambda	(s)

'()))

44What	is	a	goal?

Each	of	≡,	#s,	and	#u	has	a

(lambda	(s)
…).

A	 goal	 is	 a	 function	 that
expects	a	substitution	and,	if
it	 returns,	 produces	 a	 stream
of	substitutions.

45 Thus,	 s	 is	 a	 substitution.	 And	 every	 goal
produces	a	stream	of	substitutions.

From	now	on,	all	our	streams
are	 streams	 of	 substitutions
and	 we	 use	 “	 stream”	 to
mean	 “stream	 of
substitutions.”

46Okay.

Look	at	the	definitions	of	the
goals	 #s,	 #u,	 and	 (≡	 u	 v).
What	 sizes	 are	 the	 streams
these	goals	produce?

47 #s	produces	singleton	streams	and	#u	produces
the	empty	stream,	while	goals	 like	 (≡	u	v)	can
produce	 either	 singleton	 streams	 or	 the	 empty
stream.

May	we	try	out	these	streams?
Let’s.	 Here	 is	 an	 example.
What	is	the	value	of

48 ().
Because	 #t	 and	 #f	 do	 not	 unify	 in	 the



((≡	#t	#f)	empty-s) empty	 substitution,	 or	 indeed	 in	 any
substitution,	 the	 goal	 produces	 the	 empty
stream.

Is	 there	 a	 simpler	 way	 to
write

((≡	#t	#f)	empty-s)

49 ((≡	#t	#f)	empty-s)	is	the	same	as
(#u	empty-s).

And	is	there	a	simpler	way	to
write

((≡	#f	#f)	empty-s)

50



How	about
(#s	empty-s)?



What	is	the
value	of

((≡	 x
y)
empty-
s)

51
‘(((,x	

▪
	 ,y))),	 a	 singleton	 of	 the	 substitution	 ‘((,x	

▪
	 ,y)),†	 since

unifying	x	and	y	extends	this	substitution	with	an	association	of	y
to	x.

_______________
†	The	value	of	((≡	y	x)	empty-s)	is	instead	a	singleton	of	the	substitution	‘((,y	

▪
	,x)).	To

ensure	The	First	Law	of	≡,	we	reify	each	value	(see	frame	104).

⇒	Take	a	break	after	the	2nd	course!	⇐

Spinach	salad.

—or—

Roasted	fingerling	potatoes.

—or—

A	moong	daal,	cucumber,	and	carrot	salad	(kosambari).
	

When	do	we	need	conde 52Never.	 As	 we	 have	 seen	 in	 frame	 1:88,	 we	 can
always	 replace	 a	 conde	 with	 uses	 of	 disj2	 and
conj2.

Recall	(disj2	(≡	'olive	x)	(≡
'oil	x))	from	frame	1:58.



What	is	the	value	of

((	disj2	(≡	'olive	x)	(≡	 'oil	x))
empty-s)

53 ‘(((,x	
▪
	olive))	((,x	

▪
	oil))),

a	 stream	 of	 size	 two.	 The	 first
associates	 olive	 with	 x,	 and	 the
second	associates	oil	with	x.

Here	is	disj2.

(define	(disj2	g1	g2)
(lambda	(s)

(append∞	(g1	s)	(g2	s))))

What	are	g1	and	g2?

54Are	g1	and	g2	goals?

Exactly.	 Does	 disj2	 produce	 a
goal?

55 It	 produces	 a	 function	 that	 expects	 a
substitution	 as	 an	 argument.	 Therefore,	 if
append∞	 produces	 a	 stream,	 then	 disj2
produces	a	goal.

Here	is	append∞.

(define	(append∞	s∞	t∞)
(cond

((null?	s∞)	t∞)
((pair?	s∞)
(cons	(car	s∞)

(append∞	 (cdr
s∞)	t∞)))

(else	(lambda	()
(append∞
t∞
(s∞))))))

What	are	s∞	and	t∞

56 Each	must	be	a	stream.

Yes.	 What	 might	 we	 name
append∞,	 if	 its	 third	 cond	 line
were	absent?

57 It	would	 then	behave	 the	same	as	append
in	frame	4:1.

What	 type	 of	 stream	 is	 s∞	 in	 the
answer	 of	 append∞’s	 third	 cond
line?

58 In	 the	 third	 cond	 line,	 s∞	 must	 be	 a
suspension.



What	type	of	stream	is

(lambda	()
(append∞	t∞	(s∞)))

in	 the	 answer	 of
append∞’s	 third	 cond
line?

59 In	the	third	cond	line,

(lambda	()
(append∞	t∞	(s∞)))

is	also	a	suspension.

Look	 carefully	 at	 the
suspension	 in	append∞.
The	suspension’s	body,

(append∞	t∞	(s∞)),

swaps	the	arguments	to
append∞,	 and	 (s∞)
forces	 the	 suspension
s∞.

