
* Copyright © 2007 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

98

A LIGHTWEIGHT FRAMEWORK FOR PEER-TO-PEER

PROGRAMMING*

Nadeem Abdul Hamid
Berry College

2277 Martha Berry Hwy.
Mount Berry, Georgia 30165

(706) 368-5632
nadeem@acm.org

ABSTRACT
Peer-to-peer systems (P2P) have become one of the most popular Internet
applications in use today. Implementing a P2P protocol requires the developer
to manage a number of issues related to socket handling (both from a server
and client perspective), threads, and message passing (or alternate means of
communication between nodes). These infrastructure-related issues are often
independent of the algorithmic details of the protocol itself. While there are
frameworks available that encapsulate these low-level details for developers,
they may not be suitable for students in an introductory networking course
because of the overhead of having to learn the interface of a full-featured
library. This paper presents the development of a lightweight, pedagogical
framework for implementing and experimenting with P2P protocols and
applications, aimed especially at students in introductory networking courses.

INTRODUCTION
Peer-to-peer systems (P2P) have become one of the most popular Internet

applications in use today. According to recent analyses, P2P traffic takes up more than
half of the bandwidth on the Internet [6]. P2P applications organize and manage resources
at the edges of the Internet (e.g., user PCs) in a decentralized manner, with little or no
interaction with centralized servers [9]. Thus, in order to operate as a P2P node, a
computer needs to perform tasks typical to both traditional servers as well as clients, and
to constantly monitor nodes joining and leaving the network.

CCSC: Mid-South Conference

99

Implementing a P2P protocol requires the developer to manage a number of issues
related to socket handling (both from a server and client perspective), threads, and
message passing (or alternate means of communication between nodes). These
infrastructure-related issues are often independent of the algorithmic details of the
protocol itself. While there are frameworks available that encapsulate these low-level
details for developers, they may not be suitable for students in an introductory networking
course because of the overhead of having to learn the interface of a full-featured library.
Perhaps even less attractive, from an educational perspective, is that such libraries may
provide too much infrastructure, so that the user is forced to use a particular P2P
discovery algorithm, for example. Changing or experimenting with the underlying
algorithm for searching the P2P network in such libraries requires digging into the
internals, a daunting prospect for novices.

This paper presents the development of a lightweight, pedagogical framework for
implementing P2P protocols and applications. It is “lightweight” by virtue of a simple
interface and implementation, suitable for student experimentation and extension. The
framework provides the code needed for basic infrastructure tasks such as those
mentioned above: setting up a server socket, threads to handle incoming connections, and
dispatching requests to appropriate handlers. This allows users of the framework (e.g.,
students) to focus more immediately on implementing the particular details of a P2P
protocol and related algorithms.

Along with source code, this project provides an online tutorial introduction to
developing P2P applications that walks through the actual implementation of the
framework infrastructure. The library itself is currently implemented in both Python and
Java; P2P applications that use either version of the library are interoperable. This
framework has been developed for a newly introduced course, “Netcentric Computing,”
at the author’s college and is in a state of active prototyping and revision.

In the remainder of this paper, some background and related work is discussed.
Then, an overview of the library’s design and a couple of sample applications are given.
A number of directions for future development are discussed before concluding.

BACKGROUND
Peer-to-peer networking is an active research topic in the CS community. A closely

related concept is that of an overlay network: a computer network built on top of another
one. Many P2P networks are overlays because they run on top of the IP-based Internet,
routing messages using identifiers other than IP addresses. While students with an
understanding of writing servers and clients should be able, in principle, to write a P2P
program, it may be difficult to understand how to combine both server and client
functionality in a single entity while managing other issues unique to P2P. At the least,
it seems that students would spend much time on getting the infrastructure working
instead of being able to concentrate on the essence of the P2P design.

Standard networking textbooks, such as [6, 7], include high-level discussions of
peer-to-peer and overlay networks. Also, there are several good survey articles and
volumes [2, 10, 12] written on P2P technologies. Our desire is to allow students to gain
more experience with protocols such as those described in these works or in other current

JCSC 22, 5 (May 2007)

100

research. As mentioned in the introduction, there are a number of full-featured P2P
infrastructures available for use, such as JXTA, Pastry [8], and Groove [4]. Besides being
too complex to fit into a few weeks of an introductory networks course, however, such
infrastructures often encapsulate a particular P2P protocol and are intended more for
developing applications based on the provided protocol.

A LIGHTWEIGHT FRAMEWORK FOR P2P DEVELOPMENT
As discussed above, the main objective of developing this library was to get users

who want to implement a P2P protocol up and running in a short time. Once the
developer has decided what types of messages will be sent by the protocol, it is, for the
most part, simply a matter of programming handlers for each message and registering
them with the system. The library encapsulates operations common to P2P applications.
While a variety of instantiations for P2P protocols may eventually be developed and
provided with the library, the idea is to allow students to gain experience developing and
debugging implementations themselves. The source code for the library is currently less
than 600 lines, in both the Java and Python versions.

