
CS Lab Survival Guide
Computer Science Department

SUNY Potsdam
September 2013

1 CS Lab

1.1 Location and hours

The CS Lab is located in Dunn Hall 358. The Lab is open during building hours, which is generally
from 7am to 11pm on weekdays and from 8am to 11pm on weekends.

1.2 Lab access

The CS Lab is open to all students taking CS classes, and all CS majors. Your Ranger Card will
allow you access to the lab when the door is closed. Swipe your card in the slot with the stripe
facing to the right and wait for the green light to indicate that the door handle is operational.

If you are a CS major taking classes above CIS 300, you also have access to the Dunn 356
High Performance Computing Lab.

You may use a CS Lab workstation even when there is a scheduled lab session in Dunn 358 for
CIS 201 or 203, provided that there is an unusued workstation available.

1.3 Lab deportment

Food and/or beverages are not allowed in the vicinity of the Lab workstations, either on the
tables or on the floor. Food and/or beverages are allowed on the CS Lab table near the printer.

Keep the CS Lab neat and tidy. Dispose of paper and other recyclables in the blue recycling
containers and trash in the wastebasket. The CS Lab is more welcoming to others when it appears
well cared for.

Push your chairs under the table when you are done working at a wo rkstation. There
should be two chairs at each workstation location; you are responsible for stowing both of them
when you are done.

Turn out the lights and close the door when you are last to leave.
Contact the Lab administrator (fossumtv@potsdam.edu) if you find anything amiss in the

lab such as non-functioning or missing equipment including workstations, monitors, keyboards,
mice, chairs, or printers.

Disruptive or abusive behavior will not be tolerated in the lab . If you experience such
behavior directed at you or anyone else, contact University Police immediately (phone 2222).

1.4 Logging in

To log in, go to a free Lab workstation and enter your campus computer account (CCA) username
and password in the login area of the welcome screen: Enter your username first, followed by the
Enter key, and then enter your password. Your password will not display on your screen.

Your workstation username and password are the same as your Campus Computer Account
(CCA) username and password that you can use to access other computing resources on campus.

If the screen is locked because someone else has left without logging out, please report this to
the lab system administrator and find another workstation to use.

1.5 Logging out

Be sure to log out once you are done. Click on the “logout” icon at the top of your screen. If
you do not log out, you may prevent someone else from using the workstation later, and you may
receive an email reminding you that you have not logged out.

Never power down any of the Lab workstations. Your workstation may be in use by someone
who has remotely logged in, and powering down the workstation may result in their work being
corrupted or lost.

You may leave your workstation unattended for short periods of time, but do not do so if you
expect to be gone for more than half an hour.

Again, push your chairs under the table when you are done working at a wo rkstation .

2 Workstation environment

When you log in to one of the Lab workstations, you should see a window environment with a mostly
empty screen and small panels on the top and bottom. On the left-hand side of the top panel you
should see an Applications menu and icons for a terminal shell and a browser. On the middle of the
top panel you should see a Logout icon.

You will normally begin using the workstation by opening a terminal shell. This gives you a
command line environment where you can enter commands to carry out activities such as man-
aging your home directory; creating, examining, and editing files; and compiling and running your
programs. We give some example commands later in this document.

2.1 Your home directory

When you log in, you will be placed in your home directory, which has the following path name:

/home/student/<your login>

Here, <your login> is your campus computer account ID, the one that you use to log in to the
workstation. Don’t confuse your home directory with the system-wide directory named /home – they
are not the same!

Your home directory is stored on the CS Lab server, not on the workstation itself, so you always
have access to your same home directory no matter what workstation you are using.

You have private access to the contents of your home directory. You are responsible for keeping
your home directory private by not divulging your password to anyone and by maintaining control of
your workstation when you are logged in.

In the rest of this document, we will refer to the ficticious username user000 and the Lab
workstation named algonquin for the purposes of giving examples.

2.2 Directory structure

A directory is an area of physical storage containing files and other directories. On a Microsoft
Windows system, a directory is called a folder.