When	is	the	suspension
s∞	forced?

60 The	suspension	s∞	is	forced	when	the	suspension

(lambda	()
(append∞	t∞	(s∞)))

is	itself	forced.

Here	 is	 the	 relation
nevero	from	frame	6:14
with	 define	 instead	 of
defrel,

(define	(nevero)
(lambda	(s)

(lambda
()
((
nevero)
s)))).

61Does	nevero	produce	a	goal?

Yes	it	does.	What	is	the
value	of

((	nevero)	empty-s)

62A	suspension.
nevero	 is	 a	 relation	 that,	 when	 invoked,
produces	 a	 goal.	 The	 goal,	 when	 given	 a
substitution,	 here	 empty-s,	 produces	 a
suspension	in	the	same	way	as	(nevero),	and	so
on.



What	is	the	value	of

(let	((s∞	((disj2
(≡	 'olive
x)
(nevero))
empty-
s)))

s∞)

63 This	stream,	s∞,	 is	a	pair	whose	car	 is	 the
substitution	‘((,x	

▪
	olive))	and	whose	cdr	is

a	stream.



What	is	the	value	of

(let	((s∞	((disj2
(nevero)
(≡	'olive	x))
empty-s)))

s∞)

where	 the	 two	 expressions	 in	 disj2	 have
been	swapped?

64 This	stream,	s∞,	is	a	suspension.

Why	isn’t	the	value	a	pair	whose	car	is	the
substitution	‘((,x	

▪
	olive))	and	whose	cdr	is

a	suspension,	as	in	frame	63?

65Because	disj2	 uses	append∞,	 and
the	answer	of	 the	third	cond	 line
of	append∞	is	a	suspension.

How	 do	 we	 get	 the	 substitution
‘((,x	

▪
	 olive))	 out	 of	 that

suspension?
By	forcing	the	suspension	s∞.



What	is	the	value	of

(let	((s∞	((disj2
(nevero)
(≡
'olive
x))
empty-
s)))

(	s∞))

66A	pair	whose	car	 is	 the	 substitution	‘((,x	
▪

olive))	 and	whose	 cdr	 is	 a	 stream	 like	 the
value	in	frame	63.

Describe	 how	 append∞	 merges
the	streams

((≡	'olive	x)	empty-s)



and

((nevero)	empty-s)

so	 that	 we	 can	 see	 the
substitution

‘((,x	
▪
	olive)).

67As	 described	 in	 frame	 60,	 each	 time	 we	 force	 a
suspension	 produced	 by	 the	 third	 cond	 line	 of
append∞,	we	swap	the	arguments	to	append∞	as	the
answer	 of	 that	 cond	 line.	 When	 we	 force	 the
suspension,	 what	 was	 the	 second	 argument,	 t∞,
becomes	 the	 first	 argument.	 Thus,	 the	 second
argument	 to	disj2,	 the	productive	stream,	((≡	 'olive
x)	empty-s),	becomes	the	first	argument	to	append∞
of	the	recursion	in	the	third	cond	line.

When	does	the	recursion
in	append∞’s	 third	 cond
line	 merge	 these
streams?

68 If	 the	 result	 of	 the	 third	 cond	 line	 is	 forced,	 then
append∞’s	 recursion	 merges	 these	 streams.	 And
because	 of	 this,	 ((≡	 'olive	 x)	 empty-s)	 produces	 a
value.

Here	 is	 the	 relation
alwayso	 from	 frame	 6:1
with	 define	 instead	 of
defrel,

(define	(alwayso)
(lambda	(s)

(lambda
()
((disj2	 #s
(alwayso))
s)))).



What	is	the	value	of

(((	 alwayso)
empty-s))

69A	pair	whose	car	is	(),	the	empty	substitution,	and	whose
cdr	is	a	stream.

Using	alwayso,	how
would	 we	 create	 a
list	 of	 the	 first
empty	substitution?

70 Like	this,

(let	((s∞	(((alwayso)	empty-s))))
(cons	(car	s∞)	'())).

We	can	only	use	 the	car	 of	 a	 stream	 if	 that	 stream	 is	 a
pair.

How	 would	 we
create	 a	 list	 of	 the
first	 two	 empty
substitutions?

71 That	would	be	tedious,

(let	((s∞	(((alwayso)	empty-s))))
(cons	(car	s∞)

(let	((s∞	((cdr	s∞))))
(cons	(car	s∞)	'())))).

Here,	 ((	alwayso)	empty-s)	 is	 a	 suspension.	 Forcing	 the
suspension	 produces	 a	 pair.	 The	 car	 of	 the	 pair	 is	 a
substitution.	 The	 cdr	 of	 the	 pair	 is	 a	 new	 suspension.
Forcing	the	new	suspension	produces	yet	another	pair.

How	 would	 we
create	 a	 list	 of	 the
first	 three	 empty
substitutions?