The Peer module and peer connections
The Peer module (implemented as a class in Python and Java) manages the

operations of a single node in the P2P network. It contains a main loop which listens for
incoming connections and creates separate threads to handle them. The programmer
registers handlers with the module for various message types, and the main loop
dispatches incoming requests to the appropriate handler. The peer is initialized by
providing a port to listen for incoming connections, and optionally a host address (i.e. IP
address, which may be automatically determined) and node identifier.

A list of known peers is also maintained by the node, which may be accessed and
modified through the Peer module. The size of the list may be limited, and peers may be
accessed using their identifiers or their sequential position in the list. Besides a list of
handlers for various method types, the node also stores a user-supplied function for
deciding how to route messages, and can be set up to run stabilization operations at
specific intervals.

The PeerConnection module encapsulates a socket connected to a peer node. The
library uses TCP/IP sockets for communication between nodes. A peer connection object
provides high-level methods for sending and receiving messages and acknowledgments.
It ensures messages are encoded in the correct format and tries to detect various errors.

Message format and handlers
Messages exchanged between nodes in the P2P system are prefixed by a header

composed of a 4-byte identifier for the type of the message and a 4-byte integer holding
the size of the data in the message. (We are also considering including a unique identifier
with every message sent, but currently if a protocol requires such, it may be included in
the body of the message.) The 4-byte message code can be viewed as a string, so the user
of the library may come up with appropriate strings of length 4 to identify the various

CCSC: Mid-South Conference

101

types of messages exchanged in the system. When the main loop of a peer receives a
message, it dispatches it to the appropriate handler based on the message type.

A message handler is simply a function object in Python (or an object supporting the
handler interface in Java) that receives a reference to an open peer connection and the
message data. Handlers can be registered for any message type identified by a 4-byte
string. Currently only one handler per type may be used. When a node receives a message
from a peer, the receiving node sets up a peer connection object, reads in the message
type and remainder of the message, and launches a separate thread to handle the data. The
peer connection is automatically closed when the message handler completes its task.

Routing and stabilization
The nodes in a P2P network may route messages based on the peer names

(identifiers), instead of simply IP addresses. This would be an instance of an overlay
network. Our framework allows nodes to be assigned names as required by the protocol
being implemented. The programmer can then register a routing function with the Peer
module that decides how to route messages based on the peer names.

Because nodes are continuously joining and leaving a P2P network, protocols may
require some sort of stabilization routine to be run at regular intervals. At the least, a node
may need to “ping” its known peers every now and then to make sure they are still there.
The library provides users a simple way to register such stabilization routines, which are
run in a separate thread at specified intervals.

Figure 1: A simple P2P file-sharing application.

SAMPLE PROTOCOL IMPLEMENTATIONS
A Simple File Sharing System

Provided with the P2P framework library is a simple instantiation of a P2P protocol
for file-sharing with a GUI interface (see Figure 1). The protocol implemented is
extremely simple, leaving its improvement as a possible assignment. (As with the library
itself, the additional code for this application is under 600 lines.) There are 7 types of
messages exchanged by the nodes (actually 9, including positive and negative
acknowledgments). Peer identifiers are strings of the form “host:port”, using IP addresses
directly for routing purposes. The maximum size of the peer list (known peers) is
specified upon startup, as is the TCP port on which a node listens for connections.

JCSC 22, 5 (May 2007)

102

This program implements a pure P2P network– there is absolutely no centralized
directory of peers. A node joins the network by contacting another peer that is already in
it. The new node builds its own list of known peers by performing a depth-first search of
peers known to the initial contact. The depth of the search is limited by a number-of-hops
parameter, and continues until the size of the peer list has reached its limit (or there are
no more peers to contact). The algorithm also ensures, of course, that the node itself is not
added to its own peer list, nor are duplicate peer names.

Querying the network involves searching for a file name. This is achieved by a
brute-force algorithm that floods the known peers with QUERY messages. The peers
either respond with a QRESPONSE message or propagate the query onto their own
respective peers. The process is limited by a number-of-hops counter that is decremented
in each message as it is propagated. Once the location of a file has been discovered, it can
be fetched to the local node by directly contacting the peer that owns the file. The peer
does not necessarily have to appear in the immediate peer list in this case, because peer
names provide the direct IP address and port to contact. Upon receiving a FGET message,
a peer replies with the contents of the requested file, if it is valid.

Other message types used in this protocol are NAME, to request a peer’s canonical
identifier; LIST, to which a peer responds with a list of all other peers in the network that
it knows about; and JOIN, which requests that a node add a specified host/port
combination to its list of known peers. Also, the QUIT message indicates a graceful exit
of a node from the network.

The GUI code sets up the window frame components and event handlers for the
various buttons, shown in Figure 1. It then launches the peer main loop, and starts a
simple stabilization routine to ping peers every few seconds to make sure they are still
alive. Local files can be registered with the peer and files stored elsewhere in the network
can be searched by file name (or substring thereof). If the number of names in the peer
list decreases due to nodes leaving the network, the “Rebuild” button allows the user to
launch the depth-first search routine for new peers, given a node name to start from.