When you log in to a Lab workstation, there is a top-level directory called the root of the directory
structure. The symbol used to refer to this top-level directory is ‘/’, but we call it “root”.

Each directory may contain files (which can be ordinary text, executable code, or other stuff)
and other directories, called subdirectories. It is entirely possible for a directory to be empty, which
is the case when one is initially created.

For example, the home directory of our student user000 is

/home/student/user000

The directory user000 is a subdirectory of /home/student, and the directory student is a subdi-
rectory of /home. The directory home is a subdirectory of the root directory /.

When you are logged in to a Lab workstation, the symbol ‘~’ (called tilde or sometimes wiggle)
refers to your home directory. So if you are logged in to a Lab workstation as a student with
username user000, the symbol ~ means the same as /home/student/user000.

2.3 Directory navigation

When you get a shell (see above), you are automatically put into your home directory. Your shell
will print a command prompt that appears like this:

user0000@algonquin:~$

This means that user user000 is logged in to the algonquin Lab workstation and is currently in
the user’s home directory.

You can always see what directory you are currently in by entering the command pwd – which
means Print Working Directory:

user000@algonquin:~$ pwd
/home/student/user000 <- this is what is printed by the pwd command
user000@algonquin:~$

The directory structure forms a tree, with root at the top of the tree (You may think that this
is upside-down, but it will appear to be OK if you are standing on your head) and with files and
subdirectories at the next level down. The subdirectories themselves may have subdirectories, and
this progression may go on for many levels.

Your current working directory (the one reported by the pwd command) is also called dot and
has the (appropriate) name ‘.’. The parent of your current working directory – the directory just
above it – is called dot-dot and has the name ‘..’.

The cd (change directory) command changes to the specified directory given on the command
line. Here are some annotated examples (given without the user000@algonquin: part of the
prompt):

~$ cd /home/student <- change to the /home/student directory
/home/student$ cd .. <- change to the parent of /home/student
/home$ cd . <- change to the current directory (no change!)
/home$ cd ~ <- change back to your home directory
~$ cd <- shorthand for cd ~
~$

You can use the mkdir command to create a directory (which starts out being empty) in the
current working directory:

~$ mkdir foo
~$ cd foo
~/foo$ cd ..
~$ cd ~/foo
~/foo$

Notice that the last prompt says ~/foo; this is just a shorthand for /home/student/user000/foo.
In summary,

• to move up one level in the directory structure, use ‘cd ..’

• to move down one level in the directory structure, use ‘cd dirname’ where dirname is the
name of a directory that is located in your current working directory

• to move up two levels, use ‘cd ../..’

• to move to a particular directory given its relative path name (relative to your current working
directory), use ‘cd relpath’, where relpath does not start with a leading ‘/’

• to move to a particular directory given its absolute path name (starting at the root), use
‘cd abspath’, where abspath starts with a leading ‘/’

In the above examples, the command

~$ cd /home/student

used an absolute path name, and

~$ cd foo

used a relative path name.
Notice that if you start out in the directory /home/student/user000, the following command

~$ cd ../user000

would bring you back to your home directory again. The name ../user000 is a relative path name.

2.4 Your directory organization

You may want to have separate subdirectories of your home directory for the different classes you
are taking. In each of these directories, you may want to have subdirectories for individual assign-
ments or for playing around. To get an idea of how you might want to organize your home directory
(like organizing your real home), take a look at the directory structure in /home/student/Classes.

2.5 Class-related directories

Your instructor will let you know where specifically to find material you will need to carry out your
class-related assignments on the Lab systems. In particular, you may be required to copy files from
a class-specific directory into a suitable working subdirectory of your home directory. Most class-
related materials can be found in subdirectories of /home/student/Classes. For example, the
directory

/home/student/Classes/201

will contain materials specific to CIS 201. Carefully follow the instructions in your assignment to be
sure that you have all the files in your working directory necessary to carry out the assignment.