72 That	would	be	more	tedious,

(let	((s∞	(((alwayso)	empty-s))))
(cons	(car	s∞)

(let	((s∞	((cdr	s∞))))
(cons	(car	s∞)

(let	((s∞	((cdr	s∞))))
(	cons	(car	s∞)	'())))))).

How	 would	 we
create	 a	 list	 of	 the
first	 thirty-seven
empty
substitutions?

73 That	would	be	most	tedious.

Can	 we	 keep	 track	 of	 how	many	 substitutions	 we	 still
need?



Need	a	break?

Take	Five
Thank	you,	Dave	Brubeck	(1920–2012).

	

Yes,	using	take∞.

(define	(take∞	n
s∞)
(cond

((and	 n
(zero?	 n))
'())
((null?	 s∞)
'())
((pair?	s∞)
(cons	 (car
s∞)

(take∞
(and
n
(sub1
n))
(cdr
s∞))))

(else
(take∞	 n
(s∞)))))

Describe	 what	 take∞
does	 when	 n	 is	 a
number.

74When	 given	 a	 number	 n	 and	 a	 stream	 s∞,	 if	 take∞
returns,	it	produces	a	list	of	at	most	n	values.	When	n	is
a	number,	the	expression	(and	n	e)	behaves	the	same	as
the	expression	e.

Yes.	 What	 is	 the
value	of

75 It	has	no	value.
The	 value	 of	 ((nevero)	 empty-s)	 is	 a	 suspension.
Every	suspension	created	by	nevero,	when	forced,



(	 take∞	 1
((nevero)
empty-s))

creates	another	similar	suspension.	Thus	every	use
of	take∞	causes	another	use	of	take∞.

How	 does	 take∞
differ	when	n	is	#f

76When	 n	 is	 #f,	 the	 expression	 (and	 n	 e)	 behaves	 the
same	as	#f.	Thus,	the	recursion	in	take∞’s	last	cond	line
behaves	the	same	as

(take∞	#f	(s∞)).

Furthermore,	 when	 n	 is	 #f,	 the	 first	 cond	 question	 is
never	true.	Thus	if	take∞	returns,	it	produces	a	list	of	all
the	values.

Yes.	 Use	 take∞	 and
alwayso	 to	 make	 a
list	 of	 three	 empty
substitutions.

77 It	must	be	this,

(take∞	3	((alwayso)	empty-s))

has	the	value	(()	()	()).



What	 is	 the	 value
of

(	 take∞	 #f
((alwayso)
empty-s))

78 It	has	no	value,
because	the	stream	produced	by	((alwayso)	empty-s)
can	always	produce	another	substitution	for	take∞.



What	is	the	value	of

(let	((k	(length
(take∞	5

((disj2	(≡	'olive	x)	(≡	'oil	x))
empty-s)))))

‘(Found	,k	not	5	substitutions))

79 (	 Found	 2	 not	 5
substitutions).

And	what	is	the	value	of

(map†	length
(take∞	5

((disj2	(≡	'olive	x)	(≡	'oil	x))
empty-s)))

_______________
†	map	takes	a	function	f	and	a	list	ls	and	builds	a	list	(using	cons),	where
each	element	of	 that	 list	 is	produced	by	applying	 f	 to	 the	corresponding
element	of	ls.

80 (1	1),
since	 each
substitution	 has
one	association.

⇒	Take	a	break	after	the	3rd	course!	⇐

Roasted	brussel	sprouts.

—or—

Peppers	stuffed	with	lentils	and	buckwheat	groats.

—or—

Rice	with	tamarind	sauce	and	vegetables	(bisi-bele-bath).
	

Here	is	conj2.

(define	(conj2	g1	g2)
(lambda	(s)

(append-map∞	g2	(g1	s))))

81Are	 g1	 and	 g2	 goals,
again?



What	are	g1	and	g2?
Yes.	Does	conj2	produce	a	goal? 82 Probably,

since	 there’s	 a
(lambda	 (s)	 …	 ).
So	 we	 presume
append-map∞
produces	a	stream.

What	is	(	g1	s)? 83 It	must	be	a	stream.

Yes.	Here	is	the	definition	of	append-map∞.†

(define	(append-map∞	g	s∞)
(cond

((null?	s∞)	'())
((pair?	s∞)
(append∞	(g	(car	s∞))

(append-map∞	g	(cdr	s∞))))
(else	(lambda	()

(append-map∞	g	(s∞))))))

_______________
†	 If	append-map∞	 ’s	 third	 cond	 line	 and	 append∞	 ’s	 third	 cond	 line
were	 absent,	append-map∞	would	 then	 behave	 the	 same	 as	append-
map.	 append-map	 is	 like	 map	 (see	 frame	 80),	 but	 it	 uses	 append
instead	of	cons	to	build	its	result.

84How	does	it	work?

