Using ssh Authentication and git

Brian C. Ladd

23 January 2012

Note: Your homework directories should not be subtrees of the class source code. You
should create new directories for your assignments that are not under the directory where
cis405-src.git was cloned. [If you don’t understand this, don’t worry. Page 6 explains it. It
is important enough to call your attention to before you read the document.]

1 SSH Keys

ssh (secure shell) uses public key encryption for user authentication and secure communica-
tion in an unsecured network.! Public key encryption requires two different keys: the public
key which you share with anyone from whom you wish to receive information and the private
key that is used to decrypt the information sent using your public key. Each ssh key is actually
a keypair.

Public key encryption is “backward” from shared-secret encryption: using a shared secret
you send a key to those to whom you wish to send messages; using public key encryption you
share the public key with those from whom you wish to receive messages. The public key can
also be used by remote systems to authenticate who you are (by checking that you have access
to the private half of the key).

On Linux, the keys are generated using the ssh-keygen program. By default they are stored
in the ~/.ssh directory. Current versions of the ssh programs generate keys using the RSA
algorithm by default.

1Want to drive Dr. Ladd to apoplexy? Use “insecure” when talking about an unsecure network. An insecure network needs
affirmation to improve its self-image; an unsecure network needs encryption to keep prying eyes from reading things they should
not.

Generating SSH Key Pairs

An example command-line session to generate a key pair looks something like this (numbers
in the left-hand margin are reference labels; the left-hand edge of the prompt is the left-hand
edge of the shell):

laddbc@cs:~$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/laddbc/.ssh/id rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/laddbc/.ssh/id rsa.
Your public key has been saved in /home/laddbc/.ssh/id rsa.pub.
The key fingerprint is:
3b:af:85:f8:d3:f6:fd:6f:7d:92:3f:d2:7b:2f:28:b6 laddbc@cs
The key's randomart image is:
+--[RSA 2048]----+

laddbc@cs:~$

Explanation

01 - The default location for the files is the ~/.ssh folder; the default names for the files are
id_rsa and id_rsa.pub. Press enter to accept the default (or type an alternative name/loca-
tion if you want). An existing keypair will not be overwritten without a prompt.

ssh (and related tools) is easiest to use when the keypair is in the default location; otherwise
an identity parameter is required specifying where the keypair resides. See ssh --help or

1. SSHKEYS 3

man ssh for more on command-line parameters.

02 - ssh-keygen is asking for a password/phrase to secure the private half of your key. You
will have to provide this password every time you use ssh (or git which uses the ssh protocol).

Just hitting enter means that there is no passphrase and you will not be prompted for one
when using ssh; this can be very convenient at the cost of some security. Anyone who can
access your account can authenticate as you to any remote system using your keypair without
guessing a second password. I don’t use a passphrase; I will not be able to debug your ssh
problems without you sitting there if you use a passphrase.

03 - This is a fingerprint for the key, a way of confirming what version of the key another
person has without having to transmit the entire key. It also simplifies advertising your public
key version to make the system less susceptible to man-in-the-middle attacks.

04 - Similarly, this is a bit pattern encoded in ASCII art that represents your key. You could
include it in an e-mail signature to permit correspondents to confirm they are using the current
version of the key.

Checking the Results of ssh-keygen

You can see the generated files in the ~/ . ssh directory:

laddbc@cs:~$ cd .ssh
laddbc@cs:~/.ssh$ 1s -1
authorized keys

id rsa

id _rsa.pub

known hosts
laddbc@cs:~/.ssh$

(The -1 (“dash one”) tells 1s to display one file name per line.) The two files we're inter-
ested in are id_rsa (the private key) and id_rsa.pub (the public key). authorized_keys
is a file containing public keys for users who can remotely authenticate to my account with-
out providing a password (you may not have such a file at all) and known_hosts is a list of
key fingerprints for different remote machines; when a machine’s 0OS or hardware changes,
the fingerprint changes and I can be wary if, for some reason, I suspect that someone evil has
subverted or replaced the machine.