2.6 Your Desktop

The “desktop” that appears on your screen when you log in shows the contents of a directory named
Desktop in your home directory. You can change to this directory in a command shell using the
following:

cd ~/Desktop

Everything in this directory will appear as an icon on your desktop screen. Adding, renaming, or
deleting files in this directory will result in those changes appearing on your desktop.

You can open a file manager application that will display the contents of other directories in a
file manager window. From this window you can “drag and drop” files between the file manager
window and your desktop, or even between two file manager windows. Other operations such as
“copy and paste” or “delete” are possible on your desktop or in a file manager window. All of these
sorts of operations can be done using commands from a shell window, which is what most Linux
programmers do.

3 Useful commands

command example description
pwd pwd display the current working directory
cd cd /home change directory to /home
rm rm bar remove the file bar
rmdir rmdir foo remove the directory foo

the directory must be empty for this to work
mv mv bar car rename the file bar to car
mv mv bar foo move the file bar into directory foo

foo is assumed to be a directory in the above
cp cp bar far copy the file bar onto the file far

cp ../bar . copy the file ../bar to a file
of the same name in the current directory

cat cat bar display the contents of the file bar
ls ls foo list the contents of directory foo

ls -l foo do a long list (with details) of foo
ls list the contents of the current directory

lpr lpr bar print the file bar on the Lab printer
javac javac Prog.java compile Prog.java
java java Prog run the Prog.class program

3.1 Wildcards

When a command requires one or more filename arguments (such as javac), you can use wild-
cards to refer to all of the filenames that match a particular pattern. The most common wildcard is
‘*’ which matches any (zero or more) filename characters. For example, the following command

javac *.java

will compile all of the Java files in the current directory.

3.2 Man pages

Most commands have on-line documentation that you can read to find out the various switches
(options) that are allowed for the command. The man (for manual) program will display this on-line
command documentation, as the following example shows:

man cat

3.3 PATH

Your PATH is a colon-separated list of directories that the shell uses to determine the location of a
command that you enter. You can see your PATH by using the following command:

echo $PATH

If you want to run a program that is not in your PATH, you can do so by naming the program with
an absolute or relative path name. For example, if you compile a program hello.c using the gcc
compiler, the compiler will produce an executable named a.out in your current directory. But your
current directory is almost certainly not in your PATH, so to execute this program you would need to
do

./a.out

where the ‘./’ part (pronounced “dot-slash”) says to look in your current directory for the program
to run instead of looking in the directories in your PATH.

4 Redirection

Many programs take input from standard input and send their output to standard output. Unless
directed otherwise, standard input comes from your keyboard, and standard output goes to your
shell window. In Java programs, System.in refers to standard input and System.out refers to
standard output.

Programs may also send their output to standard error, which also defaults to your shell window
but is used principally to report error messages. In Java programs, System.err refers to standard
error.

When running a program that writes to standard output, you can redirect the output to go to a
file instead using the ‘>’ redirection operator: For example, the following command

ls > DIR

would send the output of the ls command to the file DIR instead of sending it to your shell window.
Similarly, if Prog is a Java program that reads from System.in, the following command

java Prog < DIR

would read its input from the file DIR instead of from the keyboard.

5 Pipes

A pipeline is a concatenation of commands where the output of one command becomes the input to
the next command. In this case we say that the one command pipes its output to the next command.
The vertical bar operator ‘|’ is used to denote a pipe. In the following example

ls | java Prog

the output of the ls command becomes the input to the Java program Prog. Notice that this
amounts to the same as the two commands

ls > DIR
java Prog < DIR

without the need for the intermediate file DIR.

6 Remote login

You can log in to the CS Lab from off campus using a remote shell. On a Microsoft Windows system,
you can install and use putty. However, logging in remotely from a Windows system will generally
not allow you to execute programs on the Lab systems that are graphics-oriented, such as gedit
or emacs.

On a Linux system such as Ubuntu, you can use ssh to log in remotely. Doing so will give you
a command shell that is the same as if you were running the shell on the lab system. If you give
the ‘-X’ command-line switch to the ssh command, this will route graphics-oriented output from
the Lab system to your remote system. If you do not have a Linux-based system, you can install
virtualbox to set up a Linux virtual machine that will behave appropriately.