If	s∞	were	(()),	which	cond	line	would	be	used? 85 The	second	cond	line.
What	would	be	the	value	of	(	car	s∞) 86 The	 empty	 substitution

().
If	g	were	a	goal,	what	would	(g	 (car	s∞))	be	when
s∞	is	a	pair?

87 (	g	(car	s∞))	would	be	a
stream.

And	 we	 did	 presume	 that	 append-map∞	 would
produce	a	stream.

88 Indeed,	we	did.

What	would	append∞	produce,	given	two	streams	as
arguments?

89A	 stream.	 Therefore,
conj2	 would	 indeed
produce	a	goal.

⇒	Take	a	break	after	the	4th	course!	⇐



Linguini	pasta	in	cashew	cream	sauce.

—or—

Thinly-sliced	fennel	with	lemon	juice	and	fresh	thyme.

—or—

Rice	with	curds,	pomegranate	seeds,	ginger,	and	chili	(thayir-sadam).

We	define	the	function	call/fresh	to	introduce	variables.

(define	(call/fresh	name	f)
(f	(var	name)))

Although	name	is	used,	it	is	ignored.

90What	 does
call/fresh
expect	as	 its
second
argument?

call/fresh	 expects	 its	 second	 argument	 to	 be	 a	 lambda
expression.	 More	 specifically,	 that	 lambda	 expression	 should
expect	a	variable	and	produce	a	goal.	That	goal	then	has	access
to	the	variable	just	created.	Give	an	example	of	such	an	f.

91



Something	like

(lambda	(fruit)
(≡	'plum	fruit)),

which	then	could	be	passed	a	variable,

(take∞	1
((call/fresh	'kiwi

(lambda	(fruit)
(≡	'plum	fruit)))

empty-s)).
When	would	it	make	sense	to	use	distinct	symbols
for	variables?

92When	we	present	values.

Yes.	Every	variable	that	we	present	is	presented	as
a	 corresponding	 symbol:	 an	 underscore	 followed
by	a	natural	number.	We	call	these	symbols	reified
variables	as	in	frame	1:17.

How	 can	 we	 create	 a	 reified	 variable	 given	 a
number?

93How	about	this†?

(define	 (reify-name
n)
(string→symbol

(string-append
"_"
(number→string
n))))

_______________
†	 Avoid	 using	 constants	 that
resemble	 reified	 variables,	 since
this	could	cause	confusion.

Now	that	we	can	create	reified	variables,	how	do
we	associate	reified	variables	with	variables?

94Wouldn’t	 the	 association
of	 variables	 with	 reified
variables	 just	 be	 another
kind	of	substitution?

Yes,	 we	 call	 such	 a	 substitution	 a	 reified-name
substitution.	What	is	the	reified-name	substitution
for	the	fresh	variables	in	the	value	‘(,x	,y	,x	,z	,z)

95 ‘((,z	
▪
	−2	)	(,y	▪	−1)	(,x	▪	−0)).

What	is	the	reified	value	of
‘(,x	,y	,x	,z	,z),	using	the	reified-name	substitution
from	the	previous	frame?

96 (	−0	−1	−0	−2	−2).

Recall	the	walk	expression	from	frame	17



(walk	w
‘((,x	

▪
	b)	(,z	

▪
	,y)	(,w	

▪
	(,x	e	,z))))

has	the	value	‘(,x	e	,z).



What	is	the	value	of

(walk∗	w
‘((,x	

▪
	b)	(,z	

▪
	,y)	(,w

▪
	(,x	e	,z))))

97 The	list	‘(b	e	,y).
First,	walk∗	walks	w	to	‘(,x	e	,z).	walk∗
then	recursively	walk∗s	x	and	‘(e	,z).

Here	is	walk∗.
(define	(walk∗	v	s)
(let	((v	(walk	v	s)))

(cond
((var?	v)	v)
((pair?	v)

(cons
(walk∗
(car	v)	s)
(walk∗
(cdr	 v)
s)))

(else	v))))

Is	walk∗	recursive?

98 Yes,	and	it’s	also	useful.†

_______________
†	Here	is	project	(pronounced	“pro·ject”).

	
(define-syntax	project

(syntax-rules	()
((project	(x	…)	g	…)
(lambda	(s)

(let	((x	(walk∗	x	s))	…)
((conj	g	…	)	s))))))

project	 behaves	 like	 fresh,	 but	 it	 binds	 different	 values	 to
the	lexical	variables.	project	binds	walk∗’d	values,	whereas
fresh	binds	variables	using	var.

When	 do	 the	 values	 of	 (
walk∗	 v	 s)	 and	 (walk	 v	 s)
differ?

99 They	differ	when	v	walks	 in	 s	 to	 a	 pair,	 and
the	 pair	 contains	 a	 variable	 that	 has	 an
association	in	s.

Does	walk∗’s	 behavior	 differ
from	walk’s	behavior	if	v,	 the
result	of	walk,	is	a	variable?