Sharing Your Public Key

Copy Your Public Key

Copy the id_rsa.pub file (in the .ssh folder) to a file named <login>.pub where <login> is
your login name on the lab Linux machines:

laddbc@cs:~/.ssh$ cd ..

laddbc@cs:~$ cp .ssh/id rsa.pub laddbc.pub

E-mail the Copied File to Dr. Ladd

Now send an e-mail, attaching a copy of laddbc . pub (your login name replaces mine), to laddbc@
potsdam.edu so that you can authenticate to the git server.

How? You can run firefox on the lab machines and use any Webmail account you have
(bearmail.potsdam.edu anyone?) and attach the file. Or you could copy the file to a USB
thumbdrive and mail it from you own computer. Or use scp to copy the file to another computer
from which to mail it.

Note: You must rename the file you send to Dr. Ladd: receiving thirty filesnamed id_rsa.pub
makes saving them error-prone. The subject of your message should be the CIS courses you are
taking with Dr. Ladd: this is so that your name is properly added to the right lists (again, han-
dling the lists for multiple classes with each student taking a different subset of courses...you
can see where this might be difficult).

You created an ssh keypair, copied, and e-mailed the public half of the key so that you can
use git, a version control system. The departmental git server is secured using ssh authenti-
cation; your key must be in the list of authorized users for the server. The next section describes
how to use git once you are properly authenticated.

2 Usinggit
What Is git?

git (the name of the program is written in lowercase) is a version control system. Consider it a
large-grained undo facility along with a way that I can look at how you work. Note that some
courses are about process as much as substance Bso being able to see how you program is as
important as seeing what you finally program.

Zie. software engineering

laddbc@potsdam.edu
laddbc@potsdam.edu
bearmail.potsdam.edu

2. USINGGIT 5

A version control system is a database of snapshots of the contents of files. With such a
database you can reset your project (or any subset of the files in your project) to any recorded
snapshot. You must actively add snapshots to the repository: this should be done regularly
(on the order of halves of hours rather than halves of days), whenever you complete a feature.

git Users

With your public key, named <login>. pub, I create a user, known to git@cs-devel.potsdam.
edu, named <login>. That user can create homework projects in course space as well as down-
load the course sample code. You are registered in each course you take with me when I get
the public key.

How Is git Used in Class?

git repositories contain all sample source code for classes and are used by students to turn in
all programming assignments.

Retrieving Sample Code

Class sample code for a class, say CIS405, is in a repository named for the class with -src ap-
pended: cis405-src. Take note of the capitalization. The name of the class repository is part
of the repository’s URL as in

git@cs-devel.potsdam.edu:cis405-src

The first part of the name is the user/server pair where a git server is running. After the
colon is the path name of the repository. Class repos reside in the base directory of our git
server; your homework and team repos reside in class named folders (as explained below). To
clone any git repository to which you have read access, use the git clone command:

01 Tladdbc@cs:~/tmp$ git clone git@cs-devel.potsdam.edu:cis405-src
02 Initialized empty Git repository in
/home/laddbc/tmp/cis405-src/.git/
remote: Counting objects: 37, done.

remote: Compressing objects: 100% (34/34), done.

remote: Total 37 (delta 7), reused 0 (delta 0)

Receiving objects: 100% (37/37), 28.56 KiB, done.

Resolving deltas: 100% (7/7), done.
laddbc@cs:~/tmp$

git@cs-devel.potsdam.edu
git@cs-devel.potsdam.edu

01 - git has many subcommands; the word after git determines what git does. git clone
takes a git URL to a repository as a parameter and copies (clones) the entire repository history
to the local machine. An optional second parameter names the local directory to clone to; the
name of the repository is used for the directory name if the parameter is omitted.

If the intended directory exists and is non-empty, the clone command fails with an error
message; git is typically careful about clobbering your work.

02 - git initializes an empty history database in the local clone directory. The .git directory
is hidden (Linux 1s command ignores “dot-files” by default) in the root of a git directory tree.