To use ssh from a remote Linux system, run the following command:

ssh -X user000@lab.cs.potsdam.edu

where you should replace the user000 with your username. You will be asked to enter your CCA
password, after which you will get a shell on one of the Lab workstations that you can use as if you
were sitting at the Lab workstation.

If you want simply to copy a file between a remote Linux system and the Lab server, you can
use the scp (for “secure copy”) command. Here’s an example of how to use scp from your remote
Linux system:

scp user000@lab.cs.potsdam.edu:foo .

This will copy the file named foo from your Lab home directory into the file with the same name on
your remote Linux system. You can also copy in the other direction, from your remote Linux system
to your Lab home directory; see the scp documentation for details.

If you do your work in the Lab instead of remotely, you have the advantage of being able to
discuss your homework with your peers and faculty who are on campus, and you will also get to
know your fellow students better. One of the best ways to become a successful CS student is to
become a part of our CS family by working and playing in our CS Lab environment. We recommend
that you use remote login rarely.

7 USB drives

You should be able to plug a USB device into one of the USB slots in the front of a Lab workstation
to access the files in the device. You will typically get a file manager window showing the contents
of your device, and you should be able to copy files and directories between the file manager
window and your desktop by using conventional drag-and-drop or copy-and-paste operations that
are familiar to Windows users.

The directory structure of each USB device that you plug in will appear as a subdirectory of the
/media directory, with a name that comes from the device “disk label”. You might see, for example,
a directory named

/media/XXX

if the USB you plug in has XXX as its disk label. You can cd to such a directory to perform operations
on the device as you would any other directory. If you leave your file manager window open during
the use of the device, you can “Eject” the device from this file manager window, which will commit
any changes to the device that are pending. Unplugging a USB device without ejecting it can
result in device corruption, although this is rare if you have not been accessing the device for a few
minutes.

A particular USB device may have a filesystem that is formatted in such a way that a Lab system
doesn’t understand its organization. In this case, the Lab system may not be able to give you access
to the content of the device. If this happens, and if you need to access the contents of the device,
you may get help from the system administrator.

8 Editors

To modify a file such as a Java source file, a document, or a test file, you need to use an editor. An
editor is a program that allows you to make changes to a file.

Everyone has their favorite editor, and we will not play favorites here. However, one of the
following editors (listed in alphabetical order) should serve you well:

emacs (pronounced “ee-macks”)
gedit (pronounced “gee-edit”)
jedit (pronounced “jay-edit”)
nano
vi (pronounced “vee-eye”)

9 Miscellany

The names of the CS Lab systems come from the Adirondack High Peaks. Mount Marcy, the tallest,
has an elevation of 5,343 feet. The artwork on the walls of the Lab are on loan from the Gibson Art
Gallery and are intended to be suggestive of the Adirondack mountain region.

The CS Lab workstations and server were replaced in Summer 2013. Each workstation is a
Hewlett-Packard Z620 with a Xeon processor (3+GHz), 12Gb memory, 500 GB disk space, and an
Nvidia GTX480 GPU graphics card. The Lab server is a Hewlett-Packard rack server with 1.5TB
storage, dual Xeon processors, and 32Gb memory.

Home directories on the Lab server are scheduled daily for backup, at two separate locations,
in the wee hours of the morning. If you have files or directories that you have mistakenly overwritten
or deleted, you can request that the system administrator restore your backed up versions. Any
changes that were made after the backup will be lost. Even though backups are scheduled daily,
their successes are dependent on factors such as network connectivity, power availability, and hard-
ware reliability; the system administrator cannot guarantee that files will be restored to their prior
contents.

The CS Lab system administrator is Dr. Fossum (fossumtv@potsdam.edu).

10 This Document

The LATEXsource file for this document is named survival.tex and is located in the directory

/home/student/Classes/Survival

on the CS lab server cs.potsdam.edu. The PDF version of this document is

/home/student/Classes/Survival/survival.pdf