100 No.
	

How	 does	 walk∗’s	 behavior
differ	from	walk’s	behavior	 if
v,	the	result	of	walk,	is	a	pair?

101 If	v’s	walk’d	value	is	a	pair,	the	second	cond
line	of	walk∗	is	used.	Then,	walk∗	constructs
a	new	pair	of	the	walk∗’d	values	in	that	pair,
whereas	the	walk’d	value	is	just	v.

If	v’s	walk’d	value	is	neither	a
variable	 nor	 a	 pair,	 does
walk∗	behave	like	walk

102 Yes.

What	 property	 holds	 when	 a
value	is	walk∗’d?

103 If	a	value	is	walk∗’d	 in	a	substitution	s,	and
walk∗	produces	a	value	v,	then	we	know	that
each	variable	in	v	is	fresh.

Here	is	reify-s,	which	initially 104 unify.



expects	 a	 value	 v	 and	 an
empty	 reified-name
substitution	r.

(define	(reify-s	v	r)
(let	((v	(walk	v	r)))

(cond
((var?	v)
(let	 ((n	 (length
r)))

(let	 ((rn
(reify-
name	n)))

(cons
‘(,v	

▪

,rn)
r))))

((pair?	v)
(let	 ((r	 (reify-s
(car	v)	r)))

(reify-s
(cdr	 v)
r)))

(else	r))))

What	 definition	 is	 reify-s
reminiscent	of?

reify-s,	 unlike	 unify,	 expects	 only	 one
value	in	addition	to	a	substitution.	Also,
reify-s	cannot	produce	#f.	But,	like	unify,
reify-s	begins	by	walking	v.	Then	in	both
cases,	 if	 the	walk’d	 v	 is	 a	 variable,	 we
know	 it	 is	 fresh	 and	 we	 use	 that	 fresh
variable	 to	 extend	 the	 substitution.
Unlike	in	unify,	no	occurs?	 is	needed	in
reify-s.	 In	 both	 cases,	 if	 v	 is	 a	 pair,	 we
first	produce	a	new	substitution	based	on
the	car	of	the	pair.	That	substitution	can
then	 be	 extended	 using	 the	 cdr	 of	 the
pair.	 And,	 there	 is	 a	 case	 where	 the
substitution	remains	unchanged.

Right.	What	 is	 the	 first	 thing
that	happens	in	reify-s

105We	 use	 let,	 which	 gives	 a	 walk’d	 (and
possibly	different)	value	to	v.

Describe	 reify-s’s	 first	 cond
line.

106 If	(	var?	v)	is	#t,	then	v	 is	a	fresh	variable	in
r,	 and	 therefore	 can	 be	 used	 in	 extending	 r
with	a	reified	variable.

Why	is	length	used? 107 Every	time	reify-s	extends	r,	length	produces
a	unique	number	to	pass	to	reify-name.

Describe	 reify-s’s	 second
cond	line,	when	v	is	a	pair.

108We	extend	the	reified-name	substitution	with
v’s	car,	and	extend	 that	 substitution	 to	make
another	 reified-name	 substitution	 with	 v’s
cdr.



When	 v	 is	 neither	 a	 variable
nor	a	pair,	what	is	the	result?

109 It	is	the	current	reified-name	substitution.

Now	 that	 we	 know	 how	 to
create	 a	 reified-name
substitution,	 how	 should	 we
use	the	substitution	to	replace
all	 the	 fresh	 variables	 in	 a
value?

110 We	 use	 walk∗	 in	 the	 reified-name
substitution	to	replace	all	the	variables	in	the
value.

Consider	 the	 definition	 of
reify,	which	relies	on	reify-s.

(define	(reify	v)
(lambda	(s)

(let	 ((v	 (walk∗	 v
s)))
(let	 ((r	 (reify-s	 v
empty-s)))

(walk∗	v	r)))))
Is	reify	recursive?

111 No,	reify	is	not	recursive.

Describe	 the	 behavior	 of	 the
expression	 (	 walk∗	 v	 r)	 in
reify’s	last	line.

112 Each	 fresh	 variable	 in	 v	 is	 replaced	 by	 its
reified	 variable	 in	 the	 reified-name
substitution	r.



What	is	the	value	of

(let	((a1‘(,x	▪	(,u	,w	,y	,z	((ice)	,z))))
(a2‘(,y	▪	corn))
(a3‘(,w	▪	(,v	,u))))

(let	((s	‘(,a1	,a2	,a3)))
((	reify	x)	s)))

113 (	−0	(−1	−0)	corn	−2	((ice)	−2)).



What	is	the	value	of

(map	(reify	x)
(take∞	5

((disj2	(≡	'olive	x)	(≡	'oil	x))
empty-s)))

114 (	olive	oil).

We	can	combine	take∞	with	passing	the	empty
substitution	to	a	goal.