The empty history database is then populated from the source repository on the server. Fi-
nally git clone copies the most recent version of all files into the clone directory (the working
tree).

git log displays the complete history of a git repository.

laddbc@cs:~/tmp$ cd cis405-src/
laddbc@cs:~/tmp/cis405-src$ git log
commit 3ed6004b1426e8715dd3d7af79ab599145c16a84
Author: Brian C. Ladd <laddbc@potsdam.edu>
Date: Tue Aug 16 11:27:53 2011 -0400

Added the sierpinski triangle program.

Built separately from that in the book’s source so it is not
strongly related.

commit 0774bddaacabba69b210ac4f901b64afdOc3dodl
Author: Brian C. Ladd <laddbc@potsdam.edu>
Date: Tue Aug 16 11:26:57 2011 -0400

GLOO - testing open GL

Added the GLOO project/source files.

laddbc@cs:~/tmp/cis405-src$

2. USINGGIT 7

Updating Sample Code

It is possible to clone the class database as many times as you want. Since you have read access
to the repository, any machine with git installed that can reach cs-devel.potsdam.edu can
clone the repository.

Re-cloning the repository onto the machine we cloned it onto above is annoying and a waste
of time: git won’t overwrite existing directories with a clone so the first clone must be re-
moved or renamed; all of the material that was already downloaded is on the local machine -
there is no reason to copy it across the wire again.

git clone associates the original, cloned repository with a short name, called a remote
name, of origin. The short name for the associated URL makes it easier to refer to whence the
repository came.

laddbc@cs:~/tmp/cis405-src$ git remote

origin

laddbc@cs:~/tmp/cis405-src$ git remote show origin

* remote origin
Fetch URL: git@cs-devel.potsdam.edu:cis405-src.git
Push URL: git@cs-devel.potsdam.edu:cis405-src.git
HEAD branch: master

Remote branch:
master tracked
Local branch configured for 'git pull’:
master merges with remote master
Local ref configured for ’'git push’:
master pushes to master (up to date)
laddbc@cs:~/tmp/cis405-src$

01git remote with no parameters lists all the remote sites defined in this repository. The only
one here is origin.

02git remote showshowsthe current status of the named remote repository after connecting
to the remote site and comparing to the local repository.

The report here shows the URL for the remote repository, lists the branches being used
locally (master) and remotely (remote master). It will also list how many extra commits are
on the local or remote repository if they are out of sync.

You can just type git pull, short for git pull origin master, to pull (fetch from the
remote and copy over the working directory) any updates from the remote site.

Because git will not overwrite changes in the local working tree, you never want to make
changes directly in the source tree you download for any class. If you do you might have prob-
lems pulling updated source code.

In particular: Never put assignment directories anywhere inside the class source code di-
rectory tree. If you're extending class code create a new directory and copy the appropriate
code and sub-directories from the class source into your new assignment folder.

Submitting Programs

Submitting a program requires several steps:

1. Create a git repository for the project
Done in the root directory of the source tree for the project; all files you intend to turn
in should be in the subtree rooted at that folder. This is done on your personal accoun-
t/computer.

2. Add all required files to git
Stages the file(s) to be added (or updated in) the local repository. This is done on your
personal account/computer in the source subtree.

3. Commit the changes staged in the previous step into the local git repository
Moves the added changes from staging to the local repository. No unstaged or previously
committed changes are affected. This is done in the source subtree on your personal
account/computer.

4. Push the modified repository into the assignment repository on the central server.
Places a copy of the repository where I can clone (or pull) it. You can repeat steps 2-3
as many times as necessary, updating the local repository. You can perform step 4 once
at the end of the assignment or, if you want me to look at your code, do it earlier and
then push you changes over it to turn the final changes in. This is done on your personal
account/computer while connecting to the git server.

(For seasoned git users here at Potsdam, the process changed a little bit in Fall 2011. The
naming conventions for assignments has changed (the names of repositories are specified in the
assignment) and the new push —all syntax means you don’t have to set up a remote connection
to the server. Using the new name, however, you can set up a standard remote connection if
that is more convenient.)