A Chord Protocol Implementation
The Chord project “aims to build scalable, robust distributed systems using peer-to-

peer ideas” [1]. Chord is a search protocol that addresses the problem of efficiently
locating a node that stores a particular data item. An instance of a class of distributed
systems known as distributed hash tables, Chord maps keys onto nodes and adapts
efficiently as nodes continuously join and leave the system [11]. Theoretical and
experimental results show that communication costs scale logarithmically with the
number of Chord nodes (unlike the exponential query algorithm described in the previous
section).

Briefly, Chord assigns every node a numeric identifier by hashing the node’s IP
address. Similarly, every key (e.g., file name) is hashed to a numeric identifier. The
identifiers are ordered in a “circle”, modulo 2m, where m is an input parameter to the
protocol. The minimum amount of routing information required is for each node to be
aware of its successor on the circle. However, to make searching more efficient, nodes

CCSC: Mid-South Conference

103

store an extra “finger table” of size m, allowing quick access to nodes up to halfway
around the identifier circle.

The basic Chord algorithms described in [11] have been implemented by the author
on top of the P2P infrastructure library of this work. (Details omitted due to space.) This
demonstrates an intended use of the framework for class assignments or projects: students
may research, or be given, a “real-world” or experimental protocol and are asked to
implement it based on the text description or pseudocode given in a research article. It
often takes a bit of testing and debugging to figure out critical details omitted in the
pseudocode description. Understanding such details will hopefully help students
appreciate such protocols and networked computing in more depth.

FUTURE WORK
There are many exciting features that can be incorporated into the framework to

better support students’ debugging, testing, and analysis of implemented protocols.
Currently, the peer connection module directly interacts with the socket module in the
standard language library. We plan to add an extra layer of indirection which would allow
messages to either be sent over the actual network, or through a simulated layer on the
local machine. The extra layer could also log all messages to the local machine as they
are sent over the network, or forward copies to a server for monitoring and analysis. We
would also like to integrate better logging support for local debugging messages.

To support testing and analysis, it would be interesting as a long term goal to
interface with an existing network simulator framework. Additionally, for testing
purposes, we are considering a simple scripting language to launch nodes and generate
test messages between them. Again, this may be tied into an interface with large-scale
experimental platforms such as PlanetSim [5] or PlanetLab [3].

CONCLUSION
This paper has presented initial development of a resource to help educators

introduce P2P protocol development and application programming into the coursework
of a networks class. The P2P framework is designed to be “lightweight” enough to allow
students to browse through the source code, aided by a tutorial introduction to P2P
programming, to help them develop their own protocol implementations. The library
itself, implemented in both Python and Java, encapsulates basic network and threading
tasks to facilitate implementation of P2P protocols.

ACKNOWLEDGMENTS
This work was supported by a Berry College Summer Grant for Course

Development. Patrick Valencia, undergraduate student, assisted with the Java
development.

JCSC 22, 5 (May 2007)

104

REFERENCES

[1] The Chord project, pdos.csail.mit.edu/chord, retrieved September 2006.

[2] Androutsellis-Theotokis, S., Spinellis, D., A survey of peer-to-peer content
distribution technologies. ACM Computing Surveys, 36(4):335–371, 2004.

[3] Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M.,
Bowman, M., Planetlab: an overlay testbed for broad-coverage services.
SIGCOMM Computer Communications Review, 33(3):3–12, 2003.

[4] Edwards, J., Peer-to-Peer Programming on Groove®, Boston, MA: Addison
Wesley Professional, 2002.

[5] Garcia, P., Pairot, C., Mondjar, R., Pujol, J., Tejedor, H., Rallo, R., Planetsim: A
new overlay network simulation framework, Software Engineering and
Middleware, SEM 2004 (Lecture Notes in Computer Science), 3437:123–137,
March 2005.

[6] Kurose, J. F., Ross, K. W., Computer Networking: A Top-Down Approach
Featuring the Internet, 3/E. Boston, MA: Addison-Wesley, 2005.

[7] Peterson, L. L., Davie, B. S., Computer Networks: A Systems Approach, 3/E. San
Francisco: CA, Morgan Kaufmann, 2003.

[8] Rowstron, A. I. T., Druschel, P., Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems, Middleware ’01: Proceedings
of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, 329–350, 2001.

[9] Shirky, C., What is p2p. . . and what isn’t,
www.openp2p.com/pub/a/p2p/2000/11/24/shirky1whatisp2p.html, retrieved
September 2006.

[10] Steinmetz, R., Wehrle, K., Peer-to-Peer Systems and Applications (Lecture
Notes in Computer Science), Secaucus, NJ: Springer-Verlag, 2005.

[11] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek
F., Balakrishnan, H., Chord: a scalable peer-to-peer lookup protocol for internet
applications, IEEE/ACM Transactions on Networking, 11(1):17–32, February
2003.

[12] Subramanian, R., Goodman, B. D., Peer to Peer Computing: The Evolution of a
Disruptive Technology, Hershey, PA: Idea Group Publishing, 2005.