(define	(run-goal	n	g)
(take∞	n	(g	empty-s)))

Using	run-goal,	 rewrite	 the	 expression	 in	 the
previous	frame.

115Here	it	is,

(map	(reify	x)
(run-goal	5

(	 disj2	 (≡
'olive	x)	(≡	'oil
x)))).

Let’s	put	the	pieces	together!

	
We	 can	 now	 define	 appendo	 from	 frame	 4:41,
replacing	 conde,	 fresh,	 and	 defrel	 with	 the
functions	defined	in	this	chapter.

116 Like	this,
	

(define	(appendo	l	t	out)
(lambda	(s)

(lambda	()
((disj2

(conj2	(nullo	l)	(≡	t	out))
(call/fresh	'a

(lambda	(a)
(call/fresh

s)))).

Now,	the	argument	to	run-goal	 is	#f	instead	of	a
number,	so	that	we	get	all	the	values,

(let	((q	(var	'q)))
(map	(reify	q)

(run-goal	#f
(call/fresh	'x

117And	behold,	we	get	the	result	in	frame	4:42,
((()	(cake	&	ice	d	t))

((cake)	(&	ice	d	t))
((cake	&)	(ice	d	t))
((cake	&	ice)	(d	t))
((cake	&	ice	d)	(t))



(lambda	(x)
(call/fresh	'y

(lambda	(y)
(conj2

(≡	‘(,x	,y)	q)
(appendo	x	y

'(cake	 &
ice	 d
t)))))))))).

((cake	&	ice	d	t)	())).
	

These	 last	 few	 frames	 should	 aid	 understanding
the	hygienic†	rewrite	macros	on	page	177:	defrel,
run,	run∗,	fresh,	and	conde.

_______________
†	Thanks,	Eugene	Kohlbecker	(1954–).

118Not	only	is	the	result	the	same,	but	the	
frame	 4:42	 rewrites	 to	 the	
previous	frame.	And	the	append
is	virtually	the	same	append

⇒	Take	a	break	after	the	5th	course!	⇐

Lemon	sorbet.

—or—

Espresso.

—or—

Jackfruit	dessert	with	a	dollop	of	coconut	cream	(chakka-pradhaman).

In	 all	 the	 excitement,	 have	 we	 forgotten
something?

119 What	 about	 conda	 and
condu?

conda	relies	on	ifte,	so	let’s	start	there. 120 Okay.



What	 is	 the
value	of

((ifte	#s
(≡	 #f
y)
(≡	 #t
y))

empty-s)

121 ‘(((,y	
▪
	#f))),

because	the	first	goal	#s	succeeds,	so	we	try	the	second
goal	(≡	#f	y).

	



What	 is	 the
value	of

((ifte	#u
(≡	 #f
y)
(≡	 #t
y))

empty-s)

122 ‘(((,y	
▪
	#t))),

because	 the	 first	 goal	 #u	 fails,	 so	 we	 instead	 try	 the
third	goal	(≡	#t	y).



What	 is	 the
value	of

((ifte	(≡
#t	x)

(≡
#f
y)
(≡
#t
y))

empty-
s)

123 ‘(((,y	
▪
	#f)	(,x	

▪
	#t))),

because	 the	 first	 goal	 (≡	 #t	 x)	 succeeds,	 producing	 a
stream	of	 one	 substitution,	 so	we	 try	 the	 second	goal	 on
that	substitution.



What	is	the	value	of

((ifte	(disj2	(≡	#t	x)	(≡	#f	x))
(≡	#f	y)
(≡	#t	y))

empty-s)

124 ‘(((,y	
▪
	#f)	(,x	

▪
	#t))	((,y	

▪
	#f)	(,x	

▪

#f))),
because	 the	 first	 goal	 (disj2
(≡	 #t	 x)	 (≡	 #f	 x))	 succeeds,
producing	 a	 stream	 of	 two
substitutions,	 so	 we	 try	 the
second	goal	on	each	of	those
substitutions.

What	might	the	name	ifte†	suggest?

_______________
†	Here	is	the	expression	in	frame	124	using	conda	rather
than	ifte.

	
((conda

((disj2	(≡	#t	x)	(≡	#f	x))	(≡	#f	y))
((≡	#t	y)))

empty-s)

This	 use	 of	 conda,	 however,	 violates	 The	 Second
Commandment	 as	 in	 frames	 9:11	 and	 12.	 Although
The	Second	Commandment	 is	 described	 in	 terms	 of
conda,	the	uses	of	ifte	in	frames	123	and	124	violate	the
spirit	of	this	commandment.

125 if-then-else.

Here	is	ifte.

(define	(ifte	g1	g2	g3)
(lambda	(s)

(let	loop	((s∞	(g1	s)))
(cond

((null?	s∞)	(g3	s))
((pair?	s∞)

(append-map∞	g2	s∞))
(else	(lambda	()

(loop
(s∞))))))))

Is	ifte	recursive?