2. USINGGIT 9

1. Change directory to the root of the project and initialize a git repository. Note: Your
homework directories should not be inside the directory tree containing class source
code. Read that last sentence again! Go read the first sentence in this document.
Now you understand!

10

laddbc@cs:~/tmp/$ mkdir triangles
laddbc@cs:~/tmp/$ cd triangles

laddbc@cs:~/tmp/triangles/$ git init
Initialized empty Git repository in /home/laddbc/tmp/triangles/.gi
laddbc@cs:~/tmp/triangles/$

This creates the local database (the tree rooted at ./.git contains the database). Re-
member, the assignment directory can be named anything you want as long as it is not
anywhere in the course source code directory tree.

The local database contains no files (note the word “empty” in the git response line.
The initialization of the repository happens once per repository; we will use a separate
repository for each assignment so you will initialize a repository once per assignment.
(In general: if one project extends another, then you will extend the existing repository,
possibly pushing the repository to a different location on the server.)

The assignment folder, the root of the assignment’s directory tree, cannot be anywhere
within the directory tree of the class’s source code. You can name the assignment folder
whatever you want.

2. Add the files belonging to the assignment to git. git stages them for committing to the
local database. That means you can easily remove them if you need to.

laddbc@cs:~/tmp/triangles/$ git add draw triangle.h
laddbc@cs:~/tmp/triangles/$ git add draw triangle.cpp
laddbc@cs:~/tmp/triangles$ git status
On branch master
#
Initial commit

Changes to be committed:

new file: draw_triangle.cpp
new file: draw_triangle.h

#
#
#
(use "git rm --cached <file>...” to unstage)
#
#
#

#
laddbc@cs:~/tmp/triangles/$

git status provides a view of the working tree, the staging area, and the local repository.
The working tree is your copy of all of the files. What is currently in the assignment

2. USINGGIT 11

source code tree is compared to the repository and any differences that are not staged
are reported; there are none in the above status. The staging area is the set of changes
that have been added to git but are not yet committed. The files in the working tree
that are new or changed but have been added to the staging area; two new files are listed
above. The repository is the database (in ./.git). Any files that are the same as the most
recent addition to the database are not listed in the status. In git, no news is good news.

3. The staged commits need to be committed to the local database.

laddbc@cs:~/tmp/triangles/$ git commit

git commit requires a commit message. A commit message serves as a label for the
changes to the code.

In order to display compactly, the message is formatted as a single line of text (the short
message, the thesis statement), a single blank line, and then as many lines (using blanks to
break paragraphs) as necessary to explain the reason for the commit.

A commit should be a coherent, unified whole, summarizable in a single sentence. Think
of a commit as a paragraph and the first line of the commit message as the thesis sentence.
If you have problems coming up with a thesis sentence, consider whether your commit
is either incomplete or is actually composed of multiple commits. Adjust it as necessary.

git brings up an editor for you to write a commit message.E The bottom of the edit buffer
contains the git status results printed above. Any lines in the message buffer that begin
with a # are ignored when git records the message.

Save the file from the editor (after filling it in with non-comment lines) and the program
announces the successful commit:

(continued from above...)

[master (root-commit) 5dd3389] Initial commit
Committer: Brian Ladd <laddbc@cs-devel. (none)>

2 files changed, 2 insertions(+), 0 deletions(-)

create mode 100644 draw triangle.cpp
create mode 100644 draw triangle.h
laddbc@cs:~/tmp/triangles/$

Notice the first line of git’s response: it has the short message that I typed in the editor
(“Initial commit”),the branch that git is currently using (“master”), and the identifier

3Which editor can be configured. Google “git default editor” and you should have plenty of tutorials to choose from.

12

for the commit (5dd3389). The identifier for the commit is from the secure hash of the
state of the repository after the changes are committed. You don’t need to worry about
how it is calculated but can assume there are seldom collisions between states of the
repository.