126 No,	 but	 ifte’s	 helper,	 loop,	 is
recursive.

What	does	ifte	produce? 127 A	goal.



The	body	of	that	goal	is

(let	loop	((s∞	(g1	s)))	…	).

What	does	let	loop’s	(cond	…	)	produce?

128 The	 (	 cond	 …	 )	 produces	 a
stream.

Where	 have	 we	 seen	 these	 same	 cond
questions?

129 In	the	definitions	of	append∞	and
append-map∞,	 and	 in	 the	 last
three	 lines	 in	 the	 definition	 of
take∞.



What	is	the	value	of

((ifte	(once	(disj2	(≡	#t	x)	(≡	#f	x)))†

(≡	#f	y)
(≡	#t	y))

empty-s)

_______________
†	 Although	The	 Second	 Commandment	 is	 described	 in
terms	 of	 conda	 and	 condu,	 these	 expand	 into	 expressions
that	use	ifte	and	once	(appendix	A).	The	expression	in	this
frame	is	equivalent	to	a	condu	expression	that	violates	The
Second	Commandment	as	in	frame	9:19.

130 ‘(((,y	
▪
	#f)	(,x	

▪
	#t))),

because	 the	 first	 goal
(disj2	 (≡	 #t	 x)	 (≡	 #f	 x))
succeeds	once,	 producing
a	 stream	 of	 a	 single
substitution,	so	we	try	the
second	 goal	 on	 that
substitution.

Here	is	once.

(define	(once	g)
(lambda	(s)

(let	loop	((s∞	(g	s)))
(cond

((null?	s∞)	'())
((pair?	s∞)

(cons	(car	s∞)	'()))
(else	(lambda	()

(loop
(s∞))))))))

What	is	the	value	when	s∞	is	a	pair?

131 The	 value	 is	 a	 singleton
stream.

In	 once,	 what	 happens	 to	 the	 remaining
substitutions	in	s∞

132 They	vanish!

	

The	end,	sort	of.

Time	for	vacation.



Are	you	back	yet?

Get	ready	to	connect	the	wires!



	



	
In	 chapter	 10	 we	 define	 functions	 for	 a	 low-level	 relational	 programming
language.	 We	 now	 define—and	 explain	 how	 to	 read—macros,	 which	 extend
Scheme’s	 syntax	 to	 provide	 the	 language	 used	 in	most	 of	 the	 book.	We	 could
instead	interpret	our	programs	as	data,	as	in	the	Scheme	interpreter	in	chapter	10
of	The	Little	Schemer.

Recall	disj2	from	frame	10:54.

Here	is	a	simple	disj2	expression:

(disj2	(≡	'tea	'tea)	#u).

We	now	add	the	syntax	(disj	g	…).

(disj	(≡	'tea	'tea)	#u	#s)

macro	expands	to	the	expression

(disj2	(≡	'tea	'tea)	(disj2#u	#s)),

which	does	not	contain	disj.	Here	are	the	helper	macros	disj	and	conj.

(define-syntax	disj
(syntax-rules	()

((disj)	#u)
((disj	g)	g)
((disj	g0	g	…)	(disj2	g0	(disj	g	…)))))

(define-syntax	conj
(syntax-rules	()

((conj)	#s)
((conj	g)	g)
((conj	g0	g	…)	(conj2	g0	(conj	g	…)))))

syntax-rules	begins	with	a	keyword	list,	empty	here,	followed	by	one	or	more
rules.	Each	rule	has	a	left	and	right	side.	The	first	rule	says	that	(disj)	expands	to
#u.	The	 second	 rule	 says	 that	 (disj	g)	 expands	 to	g.	 In	 the	 last	 rule	 “g0	g	…”
means	 at	 least	 one	 goal	 expression,	 since	 “g	 …”	 means	 zero	 or	 more	 goal
expressions.	The	right-hand	side	expands	to	a	disj2	of	two	goal	expressions:	g0,
and	a	disj	macro	expansion	with	one	fewer	goal	expressions.	conj	behaves	like



disj	with	disj2	replaced	by	conj2	and	#u	replaced	by	#s.

Each	 defrel	 expression	 defines	 a	 new	 function.	 run’s	 first	 rule	 and	 fresh’s
second	 rule	 scope	 each	 variable	 “x0	 x	 …”	 within	 “g	 …”.	 run’s	 second	 rule
scopes	q	within	“g	…”.	The	second	“…”	indicates	each	conde	expression	may
have	zero	lines.	condu	expands	to	a	conda.