The hash (visible with the git log and some other commands) is 40 hex digits long. The
first several (or last several) digits differentiate commits from one another.

4. Assuming triangles is CIS405 program 1, turning it in would mean pushing it to the
repository cis405/1laddbc/p001 (the leading zeros are required). git push can take the
full URL of the new repository. (Note that “\”” means continue line.)

laddbc@cs:~/tmp/triangles/$ git push \
--all git@cs-devel.potsdam.edu:cis405/1laddbc/p001
Counting objects: 4, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (2/2), done.

Writing objects: 100% (4/4), 336 bytes, done.
Total 4 (delta 0), reused 0 (delta 0)
To git@cs-devel.potsdam.edu:cis405/laddbc/p00O1
* [new branch] master -> master
laddbc@cs:~/tmp/triangles/$

The --all flag tells git to push all references to branches and tags along with the actual
database.

Thegit 1ls-remote command checks the remote version, showing the commit ID of each.

laddbc@cs:~/tmp/triangles/$ git ls-remote \
git@cs-devel.potsdam.edu:cis405/1addbc/p001
5dd33896dad3a29449d89b627edd27d6f51561b4 HEAD

5dd33896dad3a29449d89b627edd27d6f51561b4 refs/heads/master
laddbc@cs:~/tmp/triangles/$

The repository URL is passed to 1s-remote and the result is the commit ID of the HEAD
(pretty much the “current” pointer in git) and the commit ID of any branches there
(master is the default starting branch; we will not make much use of branches in any
classes). Notice that both match the commit ID reported by git when the triangles pro-
gram was committed. This verifies that my changes were pushed up to the server.

2. USINGGIT 13

Restoring Your Own Repositories

Catastrophe has happened: you clobbered your class assignments directories. And you didn’t
have anything like a current backup.E How can you get p001 back again? The answerisgit clone:

laddbc@cs:~/restored cis405% git clone \
git@cs-devel.potsdam.edu:cis405/1laddbc/p001.git
Initialized empty Git repository in
/home/laddbc/restored cis405/p001/.git/
remote: Counting objects: 37, done.

remote: Compressing objects: 100% (34/34), done.
remote: Total 37 (delta 7), reused 0 (delta 0)
Receiving objects: 100% (37/37), 28.56 KiB, done.
Resolving deltas: 100% (7/7), done.
laddbc@cs:~/restored cis405%

Now a complete copy of the repository is in the po01 directory and the HEAD commit is
checked out (the files are all in the state of the last commit).

What Repositories Can I Access?

To find the names of repositories on cs-devel.potsdam.edu that you can access (or ones you
can create), you can send the special info command to git@cs-devel.potsdam.edu using ssh:

laddbc@cs:~$ ssh git@cs-devel.potsdam.edu info
hello laddbc, the gitolite version here is v2.0.3-3-gbfbd887
the gitolite config gives you the following access:
R W cis356-src
W C cis356/1laddbc/p\d\d\d
W cis380-src
W €cis405-src
cis405/1laddbc/p\d\d\d
cis405/1laddbc/p001

laddbc@cs:

4As a computer professional (or one in training), you should know how to backup your work. You should have a system
for backing up your work. Heck, you should automate backing up your work so that it happens (and is verified) without human
intervention and the copies are moved off the hardware with the original. Failure to heed this warning implicitly gives Dr. Ladd
the right to point and laugh.

14

The returned value shows that I authenticated (using ssh) as laddbc. I have read and write
access (R and W) access to the repositories for several classes that I teach. You will only have
read access to classes you are in.

The directory lines ending in regular expressions, the p\d\d\d lines, are “wildcard repos-
itories”. The \d\d\d is a regular expression for three decimal digits. So the cis405 wildcard
repository would match any of the following

cis405/1laddbc/p002
cis405/1addbc/p123
cis405/1addbc/p999

When you run info, the name laddbc will be replaced by the name by which gitolite
knows you (the name of the public key file sent). You can see that I pushed the p01 repository
so it is shown specifically as well as the form of the wildcard repositories that I can create.

There are no repositories that I can share with others on the system. This is on purpose: you
cannot give others permission to read the repositories you are using to turn in code in class.
When we begin working in teams you will use team repositories.

Team Repositories

One prime reason to use git is when code is shared among multiple programmers. This can be
done out of a central repository (as we will in this class) or by having a “central” user and issuing
pull requests from personal repositories (more typical in github style open source setups).

When you run the info command, you may see a line (in the wildcard repos near the top of
the list) like the following:

RWC cis405/team..*

This means that in addition to the program. . . repos, you can create your own team reposi-
tory. The . .* at the end of the line means that you must have at least one extra character (you
cannot call the team repository cis405/team.git) and that you can have as many as you want.

You “create” a team repository just like a program repository: create a local repo and push
it to the appropriate URL. So, if I create a local directory, teamAlpha, create at least a README
file in it, and commit the change, I can push the repository up to the cs box:

laddbc@cs:~/tmp/teamAlpha/$ git push \

--all git@cs-devel.potsdam.edu:cis405/teamAlpha

2. USINGGIT 15

Counting objects: 4, done.

Delta compression using up to 2 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (4/4), 336 bytes, done.

Total 4 (delta 0), reused 0 (delta 0)
To git@cs-devel.potsdam.edu:cis405/teamAlpha
* [new branch] master -> master
laddbc@cs:~/tmp/teamAlpha/$

The only problem here is that only I have access to the repository. Assuming Drs. Fossom
(fossumtv) and Haller (hallersm) were my team members I would like to give both of them
read/write access to the repository. The one assumption made here is that they are both al-
ready members of the class cis405 with registered ssh keys.

Managing Team-member Access The creator of the repository can use an administrative tool
similar to the info tool described above for finding the list of repositories available to you. The
command (run through ssh) is perms. The command lists its own usage when called with the
-h parameter:

laddbc@cs:~/$ ssh git@cs-devel.potsdam.edu perms -h

Usage: ssh git@host perms -1 <repo>
ssh git@host perms <repo> - <rolename> <username>
ssh git@host perms <repo> + <rolename> <username>

List or set permissions for user-created (”"wild”) repo. The first
usage shown will list the current contents of the permissions file. The
other two will change permissions, adding or removing a user from a role.

Examples:
ssh git@host perms foo + READERS userl
ssh git@host perms foo + READERS user2
ssh git@host perms foo + READERS user3

There is also a batch mode useful for scripting and bulk loading.
Do not combine this with the +/- mode above. This mode also accepts

16

an optional "-c” flag to create the repo if it does not already exist
(assuming $GL USER has permissions to create it).

Examples:
cat copy-of-backed-up-gl-perms | ssh git@host perms <repo>
cat copy-of-backed-up-gl-perms | ssh git@host perms -c <repo>

To add read and write access for my partners, I can just use the + syntax (note: there are
four lines in the following; the “\” at the end of a line means “line continues”).

:~/$ ssh git@cs-devel.potsdam.edu perms \
cis405/teamAlpha + READERS fossumtv

:~/$ ssh git@cs-devel.potsdam.edu perms \
cis405/teamAlpha + WRITERS fossumtv

:~/$ ssh git@cs-devel.potsdam.edu perms \
cis405/teamAlpha + READERS hallersm

:~/$ ssh git@cs-devel.potsdam.edu perms \
cis405teamAlpha + WRITERS hallersm

There is no need to modify my own access (as the creator of the repo), nor is there any
need to grant access to the instructor of the course (by other security rules for git on cs, the
instructor has read access to a team repository when it is created).

After giving access, my teammates should clone the repository so that they can modify it
as they see fit. I may want to clone it (or set the remote origin) for ease of pulling and pushing
changes.

This document, by definition. only covered the most basic uses of git here at SUNY Pots-
dam. You should invest some time in learning a bit more, in particular about how to reset a
file or a set of files when you want to throw your changes away and how to merge repositories
when there is a merge conflict in pulling down changes.

	SSH Keys
	Using git