(define-syntax	defrel
(syntax-rules	()

((defrel	(name	x	…)	g	…)
(define	(name	x	…)

(lambda	(s)
(lambda	()

((conj	g	…)	s)))))))

(define-syntax	run
(syntax-rules	()

((run	n	(x0	x	…)	g	…)
(run	n	q	(fresh	(x0	x	…)

(≡	‘(,x0	,x	…)	q)	g	…)))
((run	n	q	g	…)
(let	((q	(var	'q)))

(map	(reify	q)
(run-goal	n	(conj	g	…)))))))

(define-syntax	run*
(syntax-rules	()

((run*	q	g	…)	(run	#f	q	g	…))))

(define-syntax	fresh
(syntax-rules	()

((fresh	()	g	…)	(conj	g	…))
((fresh	(x0	x	…)	g	…)
(call/fresh	'x0

(lambda	(x0)
(fresh	(x	…)	g	…))))))

(define-syntax	conde



(syntax-rules	()
((conde	(g	…)	…)
(disj	(conj	g	…)	…))))

(define-syntax	conda
(syntax-rules	()

((conda	(g0	g	…))	(conj	g0	g	…))
((conda	(g0	g	…)	ln	…)
(ifte	g0	(conj	g	…)	(conda	ln	…)))))

(define-syntax	condu
(syntax-rules	()

((condu	(g0	g	…)	…)
(conda	((once	g0)	g	…)	…))))
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Afterword

It	is	commonplace	to	note	that	computer	technology	affects	almost	all	aspects	of
our	lives	today,	from	the	way	we	do	our	banking,	 to	the	games	we	play	and	to
the	 way	 we	 interact	 with	 our	 friends.	 Because	 of	 its	 all-pervasive	 nature,	 the
more	we	understand	how	it	works	and	the	better	we	understand	how	to	control	it,
the	better	we	will	be	able	to	survive	and	prosper	in	the	future.

The	 importance	 of	 improving	 our	 understanding	 of	 computer	 technology
has	 been	 recognised	 by	 the	 educational	 community,	 with	 the	 result	 that
computing	 is	 rapidly	 becoming	 a	 core	 academic	 subject	 in	 primary	 and
secondary	schools.	Unfortunately,	few	school	teachers	have	the	background	and
the	 training	 needed	 to	 deal	 with	 this	 challenge,	 which	 is	 made	 worse	 by	 the
confusing	 variety	 of	 computer	 languages	 and	 computing	 paradigms	 that	 are
competing	for	adoption.

Even	more	 challenging	 for	 teachers	 in	many	 respects	 is	 the	 promotion	of
computational	thinking	as	a	basic	problem	solving	skill	that	applies	not	only	to
computing	 but	 to	 virtually	 all	 problem	 domains.	 Teachers	 have	 to	 decide	 not
only	what	computer	 languages	 to	 teach,	but	whether	 to	 teach	children	 to	 think
imperatively,	declaratively,	object-orientedly,	or	 in	one	of	 the	many	other	ways
in	which	computers	are	programmed	today.

Computer	scientists	by	and	large	have	not	been	very	helpful	in	dealing	with
this	 state	of	 confusion.	The	 subject	of	 computing	has	become	so	vast	 that	 few
computer	 scientists	 are	 able	 or	willing	 to	 venture	 outside	 the	 confines	 of	 their
own	 specialised	 sub-disciplines,	 with	 the	 consequence	 that	 the	 gap	 between
different	approaches	to	computing	seems	to	be	widening	rather	than	narrowing.
Instead	 of	 serving	 as	 a	 true	 science,	 concerned	 with	 unifying	 different
approaches	 and	 different	 paradigms,	 computer	 science	 has	 all	 too	 often	 been
magnifying	the	differences	and	shying	away	from	the	big	issues.

This	 is	 where	 The	 Reasoned	 Schemer	 makes	 an	 important	 contribution,
showing	how	to	bridge	the	gap	between	functional	programming	and	relational
(or	 logic)	 programming—not	 combining	 the	 two	 in	 one	 heterogeneous,	 hybrid
system,	but	 showing	how	 the	 two	are	deeply	 related.	Moreover,	 it	 doesn’t	 rest



content	 with	 merely	 addressing	 the	 experts,	 but	 it	 aims	 to	 educate	 the	 next
generation	 of	 laypeople	 and	 experts,	 for	 a	 day	 when	 Computer	 Science	 will
genuinely	 be	worthy	 of	 its	 title.	 And,	 because	 computing	 is	 not	 disjoint	 from
other	academic	disciplines,	it	also	builds	upon	and	strengthens	the	links	between
mathematics	and	computing.
	

The	Reasoned	Schemer	is	not	just	a	book	for	the	future,	showing	the	way	to
build	bridges	between	different	paradigms.	But	it	is	also	a	book	that	honours	the
past	 in	 its	use	of	 the	Socratic	method	 to	engage	 the	 reader.	 It	 is	a	book	 for	all
time,	and	a	book	that	deserves	to	serve	as	an	example	to	others.

Robert	A.	Kowalski
Petworth,	 West	 Sussex,
England
August	2017
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